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1 Assignment Description

This project is about an assignment for a course on Compilers at the department of Computer Engineering
Master Degree Padova (ITA).

The assignment consists in implementing a toy compiler for a toy language. More emphasis is put on the
implementation for the frontend side (input, lexing, parsing, type checking), while the backend side is stubbed
out by a simple 3AC 1 Intermediate Code generator. We are free to design the syntax of this toy language
however we like.

The assignment specs out the how the compiler should be composed. We can in fact distinguish these macro
components:

• Input Stage deals with the input byte stream that composes the source of the program.

• Lexer/Scanner has the purpose of grouping characters (lexical analysis) together to compose compunded
structures (called tokens). For the project assignment we can use Flex to aid in the implementation of the
scanner.

• Parser for performing the syntax analysis. It is what defines the look & fell (grammar) of the language.
For the project assignment we can use Bison to aid in the implementation of an LR parser.

• Intermediate Code Generator. The ultimate purpose of a compiler is to produce something useful. In
this project assignment we are not asked to implement a proper backend. Instead, we need to emit a 3AC
representation of our input program. More in this later.

Three Adress Code (3AC) is a type of intermediate code generator which is both easy to understand and to emit.
In 3AC, each statement can only have 1 operand at the left hand side of the assignment, and at most 2 operands
at the right hand side of the assignment, and an operator driving the operation that should be performed.

You can view more about 3AC at the following Wikipedia link, or here Geeks4Geeks link.

In practice, the emitted 3AC code is on itself a partially valid C program, it’s only missing variable declarations
at the top for each temporary variable. Control flow is allowed to be implemented trough the usage of C labels
and simple if conditional followed by a goto statement. Inside the if conditional there can only be a single
element composing the expression.

The project assignment requires the following features that should be developed for the language:

• Variables declaration, initialization and assignment

• Scoping. Variable names are reusable in different scopes. Variable shadowing may or may not warn/fail/pass
depending on the design choices.

• Only 2 types of variables: integers, booleans

• Assignment statements, print statements, if statements, and at least 1 loop statement at our liking

• Handling of simple mathematical expressions that we can encounter in common programming languages:
addition, subtraction, multiplication, division, modulo, etc . . .

• Function definition, function calls, and custom user definable types are not required

The unpatient reader can already jump tho the Appendix A to quickly look at an example program of the
designed language. Appendix A lists the program source, the output which is generated by running said program
and the 3AC that the compiler emits when performing the compilation.

13AC: Three Address Code
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2 DPL and dpcc: A quick peak at the language and at the compiler

DPL and DPCC are respectively the name of the language and the name of the implemented compiler.
They are named after their author.

From now on DPL and DPCC will be used for brevity for refering to the language and to the compiler. We
will use dpcc (all lowercase) instead, to refer to the actual executable where the compiler lives.

That being said DPCC (all UPPERCASE) and dpcc (all lowercase) are mostly used interchangeably to refer
to the same thing.

2.1 DPL: Structure of the language

DPL is mostly a C-alike compatible language, in fact it borrows most of its syntax and semantics. DPL is also
inspired by the following programming languag: Rust & JS especially in the syntax used to perform variable
declarations (usage of the keyword let).

Rust is a modern system programming language with strong typing guarantees. Among all the interesting
features that Rust provides one of them is type deduction. Thanks to Rust’s strong typing guarantees and thanks
to strong type deduction rules implemented inside the rustc compiler, Rust allows one to declare variables with
a very low-weight syntax, similar to a syntax provided from a typical dynamic language (for example JS).

DPL, like Rust, also have a very simple form of a type deduction system. It is not even remotely close to the
Rust type deduction system, but still it allows the user of the language to not always need to specify the type of
each variable in a declaration. How this is achieved will be described in later sections.

In DPL:

• Spaces and newlines mostly do not matter, they simply introduce token boundaries.

• Comments start with the double forward slash ‘//’, and C-style multiline comments are instead not
supported (at the time of writing).

Here follows a chunk of DPL code to show off the syntax and some of the language features:

1 // Print statement with immediate C-style strings. C-style strings can only be used inside print statement

2 print("Hello world\n");

3

4 // Variable declaration and initialization

5 let a = 10; // Integer Type deduced

6 let f = 10.0; // Float type deduced

7 let b = false; // Boolean type deduced

8

9 // Explicit types

10 let i: int = 0xffff & ~0xb00111;

11 let f: float = 10.0 + 20.0 ** 2;

12

13 // Immediate values can be printed

14 print(10);

15 print(30 + 4);

16

17 // Variables can be printed

18 print(i); // Print integer

19 print(f); // Print float

20

21 // Casting can be used to enforce type conversion

22 let myInt: int = int(10.00f);

23 let myFloat = float(0xFF);

24

25 // Type deduction

26 let b = (10 < 20); // Boolean type is deduced

27 let f = 1 + 2.0f; // Float type is deduced (the 1 is upcasted to a float)

28

29 // Scoping and restricting variable declarations to the current scope

30 {

31 // Simple single dimension arrays declaration

32 let buf_i: int[100]; // Known size integer array

33 let buf_f: float[100]; // Known size float array

34

35 // Integer array with deduced size from the RHS initializer list

36 let buf = [ 10, 20, 30, 40, 50 ];

37 let fs: float[] = [ 0.1, 0.2, 0.3, 0.4, 0.5 ];

38
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39 // Arrays can be printed

40 print(buf);

41 }

42

43 let buf: int[100];

44

45 // Control flow

46 for (let i = 0; i < 100; i++) {

47 buf[i] = i ** 2;

48

49 if (buf[i] == 10) {

50 print("buf[i] is 10!!!\n")

51 }

52 else if (buf[i] == 20) {

53 print("buf[i] is 20!!!\n");

54 }

55 else {

56 print("None of above\n");

57 }

58 }

The cool thing about DPL, is that it is almost a Javascript subset. That is one can simply copy the DPL
code, strip the type information (if they’re used anywhere) by manual editing or automatically, and paste the
same code into a browser console to evaluate as JS code. With a couple modifications here and there (for
example arrays with no initalizer list must be converted into a valid JS array), one can test if the compiler dpcc
is producing the correct output by simply evaluating the same code in a browser console.

This example shows how to convert DPL into JS by manual editing:

1 // This is a chunk of DPL code

2 let a = 10; // This is also valid JS code

3 let b = [ 10, 20, 30, 40 ]; // This is also valid JS code

4 let c: int = 10; // Mostly valid JS code, remove the type info and the colon

5 let d: int[1024]; // Js arrays grow on demand automatically when touching elements.

