

Теплосчетчик ультразвуковой «Комбик»

Руководство по эксплуатации ИВК.117.011 РЭ объединенное с паспортом ИВК.117.011.ПС

Зарегистрирован в Государственном реестре средств измерений Рег. №72395-18 Межповерочный интервал 6 лет

Изготовлено по заказу PRADEX

Настоящий документ, удостоверяет гарантированные изготовителем основные характеристики теплосчетчика «Комбик» и содержит сведения, необходимые при монтаже и эксплуатации.

1. Общие сведения

Теплосчетчики «Комбик» (далее – теплосчетчики) предназначены для измерения тепловой энергии (теплоты), объема и температуры теплоносителя (воды) в водяных системах теплоснабжения и (или) кондиционирования.

- 1.1. Качество теплоносителя должно отвечать требованиям, изложенным в п. 4.8 «Правил технической эксплуатации электрических станций и сетей Российской Федерации».
- 1.2. Теплосчетчики конструктивно, состоят из тепловычислителя, преобразователя расхода и двух термометров.
- 1.3. В качестве преобразователей расхода воды (далее ПР) в состав теплосчетчика входит ультразвуковой «U» преобразователь расхода.
- 1.4. В качестве термометров в состав теплосчетчика входят подобранные в пары термометры сопротивления (далее КТП) типа Рt1000. Термометр, имеющий красную бирку, устанавливается в подающий трубопровод, синюю в обратный.
- 1.5. Теплосчетчик может иметь выходы: импульсный выход (i); радиовыход (R); M-Bus (B); RS-485 (S). Дополнительную информацию о подключении теплосчетчиков можно запросить у продавца/производителя.

2. Основные метрологические и технические характеристики

Наименование характеристики	Значение пар	Значение параметра		
Условный проход	10	15	20	
Порог чувствительности, м ³ /ч	0,005	0,0075	0,0125	
Минимальный расход, q _{min} , м ³ /ч	0,01	0,015	0,025	
Номинальный расход, q _n , м ³ /ч	1	1,5	2,5	
Максимальный расход, q _{max, м} ³ /ч	2	3	5	

Наименование характеристики	Значение
Относительная погрешность измерений объема воды в диапазоне от g_{min} до g_{max} , %	$\pm (2+0.02 \text{ q}_{\text{max}}/\text{ q})$
Номинальная статическая характеристика (НСХ) платиновых термометров сопротивления	Pt1000
Диапазон измерения температуры теплоносителя, °С	0100
Диапазон измерения разности температур, Δ °C	3100
Пределы абсолютной погрешности измерений температур теплосчетчиком, °C	$\pm(0.45^{\circ}+0.005T)$
Пределы абсолютной погрешности измерений разности температур теплосчетчиком, °C	$\pm(0.11^{\circ} + 0.004\Delta T)$
Пределы абсолютной погрешности измерений времени, %	± 0,01
Максимальное давление теплоносителя, МПа	1,6
диапазон температуры окружающего воздуха, °С	от +5 до +55
относительная влажность не более, %	95
Перепад давления при номинальном расходе q _n , м ³ /ч, МПа:	0,025
Степень защиты по ГОСТ 14254-2015	IP65
Срок службы встроенного элемента питания, лет, не менее	6+1
Тип импульсного выхода (кВт-ч/имп)	открытый коллектор
Цена импульса (Q) на выходе, кВт·ч/имп	0,1
Минимальная длительность импульса, мс	125
Максимальное значение напряжение, В	24
Максимальный ток, мА	10
Схема подключения выхода RS485: желтый провод - А; зеленый - В; красный - 24V«+»; голубо	ой - 24V «-»

^{*}Цена импульса может быть изменена

Формулы вычисления тепловой энергии

Сокращение	Формула (Гкал)	Назначение
(π)	Q1=M1·(T1-T2);	Измерение ТЭ в закрытых системах теплоснабжения и кондиционирования (охла-
	Q2=M1·(T1-T2)	ждения) с установкой ТС в подачу (Q1 если δТ>0; Q2 если δТ<0)
(o)	Q1=M2·(T1-T2);	Измерение ТЭ в закрытых системах теплоснабжения и кондиционирования (охла-
	Q2=M2·(T1-T2)	ждения) с установкой ТС в обратку (Q1 при бТ>0; Q2 при бТ<0).
		прим: ТС устанавливается в обратный трубопровод, термометр Т1 – в подающий

