
Hi Adnan,

I wanted to provide you with the results of our investigation.

When reviewing the profiler
trace ProfileWithDassRunningHas90SecondsJITTime_WN0MDWK0000XP_w3wp_9208_20240311-
234145.zip

It was noted that the date/time of collection was 03/11/2024 @ 23:41, investigating on our end to see
what was taking place on the web app at the time we could see high amounts of

• Garbage collection

Note:

• NET Gen 2 Garbage Collection is a cleanup process in the .NET framework that helps manage
memory in your applications. (Application code)

Example:

• Imagine your room getting cluttered with old stuff. GC is like a magical cleaner that periodically
checks your room and removes items you no longer need. It keeps your room tidy and ensures
you don’t run out of space.

Having a High Number of .NET Gen 2 Garbage collections will impact severally the app causing

slowness, we recommend making engagement of your developers as identifying the specific cause often
requires analyzing application code, monitoring performance metrics, and using profiling tools to
pinpoint memory usage patterns and bottlenecks.

We also reviewed the .etl file

• Located the threads with more CPU consumption then group threads with time,
provider name task name etc.

• The problem here is that the ThreadPool worker thread is spending most of its time in
a waiting status:

• Consistently it seems that the GC is not running it could be because of the
Collection.Generic.Dictionary2 which is known to be a not thread
safe. Dictionary<TKey,TValue> Class (System.Collections.Generic) | Microsoft Learn
• In this case application code needs to be review optimize.
• The first step would be to use concurrent instead, then check the type of GC been
run. Understanding different GC modes with Concurrency Visualizer - Developer Support
(microsoft.com)

Looking into the other files they show

• Thread Pool waiting time as well where there is nothing going on on several threads
just waiting on the thread pool:

• While the few ones working are processing messages
from Microsoft.Azure.SignalR.Connections.Client.Internal.WebSocketsTransport

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?view=net-5.0#thread-safety
https://devblogs.microsoft.com/premier-developer/understanding-different-gc-modes-with-concurrency-visualizer/
https://devblogs.microsoft.com/premier-developer/understanding-different-gc-modes-with-concurrency-visualizer/

Overall, logs and investigation have proven that that the long time is because the ThreadPool worker
thread, spending most of its time in a waiting status, which seems to be caused because of the GC
which in turn seems to be the result of the Generic.Dictionary2 usage and not by the JIT time on the
profiler as it was originally thought.

I hope you find this extensive investigation very useful, and it helps clear out any concerns you had on
the JIT time, we recommend making engagement of your developers so they can continue the
investigation on the required optimization the code needs and help solve the slowness.

If there is anything else we can help you with feel free to let us know, we are always happy to help.

Best Regards.

Franklin Fallas.

Support Engineer

Azure | App Services