6 // No need to specify neither type nor number of elements

7

8 print(d); // Valid JS code if function print were to be defined

Here’s the equivalent JS code:

1 // This is the equivalent Javascript

2 const print = console.log; // Define it once at the top of the script

3

4 let a = 10; // Same as before

5 let b = [ 10, 20, 30, 40 ]; // Same as before

6 let c = 10; // Just strip the int type

7 let d = []; // Just initalizing with an empty array is enough

8

9 print(d); // Works because print is defined at the top

Most other DPL syntax and features, like code blocks, conditionals, loops . . . etc are valid JS code thanks on
how the grammar for DPL was defined.

For now dpcc supports only 5 types: bool, int, float, string, bool[], int[], float[]. Only single
dimensions array are for now supported. So arrays do not generalize to any number of dimensions.

Most of these types have full on semantics, meaning that the compiler can deduce a type of an expression given
the types of its operand. In some cases it can reject the code if the operands of an expression have invalid types.
At the current time of writing, string types are quirky, meaning that they don’t have a full type tracking inside
the compiler like other types do. The compiler still knows what a string is, and in it marks correctly string
literals as a string type, but strings undergo different semantics. They cannot be assigned or operated on like
a variable, but instead, they can only be used as a parameter to the print statement.

2.2 DPCC: Using the compiler

The dpcc compiler is written in the C language. Unfortunately at the current time of writing dpcc works only
under Unix like operating systems. The compiler has been tested under Ubuntu 20.10, Ubuntu 20.04, and
macOS 10.15. The compiler was developed by his author using an Ubuntu 20.10 machine, while the other
distro/OS were tested thanks to Github Actions automated build-check cycles. Windows builds failed due to
MSVC rejecting the source code of dpcc cause it contains some GCC extensions and some hard coded unix
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syscalls. In short words dpcc can be only compiled with either GCC or CLANG compilers and executed in a
Unix/Posix compatible operating system.

If you would like to build the compiler yourself from scratch please refer to the Project WIKI2

The compiler can and should be invoked from the commandline. The dpcc executable is self contained and
doesn’t reach for any implicit external asset and thus can be placed anywhere in the system and invoked from
anywhere.

From now on we assume the user has a fired up shell correctly cd-ed to the directory holding the dpcc executable:

To call the compiler run the following command, which will print it’s usage help message:

1 ./dpcc

The dpcc compiler supports the specification of the -o flag where applicable. This flag allows to override the
default output location.

dpcc can work in 6 different modes: lex, parse, 3ac, c, gcc, run:

• ./dpcc lex <input> [-o <out>]: Lex the input and show the list of tokens composing the DPL source
in either stdout or in the given file.

• ./dpcc parse <input> [-o <out>]: Parse the program and produce a text representation of the AST
(Abstract Syntax Tree) in either stdout or in the given file.

• ./dpcc 3ac <input> [-o <out>]: Parse the program and perform additional type validations and type
checking. If the program is still valid emit 3AC in either stdout or in the given file.

• ./dpcc c <input> [-o <out>]: Same as 3AC but also emit preamble and postamble required to promote
3AC to a valid C program that can be compiled. The output is emitted in either stdout or in the given file.

• ./dpcc gcc <input> [-o <out>]: Same as ‘dpcc c’ but the generated C program is piped into GCC
standard input and the final executable is either compiled in a.out or in the given filepath. This requires
GCC to be in the path.

• ./dpcc run <input>: Parse, typecheck, emit the C code, compile it and run it in one single command.
The executable produced by GCC is outputted in a temp file (under /tmp), the temp executable is executed
right away and then removed. The -o flag is ignored. This requires GCC to be in the path.

Lex and parse modes are mostly used for debugging and are not really that useful. The run mode is the most
convenient mode since it takes care of everything. If the input program is valid and you call ‘./dpcc run’ on it
you will see the output generated from you DPL program, otherwise the compiler will complain with either
warnings or errors.

2Github Repo Link
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3 DPL Language Details

Providing a full language specification is beyond the scope of this project report. In particular this section
will not list the entire grammar of the language. Thus, it is assumed that the reader has a common basic
programming knowledge. It is also assumeed that he/she has some experience with at least one C-alike language.
If the reader satisfies these requirements, he/she can use basic reasoning and code examples to deduce the
specification of the language. Thus the purpose of this section is to characterize some core major concepts that
distinguish DPL from other languages and that are not easily inferable:

• Comments start with ‘//’

• Identifiers start with a letter or an extened non ASCII UTF-8 character. After the first character an
identifier can contain any alphanumerical character excluding spaces and punctuation characters. Notice
that names beginning with an underscore are reserved for compiler use and will be rejected.

• Strings are enclosed in " (double quotes) and can contain valid ASCII escape sequences like in any
traditional C-derived language.

• Print statement unlike in C are allowed to print any variable, and can deduce what should be printed
based on the type of the variable that is passed.

• Most of the grammar is C-inspired, and in fact all control flow statements have the same syntax of C (or
of any C-derived language).

• The precedence of the operators are taken directly from the C precedence table. The only modification
that DPL does differently than C is that bitwise operators (&, |, ^) have higher precedence than
the compare operators (==, !=, ...). Most modern languages adopt this convenient change, because it
makes the precedence of the bitwise operators behave in the same way that normal mathematical operators
work (=, +, -, <<, >>). In fact also the Rust language employes this same modification.

• A DPL program starts either in 2 ways. The first more idiomatic way is to just start writing statements
directly:

1 let a = 10;

2 print(a + 20);

The other way is to wrap all the statements inside a main function.

1 fn main() {

2 let = 10;

3 print(a + 20);

4 }

Since DPL does not support functions yet the main function is mostly ignored but it is still part of
the grammar for consistency reasons.

• DPL is a strongly typed language. Currently only 5 types are supported: bool, int, float, string,

bool[], int[], float[]. As we talked about in previous sections string types behave a little bit
different way.

• Code blocks are enclosed in braces ‘{ ... }’. Each code block define a new scope where variables can be
defined.

• Braces in control flow statements (if, while, for, ...) are always mandatory. This is different
from C where the braces are not mandatory. This change was done to simplify the grammar but also to
avoid ambiguity and to make the code more robust to future changes. Rust also imposes mandatory
braces.