3. Работа с изделием

- 3.1. При монтаже теплосчетчика необходимо соблюдать следующие требования:
 - Теплосчетчик необходимо устанавливать на трубопровод без перекосов обеспечив совпадения стрелки на корпусе с направлением потока теплоносителя, пространственная ориентация произвольная. Поставляемый изготовителем комплект присоединителей обеспечивает требуемые значения прямых участков. Подводящая часть трубопровода должна быть промыта и очищена от загрязнений. Запрещается проводить сварочные работы вблизи теплосчетчика;

полпись

- Термометр подающего трубопровода (красный) установлен в корпус преобразователя расхода, термометр обратного
 трубопровода (синий) следует смонтировать в специальный кран (тройник) и установить в обратный трубопровод. Если
 преобразователь расхода устанавливается в обратный трубопровод, то необходимо переустановить термометры (красный в подающий трубопровод, а синий в обратный).
- Герметичность монтажа теплосчетчика следует проверить рабочим давлением.
- 3.2. Выходы интерфейсов теплосчетчика имеют полярность;
- 3.3. Параметры, которые можно настроить в теплосчетчике до начала эксплуатации: выбрать индикацию в Гкал или кВт*ч, скорректировать время, выбрать формулу измерения ТЭ. Для перехода в подменю [set] выберите в меню Ver и удерживайте >6 сек, выберите коротким нажатием корректируемый параметр, для изменения параметра удерживайте от 2 до 6 сек. После наработки рабочего времени >24 часов (когда происходит приращение ТЭ) изменить параметры будет нельзя.
- Для организации автоматической передачи показаний рекомендуется обратится к производителю/продавцу теплосчетчика.

Монтажные размеры теплосчетчика (с присоединителями):

Ду	10	15	20
Монтажная длина, L мм	110 (170)	110 (170)	130 (210)
L/W/H	110/90/85	110/90/85	130/90/85

Теплосчетчик определяет следующие ситуации (Епг). При нескольких ситуациях одновременно их коды суммируются.

Код НС	Описание	Приращение Q и время работы
1	обрыв или короткое замыкание термометра Т1	не производится
2	обрыв или короткое замыкание термометра Т2	не производится
4	показания термометра Т1 меньше показаний термометра Т2	производится
8	некорректная работа преобразователя расхода	не производится
16	производилась коррекция даты и времени	производится
128	требуется смена батарейки (напряжение < 3 В)	производится

4. Индикация

Информация, которую можно посмотреть на индикаторе теплосчетчика. Коротким нажатием на кнопку (<2c) происходит переме-

щение вниз по столбцу, длинным нажатием (2...6с) перемещение вправо в соседний столбец.

[1]	Измерения	[2]	Информация	[3]	Архивы
Q, q	Энергии	SN	Серийный номер	Date, A	Даты архивов
T	Температуры	Ver	Версия, «п» или «о» или «с»		
G, g	Массы	CS	Контрольная сумма		
V, v	Объемы	Err	Код нештатной ситуации		
Time, h	Рабочее время	Date	Текущая дата		
Full Displ	Тест дисплея	Time	Текущее время		

5. Комплектность

М.П.

Теплосчетчик Комбик PR-H U	1 шт.
Преобразователь расхода	1 шт.
Комплект термометров сопротивления (Т1, Т2)	1 шт.

г.

Свидетельство о приемке

Дата выпуска из производства

7. Сведения о первичной поверке

Геплосчетчик «Комбик» зав. №	_ прошел первичную поверку,	MΠ 208-010-2018 '	'ГСИ. '	Теплосчетчик	«Комбик».
Методика поверки", утвержденной ФГУП «ВН	ИИМС» 15.03.2018 г. Межпов	верочный интервал (б лет.		

Дата поверки Клеймо поверки Поверитель:

Гарантийные обязательства

Изготовитель: ООО «ИВК-САЯНЫ», 249096, Калужская обл., г. Малоярославец, ул. Гагарина, 24А тел.: +7 (495) 215-28-22, http://www.sayany.ru, е-mail: service@sayany.ru, гарантирует в течение 36 месяцев с даты продажи, но не более 48 месяцев с даты изготовления, безвозмездную замену или ремонт вышедшего из строя теплосчетчика при условии соблюдения правил монтажа, эксплуатации, транспортирования и хранения. Средний срок службы теплосчетчика не менее 12 лет.