-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_loop_difusion.py
388 lines (340 loc) · 14.6 KB
/
training_loop_difusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import copy
import functools
import os
import time
from types import SimpleNamespace
import numpy as np
import blobfile as bf
import torch
from torch.optim import AdamW
from diffusion import logger
import eval_humanml
from utils import dist_util
from diffusion.fp16_util import MixedPrecisionTrainer
from diffusion.resample import LossAwareSampler, UniformSampler
from tqdm import tqdm
from diffusion.resample import create_named_schedule_sampler
from data_loaders.humanml.networks.evaluator_wrapper import EvaluatorMDMWrapper
import eval_humanact12_uestc
from data_loaders.get_data import get_dataset_loader
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop_Diffusion:
def __init__(self, args, train_platform, model, dynamic, data_loader,fixed_noise):
self.args = args
self.fixed_noise = fixed_noise
self.dataset = args.dataset
self.train_platform = train_platform
self.model = model
self.dynamic = dynamic
self.cond_mode = model.cond_mode
self.data = data_loader
self.batch_size = args.batch_size
self.microbatch = args.batch_size # deprecating this option
self.lr = args.training.lr
self.log_interval = args.training.log_interval
self.save_interval = args.training.save_interval
self.resume_checkpoint = args.training.resume_checkpoint
self.use_fp16 = False # deprecating this option
self.fp16_scale_growth = 1e-3 # deprecating this option
self.weight_decay = args.training.weight_decay
self.lr_anneal_steps = args.training.lr_anneal_steps
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size # * dist.get_world_size()
self.num_steps = args.training.num_steps
self.num_epochs = self.num_steps // len(self.data) + 1
self.sync_cuda = torch.cuda.is_available()
self._load_and_sync_parameters()
self.mp_trainer = MixedPrecisionTrainer(
model=self.model,
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
)
self.save_dir = args.training.save_dir
self.overwrite = args.training.overwrite
self.opt = AdamW(
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
)
if self.resume_step:
self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.device = torch.device("cpu")
if torch.cuda.is_available() and dist_util.dev() != "cpu":
self.device = torch.device(dist_util.dev())
self.schedule_sampler_type = "uniform"
self.schedule_sampler = create_named_schedule_sampler(
self.schedule_sampler_type, dynamic
)
self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None
if args.dataset in ["kit", "humanml"] and args.training.eval_during_training:
mm_num_samples = 0 # mm is super slow hence we won't run it during training
mm_num_repeats = 0 # mm is super slow hence we won't run it during training
gen_loader = get_dataset_loader(
name=args.dataset,
batch_size=args.trainig.eval_batch_size,
num_frames=None,
split=args.training.eval_split,
hml_mode="eval",
)
self.eval_gt_data = get_dataset_loader(
name=args.dataset,
batch_size=args.training.eval_batch_size,
num_frames=None,
split=args.training.eval_split,
hml_mode="gt",
)
self.eval_wrapper = EvaluatorMDMWrapper(args.dataset, dist_util.dev())
self.eval_data = {
"test": lambda: eval_humanml.get_mdm_loader(
model,
dynamic,
args.eval_batch_size,
gen_loader,
mm_num_samples,
mm_num_repeats,
gen_loader.dataset.opt.max_motion_length,
args.eval_num_samples,
scale=1.0,
)
}
self.use_ddp = False
self.ddp_model = self.model
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
)
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def run_loop(self):
for epoch in range(self.num_epochs):
print(f"Starting epoch {epoch}/{self.num_epochs}")
for motion, cond in tqdm(self.data):
if not (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps
):
break
motion = motion.to(self.device)
cond["y"] = {
key: val.to(self.device) if torch.is_tensor(val) else val
for key, val in cond["y"].items()
}
self.run_step(motion, cond)
if self.step % self.log_interval == 0:
for k, v in logger.get_current().name2val.items():
if k == "loss":
print(
"step[{}]: loss[{:0.5f}]".format(
self.step + self.resume_step, v
)
)
if k in ["step", "samples"] or "_q" in k:
continue
else:
self.train_platform.report_scalar(
name=k, value=v, iteration=self.step, group_name="Loss"
)
if self.step % self.save_interval == 0:
self.save()
self.model.eval()
self.evaluate()
self.model.train()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
if not (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps
):
break
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.evaluate()
def evaluate(self):
if not self.args.training.eval_during_training:
return
start_eval = time.time()
if self.eval_wrapper is not None:
print("Running evaluation loop: [Should take about 90 min]")
log_file = os.path.join(
self.save_dir, f"eval_humanml_{(self.step + self.resume_step):09d}.log"
)
diversity_times = 300
mm_num_times = 0 # mm is super slow hence we won't run it during training
eval_dict = eval_humanml.evaluation(
self.eval_wrapper,
self.eval_gt_data,
self.eval_data,
log_file,
replication_times=self.args.training.eval_rep_times,
diversity_times=diversity_times,
mm_num_times=mm_num_times,
run_mm=False,
)
print(eval_dict)
for k, v in eval_dict.items():
if k.startswith("R_precision"):
for i in range(len(v)):
self.train_platform.report_scalar(
name=f"top{i + 1}_" + k,
value=v[i],
iteration=self.step + self.resume_step,
group_name="Eval",
)
else:
self.train_platform.report_scalar(
name=k,
value=v,
iteration=self.step + self.resume_step,
group_name="Eval",
)
elif self.dataset in ["humanact12", "uestc"]:
eval_args = SimpleNamespace(
num_seeds=self.args.training.eval_rep_times,
num_samples=self.args.training.eval_num_samples,
batch_size=self.args.training.eval_batch_size,
device=self.device,
guidance_param=1,
dataset=self.dataset,
unconstrained=self.args.model.unconstrained,
model_path=os.path.join(self.save_dir, self.ckpt_file_name()),
)
eval_dict = eval_humanact12_uestc.evaluate(
eval_args,
model=self.model,
diffusion=self.dynamic,
data=self.data.dataset,
)
print(
f'Evaluation results on {self.dataset}: {sorted(eval_dict["feats"].items())}'
)
for k, v in eval_dict["feats"].items():
if "unconstrained" not in k:
self.train_platform.report_scalar(
name=k,
value=np.array(v).astype(float).mean(),
iteration=self.step,
group_name="Eval",
)
else:
self.train_platform.report_scalar(
name=k,
value=np.array(v).astype(float).mean(),
iteration=self.step,
group_name="Eval Unconstrained",
)
end_eval = time.time()
print(f"Evaluation time: {round(end_eval-start_eval)/60}min")
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
self.mp_trainer.optimize(self.opt)
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, cond):
self.mp_trainer.zero_grad()
for i in range(0, batch.shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
micro_cond = cond
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
compute_losses = functools.partial(
self.dynamic.training_losses,
self.ddp_model,
micro, # [bs, ch, image_size, image_size]
t, # [bs](int) sampled timesteps
model_kwargs=micro_cond,
dataset=self.data.dataset,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(self.dynamic, t, {k: v * weights for k, v in losses.items()})
self.mp_trainer.backward(loss)
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
def ckpt_file_name(self):
return f"model{(self.step+self.resume_step):09d}.pt"
def save(self):
def save_checkpoint(params):
state_dict = self.mp_trainer.master_params_to_state_dict(params)
# Do not save CLIP weights
clip_weights = [e for e in state_dict.keys() if e.startswith("clip_model.")]
for e in clip_weights:
del state_dict[e]
logger.log(f"saving model...")
filename = self.ckpt_file_name()
with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f:
torch.save(state_dict, f)
save_checkpoint(self.mp_trainer.master_params)
with bf.BlobFile(
bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"),
"wb",
) as f:
torch.save(self.opt.state_dict(), f)
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)