• Variables can be declared with the keyword let and type deduction rules inside the compiler avoids the
need to specify a type in most cases. A variable name must be a valid identifier. Variable declaration with
the same variable name can’t appear twice or more in the same code block. Reusage of variables names
within nested blocks are instead allowed, even with different types: variable shadowing. Currently the
reference compiler does not emit any warning in case a variable is shadowed.
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4 DPCC compiler Implementation Details

This section describes how the dpcc compiler is composed: the input stage, the lexer stage, and the syntax
analysis stage (parser), and the final code generator. Flex and Bison are used as tools for aiding in the
boilerplate code generation of respectively the lexer and the parser.

The dpcc compilers models the entire program mostly using the following C types:

• token t is basically a book-keeping type. It is meant to store metadata for each token. The most
fundamental fields that it stores are: the lexeme, and the kind of each token (comment, identifier, string
literal, . . . ). It also stores the location of each token within the file (line:column)

• ast node t is the main core type of the compiler. Multiple ast node t’s consitutes a full AST tree.
When performing parsing using Bison, nodes are linked together in a parent/child relationship. Each
node has the following fields:

– A pointer to a token.

– The node kind. The node kind is used to disambiguate the kind of the node (Stmt, VarDeclStmt,

Expr, ...). It’s one of the most important fields used in the code generation phase.

– The codegen metadata. The codegen metadata is filled and used only in the last code generation
phase of the compiler.

– Multiple pointers to child nodes (if any).

– A backpointer to the parent node (if any).

– A pointer to the declaration node, used only for identifiers to lookup where they were declared.

– A literal value. The literal value is used only in literals to store the value represented by this node
(int, float, bool).

• symtable t used to model the variables that are in scope. It’s implementation for now is based on a linear
array, and thus has linear search time performance. A hashmap could be used to improve the lookup
performance.

• ast traversal t is a book-keeping context state used for traversing an AST.

• codegen ctx t is a context state for tracking already used 3AC variable names.

4.1 The input stage of the compiler

This is the simplest part of the compiler. At the time of writing the dpcc compiler allows only for the loading of
files. In particular it reads an entire file into memory before continuining with the rest of the piepeline. The
input stage does not support any form of URI, file downloads, any type of protocol that would require realtime
on stream code generation, linux sockets, . . . etc. That is the compiler can open anything that looks like a file
that has a finite determinable start, an end and a finite number of bytes.

4.2 Lexer

Flex is used to implement the lexer/tokenizer. Lexers are pretty simple to understand and are particulary easy
to develop if easing a tool like Flex. The unfamiliar reader with Flex can read the Flex Manual.

The things that are worth noting about the dpcc tokenizer are:

• The lexer is completely UTF-8 aware, and UTF-8 symbols can be used to declare identifiers. This is
achieved by having particular Flex rules to match the variable encoding nature of UTF-8. This allows a
DPL program to declare variable names including emojis. Why? Cause they’re cool ,

• The lexer tracks line and column locations thanks to the global variable yylloc exposed from Bison
(when enabling %locations). This variable is updated accordingly in each rule, the line column and lines
information are updated on each newline.

• Support for both Unix and MS-DOS style newlines.

• Support for C-style strings (can contain escape sequences).

• Support for C-style single line comments.
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• Support for binary and hexadecimal integers. Support for C-style floating point numbers with the exponent
and an optional terminating ‘f’ character.

Flex is used mainly as a token recognizer since most of the logic is implemented outside the flex file anyway. One
of the most notable feature that is implemented outside, is what’s called String interning3. String iterning
is a common technique used in compilers design that allows the compiler to store and cache lexemes in a common
place. Since in typical source files the same lexemes tend to repeat and appear multiple times, it is common to
store each lexeme only once. Whenever a lexeme is found it is looked up in a string to string hashmap. If it’s
not found, it allocates the new lexeme and returns the pointer to the new allocation. If it’s found instead, it
simply just returns the pointer to the interned lexeme. This allows to save memory, but even more cooler is
the fact that now if two strings are identical and they are interned correctly, we can compare the two strings
for equality by simply just comparing their respective pointers. In fact thanks to string interning strings are
uniquely identified by the memory address they live in. This feature is then used in the parser to quickly lookup
the identifiers in the symbol table.

For implementing string interning the amazing stb ds.h single-file header from the awesome Sean Barrett’s
stb libraries is used as an hashmap implementation.

So upon encountering a new token the following things happen:

• Locations information (line, column) are updated correctly.

• The lexeme is interned, and the old lexeme pointer is stomped in favour of the interned one.

• A new token t is allocated and filled with the lexeme pointer, the location and some other metadata.

• A new ast node t is allocated and the corresponding token is referenced. The ast node t will be used
by Bison and later stages to generate the AST and to perform the analysis in the code generation phase.
The node kind is instead left un-initialized for now. It will be set by the Bison parser later, where more
semantic context is available.

• It signals to bison the new lexeme kind by simply return-ing from the lex() procedure (Bison calls flex
in a coroutine mode)

4.3 Parser

Bison is used to aid in the implementation of the syntax analysis stage. The unfamiliar user can refer to the
manual to learn about Bison. In the dpcc compiler Bison is used only for defining the grammar, and the
parse() function generated from Bison is mostly used for syntax checking the input source.

In each Bison action the things worth noting that could occur are:

• A new ast node t is allocated and chained with other AST nodes in order to compose the full AST tree.

• Code blocks define a new scope where variable declarations can occur.

• A new variable declaration pushes a symbol into the symbol table.

• Each identifier used is looked up in the symbol table. If it’s not found, then the parser errors out and
refuses the program.

That is in dpcc, Bison is used only for defining the grammar and for checking if a program is syntactically valid.
Apart for the extraordinary case that deals with the symbol table check & update, most of the compiler logic is
not implemented inside the bison file.

Instead it is preferred to define most of the logic somewhere else, and to just setup the necessary AST to execute
the logic later. This makes bison actions very simple and each action contain merely no code at all. In fact almost
all actions in the bison file, call some C functions defined somewhere else: NEW NODE, push child, push childs.
These C functions are used to create a new node and to set it’s type, and to append the corresponding childs
to this new node. This keeps the bison file simple and concise since most of the heavyweight code is defined
somewhere else.

The advantage of composing a full AST and deferring the execution of the logic to later stages are: simplicity,
abstraction, code decoupling, and code scaling. The disadvantage instead, is that in order to emit the final
code from the compiler, at least one more AST pass is required. Thus multiple passes could be potentially slower,
than a single pass compiler. Also implementing difficult logic directly inside the bison file, or implementing all

3String Interning Wikipedia Article
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the features required for a modern compiler (type deduction, type checking) in a single pass inside the Bison
file becomes quickly tedious at best, if not nearly impossible.

This are the things worth noting about the Bison file used in the dpcc compiler:

• The yylval is aliased to be equivalent to ast node t*. Each node contains a field kind of type
ast node kind t which is initialized in the Bison file when a new node is created. This field allows
later stages of the compiler to match what code should be generated for this node.

• Location tracking is turned (%locations). This allows Bison to declare the global variable yylloc which
is used from the lexer to setup the location of each token.

• LAC (Lookahead Correction) mechanism is turned on. According to the Bison manual can provide better
identification of the error location and thus better error messages, at the cost of a very negligable runtime
speed penalty.

• Custom error reporting logging is enabled (%define parse.error custom). The function yyreport syntax error

is defined accordingly. The implemented custom error reporting supports a GCC style error/warning and
colored output and it is thus more user friendly. One noticeable feature is that dpcc compiler can warn
when a variable is declared but never used.

4.4 Code Generation

This is the longest and most complicated part of the pipeline of the dpcc compiler. This section will be kept as
concise as possible. Only the core concepts will be explained.

For simplicity reasons the current codegen implementation requires two AST passes. Whether the implemen-
tation of the code generation could be re-structured in order to do the same things in a single pass has not yet
been tested and it is subject to discussion.

• First AST pass. In the first AST pass, three major things are done: type deduction, type checking and
semantic validation. The input program may be refused due to either type mismatch or in general due to
abuse of language features that cannot be easily checked in the parsing stage. As an example, it is not
possible to declare a zero or negative sized array. Also, during this pass some metadata is initiliazed in
each node. This metadata will guide the code generation in the second pass.

• Second AST pass. If the previous pass successed, we can assume that the code is syntatically valid and
semantically valid. This is the pass where the actual 3AC gets outputted. This pass is not allowed to
fail.

Type deduction works in the following easy to understand way:

1. Base Cases:

(a) Statements, control flow and similar, do not have a meaningful type

(b) The type of an int, float, string, . . . literal are trivial.

(c) The type that a casting operator produces is trivial. Casting operators force the conversion.

(d) Variable delcarations with a user listed type are trivial. In this case type checking still needs to be
performed in case the variable declaration has a RHS initialization. If the type check fails the compiler
emits an error.

2. Recursive Cases:

(a) Variable declaration with no user listed type inherit the type from the RHS. In case no RHS is provided,
the compiler defaults the type to int.

(b) The type of each expression is harder to deduce and check. Each expression has its own possible rules
that describes which child types are allowed as inputs and which output type is generated for each
case. If no rule match, than the compiler triggers a type mismatch error, otherwise it figures out
the output type of the expression using a rule.

How all of this is achieved is thanks to two utility functions: ast traversal begin, ast traversal next. This
two functions together allow to fully traverse each node composing the AST. It works in the following way:
each time ast traversal next is called a pointer to a node and an integer index is returned with the following
semantics:
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1. Base Case. If the node is a leaf of the AST, ast traversal next returns the pointer to the node and an
index set to 0 (zero).

2. Recursive Case. For each non-leaf node, ast traversal next will return the pointer to the node multiple
times. The index is respectively set to:

• 0 (zero). First time encountering this node. All childs still need to be visited.

• 1. Second time encountering this node. The first child was visited.

• 2. Third time encountering this node. The first, and second childs were visited.

• 3. Fourth time encountering this node. The first, second, and third childs were visited.

• . . .

until all the number of childs are exhausted.

Code generation starts by operating on an empty string. Emission of new 3AC is always concatenated to the
output string (like in a printf). The fact that new code must always be concatenated to the previous code is a
very important concept to note and understand. It means that, when visiting each node of the AST, code must
be generated and outputtted right away. This has the important consequence that the order of the childs
of each node is significant. How the childs are ordered play an important role on the semantics and the
validity of the final generated output. If one was willing to take a performance hit and implement in the compiler
the ability to generate code on temporary strings, the compiler would then be able to combine those strings
rearranging them in whichever order. At that point, the order of the childs wouldn’t be relevant anymore.

The integer returned from ast traverse next is exploited in order to emit code snippets ”in the middle” of
partially evaluating/visiting a node. As an example of why this is important, the output that should be generated
for a while statement wants to insert a label before evaluating the expression, and a goto to model the loop
after the entire code block has been evaluated and emitted.

Here follows an example program and its associate compiled 3AC:

1 let a = [10, 20, 30, 40, 50];

2 let b = [1, 2, 3, 4, 5];

3 let result: int[5];

4

5 for (let i = 0; i < 5; i++) {

6 result[i] = a[i] * b[i];

7 if (i % 2 == 0) {

8 print("YAAY -- ");

9 print(i);

10 }

11 }

12

13 print("Dot product result:\n");

14 print(result);

1 // Special variable used to implemenent INC (x++) and dec (x--)

2 // It is used to temporary hold the result of the INC/DEC in order to perform the side effect

3 int32_t _vspcIncDec;

4 // Special variable used for the negation of control statements (if, for, ...)

5 // As an example the for loop needs to negate the user provided condition

6 bool _vspcNeg;

7

8 // 3AC Var decls

9 int32_t _vi0 = 0;

10 int32_t _vi1 = 0;

11 int32_t _vi2 = 0;

12 int32_t _vi3 = 0;

13 int32_t _vi4 = 0;

14 int32_t _vi5 = 0;

15 int32_t _vi6 = 0;

16 bool _vb0 = false;

17 bool _vb1 = false;

18

19 _scope_begin();

20 _var_decl("a", _kI32, 5);

21 _var_init("a", _kI32, 5, (int32_t[]) {10, 20, 30, 40, 50});

22 _var_decl("b", _kI32, 5);

23 _var_init("b", _kI32, 5, (int32_t[]) {1, 2, 3, 4, 5});

24 _var_decl("result", _kI32, 5);

25 _scope_begin();
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26 _var_decl("i", _kI32, 1);

27 _var_init("i", _kI32, 1, (int32_t[]) {0});

28 _lbl2:

29 _vb0 = _var_get_kI32("i", 0) < 5;

30 _vspcNeg = !_vb0;

31 if (_vspcNeg) goto _lbl3;

32 _scope_begin();

33 _vi0 = _var_get_kI32("result", _var_get_kI32("i", 0));

34 _vi1 = _var_get_kI32("a", _var_get_kI32("i", 0));

35 _vi2 = _var_get_kI32("b", _var_get_kI32("i", 0));

36 _vi3 = _vi1 * _vi2;

37 _vi4 = _var_set_kI32("result", _var_get_kI32("i", 0), _vi3);

38 _vi5 = _var_get_kI32("i", 0) % 2;

39 _vb1 = _vi5 == 0;

40 _vspcNeg = !_vb1;

41 if (_vspcNeg) goto _lbl1;

42 _scope_begin();

43 printf("%s", "YAAY -- ");

44 print_sym("i");

45 _scope_end();

46 _lbl1:

47 _scope_end();

48 _vi6 = _var_get_kI32("i", 0);

49 _vspcIncDec = _var_get_kI32("i", 0) + 1;

50 _var_set_kI32("i", 0, _vspcIncDec);

51 goto _lbl2;

52 _lbl3:

53 _scope_end();

54 printf("%s", "Dot product result:\n");

55 print_sym("result");

56 _scope_end();

4.5 Utilities and Misc

4.5.1 Custom logging

Custom logging is implemented to override the default Bison logging, and is used also manually in the type
checking stage of the compiler to complain abot possible misuses. The output is inspireb from the GCC log
output. Each message is colorized according to the severity, and it contains the filanem and the location of
where the error/warning occurs. Here it follows an example program that makes the dpcc compiler complain:

1 let array: int[2];

2 print(array[4]);

3 print(3.5 << 8);

Figure 1: dpcc custom logging showoff

4.5.2 Typescript code generation

Without going too much deeper on the details, some part of the C source code composing the compiler is in
fact generated using a Typescript program. Having now more knowledge about how the compiler source code
turned out to be at the end, the decision of generating some part of the compiler turned out to be mostly
overkill; especially considering the small size of the project. But anyway this trick is something that I wanted
to try and see if it works. I didn’t gain much using this code generation trick but I still think that theoretically
speaking it could help in managing the source code of the compiler as it increases in scale.

Without spending too much time on this section, the Typescript program is used to do two things:

• To generate the code for the type deduction and type checking of the each expression operator. It takes some
meta-representations of what each expression accept as input types and which output type it produces.
Given these meta-representations it generates a C function called typecheck expr and operators and
some other utilities in a separate C file which is then compiled in the final executable. An example of such
meta-representation is:
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1 const MATH_EXPR = new Expr (

2 [

3 "ExprAdd", "ExprSub", "ExprMul", "ExprDiv", "ExprPow",

4 "ExprInc", "ExprDec", "ExprPos", "ExprNeg",

5 ],

6 [

7 new ExprTypeRule("int", ["int", "int"]),

8 new ExprTypeRule("float", ["float", "int"]),

9 new ExprTypeRule("float", ["int", "float"]),

10 new ExprTypeRule("float", ["float", "float"]),

11

12 new ExprTypeRule("int", ["int"]),

13 new ExprTypeRule("float", ["float"]),

14 ]

15 );

which rougly says that operators such as +, -, *, /, **, ++, ... can either take integers or floats
as inputs, and depending on which input types are provided, it either produces an int or float type as
output.

• To embed the required preamble and postamble C code inside the dpcc executable. The preamble and
postamble code that are outputted when calling ‘./dpcc c <input>’ are in fact written into two separate
files. The typescript program reads these two files and generate two header files containing two uint8 t[]

arrays that each encode the content of each respective file. Then these two generated uint8 t arrays are
then embedded in the final executable.

4.5.3 Custom allocator wrapper

In order to track allocations inside the compiler a simple custom allocator is implemented. In practice this
allocator just wraps the standard C allocator (malloc) and stores each allocation in a list. The reason for this
is that one can simply allocate memory as he/she likes without worrying about freeing such memory. If the
structure of the program is correctly thought out, one can simply define good synchronization points where it is
safe to clear the entire allocator. Thus all allocations made up to this point can all be freed at once. One can
also use multiple allocators to model different lifetime semantics for objects that must live longer or shorter.

The custom allocator lives in src/utils.c and the notable functions are:dallnew, dallrsz, dalldel, dallclr,

dallarr, ....

4.6 Testing framework

The dpcc compiler has unit testing framework setup to make sure that the compiler works as expected. The
library Unity is a standalone unit framework written C. The dpcc uses this library to test some utilities
freestanding functions in isolation.

Most of the testing horsepower is provided by a python script: test/compile test.py. This script reads 2
files: test/valid.dpl, test/invalid.dpl which list respectively some valid and invalid dpl programs. Each
program is separated by a long sequence of characters ‘//’. The python script extract each program separately,
for each program it extract some metadata from the comments which list the expected output of the program.
The python script then proceeds to call the compiler on that small program and verifies that either the program
produces the expected output, or in the case of invalid programs it rejects it without crashing.

This is an example taken directly from test/valid.dpl:

1 //@ Boolean var decls

2 //@ t = 1

3 //@ 0

4

5 print("\n\nBoolean var decls\n");

6 {

7 let t = true;

8 print(t);

9 print(false);

10 }

11

12 ///////////////////////////////////////////////////////////////////////////////

13

14 //@ Integer array type deduction

15 //@ a = [ 10, 20, 30, 40, 50 ]

16 //@ a = [ 10, 20, 30, 40, 100 ]
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17

18 print("\n\nInteger array type deduction\n");

19 {

20 let a = [ 10, 20, 30, 40, 50 ];

21 print(a);

22 a[4] = 100;

23 print(a);

24 }

25 ///////////////////////////////////////////////////////////////////////////////

Notice the program separator and how the metadata is instead listed in a comment beginning with //@.

Here’s instead some examples from test/invalid.dpl:

1 // Integer is too large

2 {

3 let a = 10000000000000000000;

4 print(a);

5 }

6 ///////////////////////////////////////////////////////////////////////////////

7

8 // Arrays with no RHS must be sized

9 {

10 let b: int[];

11 }

12 ///////////////////////////////////////////////////////////////////////////////

13

14 // Arrays must have reasoanble size

15 {

16 let a: int[-1];

17 }

18 ///////////////////////////////////////////////////////////////////////////////

19

20 // Array with RHS must have correct size

21 {

22 let a: int[3] = [ 2, 3 ];

23 }

24 ///////////////////////////////////////////////////////////////////////////////
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5 Performance results

Valgrind is a very useful tool for C development. It is primarily used for memory debugging (memory corruptions,
invalid writes acccess, . . . ), finding memory leaks, and for profiling (timing, cache hit rate, branch prediction, . . . ).
Some memory bugs were totally eliminated inside the compiler thanks to this tool. Thanks to valgrind, also, some
performance analysis abot the total running time of the compilar were analysed (valgrind --tool=callgrind

--dump-instr=yes --simulate-cache=yes --collect-jumps=yes -- ...).

As it turned out from the analysis currently the compiler has un-satisfactory performance. The performance
analysis highlighted the current custom allocator implementation is the bottleneck of the compiler. Most of
the running time of the compiler is wasted on performing linear searches for allocation resizes.

As one can see from the below images, the dallrsz function, and in particular the linear scanning of the
allocation consitutes more than 99% of the total running time of the executable.

This problem is something that should totally be addressed before shipping the dpcc compiler to a final user.

Also I wanted to take some snapshots about the running time of the compilar as a function of the source code
input size. Unfortunately since the current implementation of the allocator is slow, such snapshots wouldn’t
provide much information about how fast the compilation process is.

Figure 2: Performance issue in dallrsz utility function.

Figure 3: Performance issue same as previous image but in a graph form.
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Figure 4: The linear search allocation scanning. The loop is taken tramendous amount of time for basically no
useful reason.
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6 Conclusions

The DPL language and the dpcc compiler are far from being useful and/or complete. They were implemented
as part of a course in Compilers, so it is mostly a proof of concept. But still this proof of concept apply some
modern features that languages like C lacks in its standard (type deduction, proper precedence table, proper
fixed sized integers).

That being said, I still find that both this implementation and project report provide some concepts that are
still applicable in a proper language & compiler implementation. The language mostly lacks proper features to
be useful as an everyday productive language (procedure calls are a must). Also the compiler lacks a real-world
efficient code generation backend. Unfortunately nowadays, due to the complexity of modern CPU architectures,
writing a compiler backend is not an easy task. In fact most modern languages nowadays rely on external
backends such as LLVM4 to deal with the actual machine code output.

It would be cool to extend this language and bring it further. It would probably need some code refactoring/cleanup
first, but the unit testing framework should help in that. Some cool concepts that could be investigated further
are:

• FUNCTIONS !!!

• More basic types

• Custom definable types: struct, unions, possibly classes

• Namespaces to avoid the dependency hell that C has

• Proper metaprogramming system which is language and type aware (avoid C preprocessors macros)

• Proper module system

• Infrastracture: build system, package manager, tooling, and more . . .

• . . .

4LLVM Website
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7 Appendix A: Example Program: Iterative Merge Sort

7.1 Input DPL source

1 let len = 32;

2 let array = [

3 15, 59, 61, 75, 12, 71, 5, 35, 44,

4 6, 98, 17, 81, 56, 53, 31, 20, 11,

5 45, 80, 8, 34, 71, 83, 64, 28, 3,

6 88, 50, 48, 80, 5

7 ];

8

9

10 print("Un-sorted array\n");

11 print(array);

12

13 {

14 for (let cs = 1; cs < len; cs = 2 * cs) {

15 for (let l = 0; l < len - 1; l = l + 2 * cs) {

16 let m = len - 1;

17 if ((l + cs - 1) < len - 1) {

18 m = l + cs - 1;

19 }

20 let r = len - 1;

21 if ((l + 2 * cs - 1) < len - 1) {

22 r = l + 2 * cs - 1;

23 }

24

25

26 let n1 = m - l + 1;

27 let n2 = r - m;

28

29 let L: int[1024];

30 let R: int[1024];

31

32 // Copy to temp arrays

33 for (let i = 0; i < n1; i++) {

34 L[i] = array[l + i];

35 }

36 for (let i = 0; i < n2; i++) {

37 R[i] = array[m + 1 + i];

38 }

39

40

41 let i = 0;

42 let j = 0;

43 let k = l;

44 while (i < n1 && j < n2) {

45 if (!(L[i] > R[j])) {

46 array[k++] = L[i++];

47 } else {

48 array[k++] = R[j++];

49 }

50 }

51

52 while (i < n1) {

53 array[k++] = L[i++];

54 }

55 while (j < n2) {

56 array[k++] = R[j++];

57 }

58 }

59 }

60 }

61

62 print("\nSorted array\n");

63 print(array);
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7.2 Obtained output

1 Un-sorted array

2 array = [ 15, 59, 61, 75, 12, 71, 5, 35, 44, 6, 98, 17, 81, 56, 53, 31, 20, 11, 45, 80, 8, 34, 71, 83, 64, 28, 3,

88, 50, 48, 80, 5 ]

3

4 Sorted array

5 array = [ 3, 5, 5, 6, 8, 11, 12, 15, 17, 20, 28, 31, 34, 35, 44, 45, 48, 50, 53, 56, 59, 61, 64, 71, 71, 75, 80,

80, 81, 83, 88, 98 ]

7.3 Emitted 3AC code

1

2 // Special variable used to implemenent INC (x++) and dec (x--)

3 // It is used to temporary hold the result of the INC/DEC in order to perform the side effect

4 int32_t _vspcIncDec;

5 // Special variable used for the negation of control statements (if, for, ...)

6 // As an example the for loop needs to negate the user provided condition

7 bool _vspcNeg;

8

9 // 3AC Var decls

10 int32_t _vi0 = 0;

11 int32_t _vi1 = 0;

12 int32_t _vi2 = 0;

13 int32_t _vi3 = 0;

14 int32_t _vi4 = 0;

15 int32_t _vi5 = 0;

16 int32_t _vi6 = 0;

17 int32_t _vi7 = 0;

18 int32_t _vi8 = 0;

19 int32_t _vi9 = 0;

20 int32_t _vi10 = 0;

21 int32_t _vi11 = 0;

22 int32_t _vi12 = 0;

23 int32_t _vi13 = 0;

24 int32_t _vi14 = 0;

25 int32_t _vi15 = 0;

26 int32_t _vi16 = 0;

27 int32_t _vi17 = 0;

28 int32_t _vi18 = 0;

29 int32_t _vi19 = 0;

30 int32_t _vi20 = 0;

31 int32_t _vi21 = 0;

32 int32_t _vi22 = 0;

33 int32_t _vi23 = 0;

34 int32_t _vi24 = 0;

35 int32_t _vi25 = 0;

36 int32_t _vi26 = 0;

37 int32_t _vi27 = 0;

38 int32_t _vi28 = 0;

39 int32_t _vi29 = 0;

40 int32_t _vi30 = 0;

41 int32_t _vi31 = 0;

42 int32_t _vi32 = 0;

43 int32_t _vi33 = 0;

44 int32_t _vi34 = 0;

45 int32_t _vi35 = 0;

46 int32_t _vi36 = 0;

47 int32_t _vi37 = 0;

48 int32_t _vi38 = 0;

49 int32_t _vi39 = 0;

50 int32_t _vi40 = 0;

51 int32_t _vi41 = 0;

52 int32_t _vi42 = 0;

53 int32_t _vi43 = 0;

54 int32_t _vi44 = 0;

55 int32_t _vi45 = 0;

56 int32_t _vi46 = 0;

57 int32_t _vi47 = 0;

58 int32_t _vi48 = 0;

59 int32_t _vi49 = 0;

60 int32_t _vi50 = 0;

61 int32_t _vi51 = 0;

62 int32_t _vi52 = 0;

63 int32_t _vi53 = 0;
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64 int32_t _vi54 = 0;

65 int32_t _vi55 = 0;

66 int32_t _vi56 = 0;

67 int32_t _vi57 = 0;

68 bool _vb0 = false;

69 bool _vb1 = false;

70 bool _vb2 = false;

71 bool _vb3 = false;

72 bool _vb4 = false;

73 bool _vb5 = false;

74 bool _vb6 = false;

75 bool _vb7 = false;

76 bool _vb8 = false;

77 bool _vb9 = false;

78 bool _vb10 = false;

79 bool _vb11 = false;

80 bool _vb12 = false;

81

82 _scope_begin();

83 _var_decl("len", _kI32, 1);

84 _var_init("len", _kI32, 1, (int32_t[]) {32});

85 _var_decl("array", _kI32, 32);

86 _var_init("array", _kI32, 32, (int32_t[]) {15, 59, 61, 75, 12, 71, 5, 35, 44, 6, 98, 17, 81, 56, 53, 31, 20,

11, 45, 80, 8, 34, 71, 83, 64, 28, 3, 88, 50, 48, 80, 5});

87 printf("%s", "Un-sorted array\n");

88 print_sym("array");

89 _scope_begin();

90 _scope_begin();

91 _var_decl("cs", _kI32, 1);

92 _var_init("cs", _kI32, 1, (int32_t[]) {1});

93 _lbl18:

94 _vb0 = _var_get_kI32("cs", 0) < _var_get_kI32("len", 0);

95 _vspcNeg = !_vb0;

96 if (_vspcNeg) goto _lbl19;

97 _scope_begin();

98 _scope_begin();

99 _var_decl("l", _kI32, 1);

100 _var_init("l", _kI32, 1, (int32_t[]) {0});

101 _lbl16:

102 _vi0 = _var_get_kI32("len", 0) - 1;

103 _vb1 = _var_get_kI32("l", 0) < _vi0;

104 _vspcNeg = !_vb1;

105 if (_vspcNeg) goto _lbl17;

106 _scope_begin();

107 _var_decl("m", _kI32, 1);

108 _vi1 = _var_get_kI32("len", 0) - 1;

109 _var_init("m", _kI32, 1, (int32_t[]) {_vi1});

110 _vi2 = _var_get_kI32("l", 0) + _var_get_kI32("cs", 0);

111 _vi3 = _vi2 - 1;

112 _vi4 = _var_get_kI32("len", 0) - 1;

113 _vb2 = _vi3 < _vi4;

114 _vspcNeg = !_vb2;

115 if (_vspcNeg) goto _lbl1;

116 _scope_begin();

117 _vi5 = _var_get_kI32("l", 0) + _var_get_kI32("cs", 0);

118 _vi6 = _vi5 - 1;

119 _vi7 = _var_set_kI32("m", 0, _vi6);

120 _scope_end();

121 _lbl1:

122 _var_decl("r", _kI32, 1);

123 _vi8 = _var_get_kI32("len", 0) - 1;

124 _var_init("r", _kI32, 1, (int32_t[]) {_vi8});

125 _vi9 = 2 * _var_get_kI32("cs", 0);

126 _vi10 = _var_get_kI32("l", 0) + _vi9;

127 _vi11 = _vi10 - 1;

128 _vi12 = _var_get_kI32("len", 0) - 1;

129 _vb3 = _vi11 < _vi12;

130 _vspcNeg = !_vb3;

131 if (_vspcNeg) goto _lbl3;

132 _scope_begin();

133 _vi13 = 2 * _var_get_kI32("cs", 0);

134 _vi14 = _var_get_kI32("l", 0) + _vi13;

135 _vi15 = _vi14 - 1;

136 _vi16 = _var_set_kI32("r", 0, _vi15);

137 _scope_end();

138 _lbl3:
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139 _var_decl("n1", _kI32, 1);

140 _vi17 = _var_get_kI32("m", 0) - _var_get_kI32("l", 0);

141 _vi18 = _vi17 + 1;

142 _var_init("n1", _kI32, 1, (int32_t[]) {_vi18});

143 _var_decl("n2", _kI32, 1);

144 _vi19 = _var_get_kI32("r", 0) - _var_get_kI32("m", 0);

145 _var_init("n2", _kI32, 1, (int32_t[]) {_vi19});

146 _var_decl("L", _kI32, 1024);

147 _var_decl("R", _kI32, 1024);

148 _scope_begin();

149 _var_decl("i", _kI32, 1);

150 _var_init("i", _kI32, 1, (int32_t[]) {0});

151 _lbl4:

152 _vb4 = _var_get_kI32("i", 0) < _var_get_kI32("n1", 0);

153 _vspcNeg = !_vb4;

154 if (_vspcNeg) goto _lbl5;

155 _scope_begin();

156 _vi20 = _var_get_kI32("L", _var_get_kI32("i", 0));

157 _vi21 = _var_get_kI32("l", 0) + _var_get_kI32("i", 0);

158 _vi22 = _var_get_kI32("array", _vi21);

159 _vi23 = _var_set_kI32("L", _var_get_kI32("i", 0), _vi22);

160 _scope_end();

161 _vi24 = _var_get_kI32("i", 0);

162 _vspcIncDec = _var_get_kI32("i", 0) + 1;

163 _var_set_kI32("i", 0, _vspcIncDec);

164 goto _lbl4;

165 _lbl5:

166 _scope_end();

167 _scope_begin();

168 _var_decl("i", _kI32, 1);

169 _var_init("i", _kI32, 1, (int32_t[]) {0});

170 _lbl6:

171 _vb5 = _var_get_kI32("i", 0) < _var_get_kI32("n2", 0);

172 _vspcNeg = !_vb5;

173 if (_vspcNeg) goto _lbl7;

174 _scope_begin();

175 _vi25 = _var_get_kI32("R", _var_get_kI32("i", 0));

176 _vi26 = _var_get_kI32("m", 0) + 1;

177 _vi27 = _vi26 + _var_get_kI32("i", 0);

178 _vi28 = _var_get_kI32("array", _vi27);

179 _vi29 = _var_set_kI32("R", _var_get_kI32("i", 0), _vi28);

180 _scope_end();

181 _vi30 = _var_get_kI32("i", 0);

182 _vspcIncDec = _var_get_kI32("i", 0) + 1;

183 _var_set_kI32("i", 0, _vspcIncDec);

184 goto _lbl6;

185 _lbl7:

186 _scope_end();

187 _var_decl("i", _kI32, 1);

188 _var_init("i", _kI32, 1, (int32_t[]) {0});

189 _var_decl("j", _kI32, 1);

190 _var_init("j", _kI32, 1, (int32_t[]) {0});

191 _var_decl("k", _kI32, 1);

192 _var_init("k", _kI32, 1, (int32_t[]) {_var_get_kI32("l", 0)});

193 _lbl10:

194 _vb6 = _var_get_kI32("i", 0) < _var_get_kI32("n1", 0);

195 _vb7 = _var_get_kI32("j", 0) < _var_get_kI32("n2", 0);

196 _vb8 = _vb6 && _vb7;

197 _vspcNeg = !_vb8;

198 if (_vspcNeg) goto _lbl11;

199 _scope_begin();

200 _vi31 = _var_get_kI32("L", _var_get_kI32("i", 0));

201 _vi32 = _var_get_kI32("R", _var_get_kI32("j", 0));

202 _vb9 = _vi31 > _vi32;

203 _vb10 = ! _vb9;

204 _vspcNeg = !_vb10;

205 if (_vspcNeg) goto _lbl8;

206 _scope_begin();

207 _vi33 = _var_get_kI32("k", 0);

208 _vspcIncDec = _var_get_kI32("k", 0) + 1;

209 _var_set_kI32("k", 0, _vspcIncDec);

210 _vi34 = _var_get_kI32("array", _vi33);

211 _vi35 = _var_get_kI32("i", 0);

212 _vspcIncDec = _var_get_kI32("i", 0) + 1;

213 _var_set_kI32("i", 0, _vspcIncDec);

214 _vi36 = _var_get_kI32("L", _vi35);
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215 _vi37 = _var_set_kI32("array", _vi33, _vi36);

216 _scope_end();

217 goto _lbl9;

218 _lbl8:

219 _scope_begin();

220 _vi38 = _var_get_kI32("k", 0);

221 _vspcIncDec = _var_get_kI32("k", 0) + 1;

222 _var_set_kI32("k", 0, _vspcIncDec);

223 _vi39 = _var_get_kI32("array", _vi38);

224 _vi40 = _var_get_kI32("j", 0);

225 _vspcIncDec = _var_get_kI32("j", 0) + 1;

226 _var_set_kI32("j", 0, _vspcIncDec);

227 _vi41 = _var_get_kI32("R", _vi40);

228 _vi42 = _var_set_kI32("array", _vi38, _vi41);

229 _scope_end();

230 _lbl9:

231 _scope_end();

232 goto _lbl10;

233 _lbl11:

234 _lbl12:

235 _vb11 = _var_get_kI32("i", 0) < _var_get_kI32("n1", 0);

236 _vspcNeg = !_vb11;

237 if (_vspcNeg) goto _lbl13;

238 _scope_begin();

239 _vi43 = _var_get_kI32("k", 0);

240 _vspcIncDec = _var_get_kI32("k", 0) + 1;

241 _var_set_kI32("k", 0, _vspcIncDec);

242 _vi44 = _var_get_kI32("array", _vi43);

243 _vi45 = _var_get_kI32("i", 0);

244 _vspcIncDec = _var_get_kI32("i", 0) + 1;

245 _var_set_kI32("i", 0, _vspcIncDec);

246 _vi46 = _var_get_kI32("L", _vi45);

247 _vi47 = _var_set_kI32("array", _vi43, _vi46);

248 _scope_end();

249 goto _lbl12;

250 _lbl13:

251 _lbl14:

252 _vb12 = _var_get_kI32("j", 0) < _var_get_kI32("n2", 0);

253 _vspcNeg = !_vb12;

254 if (_vspcNeg) goto _lbl15;

255 _scope_begin();

256 _vi48 = _var_get_kI32("k", 0);

257 _vspcIncDec = _var_get_kI32("k", 0) + 1;

258 _var_set_kI32("k", 0, _vspcIncDec);

259 _vi49 = _var_get_kI32("array", _vi48);

260 _vi50 = _var_get_kI32("j", 0);

261 _vspcIncDec = _var_get_kI32("j", 0) + 1;

262 _var_set_kI32("j", 0, _vspcIncDec);

263 _vi51 = _var_get_kI32("R", _vi50);

264 _vi52 = _var_set_kI32("array", _vi48, _vi51);

265 _scope_end();

266 goto _lbl14;

267 _lbl15:

268 _scope_end();

269 _vi53 = 2 * _var_get_kI32("cs", 0);

270 _vi54 = _var_get_kI32("l", 0) + _vi53;

271 _vi55 = _var_set_kI32("l", 0, _vi54);

272 goto _lbl16;

273 _lbl17:

274 _scope_end();

275 _scope_end();

276 _vi56 = 2 * _var_get_kI32("cs", 0);

277 _vi57 = _var_set_kI32("cs", 0, _vi56);

278 goto _lbl18;

279 _lbl19:

280 _scope_end();

281 _scope_end();

282 printf("%s", "\nSorted array\n");

283 print_sym("array");

284 _scope_end();
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