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Abstract

We describe Libri, a decentralized storage network suitable for het-
erogenous healthcare data. Libri does not depend on any blockchain or
distributed consensus protocol. This simplifies its implementation and al-
lows its performance to scale very well with horizontal cluster size. Libri
documents are automatically (re-)replicated across network peers to en-
sure robustness to planned and unplanned peer outages. The Libri API
exposes simple Put/Get endpoints and a streaming Subscribe endpoint
for storage notifications across the entire network. We describe initial ex-
periments measuring request load and cluster size on request latency, rate,
and throughput. In particular, a modest 64-peer cluster with 1 CPU and
6 GB RAM per peer easily handles over a million documents uploaded per
day with median Get and Put latencies of 6 ms and 22 ms, respectively.
Request latency and throughput scale well with horizontal cluster size in-
creasing from 8 to 64 peers. These initial results give us confidence that
Libri can scale to efficiently handle production-level load for healthcare
use cases.

1 Introduction

The problem of health data aggregation and sharing presents distinct challenges
and opportunities. Health data is extremely sensitive and highly regulated. At
the same time, the US healthcare system is very decentralized – each patient
has many providers over the course of their lives or even a single acute episode,
and therefore many sources and stores of data. This data fragmentation is
costly to providers who bear high operational costs of error-prone point-to-point
coordination with other providers conducted by fax transmissions and physically
couriered CDs. This data fragmentation is also very costly to patients, whose
health outcomes bear the direct cost of any information transmission lapses,
and are at least burdened by the inability to exercise their rights to access and
share health data.
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Libri responds to these challenges by envisioning a cooperative pooled data
asset, enabled by a novel approach to end-to-end encrypted decentralized stor-
age. A pooled data asset facilitated by Libri would not be controlled by a single
entity (corporate or otherwise), would run on open source software, would en-
force strong encryption and security, and would be both performant and durable.
Moreover, in appropriate domains such as healthcare where non-monetary in-
centives for data-pooling exist, Libri is able to deliver on this promise without
reliance on blockchains, smart contracts, and decentralized identity manage-
ment, which add considerable technical and operational costs.

We describe Libri1 in detail in the rest of this paper. Section 2 covers a high-
level overview of related decentralized storage technologies, the current state of
health data sharing technology, and mentions some other decentralized health-
care network efforts. Section 3 introduces the high-level Libri responsibilities
and architecture. Section 4 addresses some considerations resulting from this
design. Section 5 describes some implementation details around how we envi-
sion organizations deploying and managing their fleet of Libri nodes. Section 6
discusses some initial experiments and promising performance results. Finally,
Section 7 gives our high-level vision for the Libri community and what technical
work we see before us.

2 Related work

2.1 Decentralized storage

Decentralized storage has existed in various forms for decades, but BitTor-
rent [1, 2], released in the early 2000s, was one of the first networks to gain
widespread participation. BitTorrent makes peer-to-peer file storage efficient
and contains incentives (between “seeders” and “leechers”) in order to keep
the network healthy. Kademlia [3] is the distributed hash table (DHT) used
by almost all contemporary decentralized storage system (including BitTorrent,
which now uses it for decentralized peer tracking). Kademlia provides a simple,
efficient protocol for peers to use when finding and storing values within the
network.

InterPlanetary File System (“IPFS”) [4] uses much of the same design as
BitTorrent—peer-to-peer file sharing, possible caching of popular documents,
tit-for-tat incentive accounting—but it addresses the stored data by a hash
of its content instead of a filename. This content-addressing combined with
a simple link structure allows it to behave as a Merkle DAG, giving it great
flexibility in being able to store and model many forms of data, from simple
blobs to files to whole filesystems. At its heart, though, IPFS looks very much
like BitTorrent: peers host data that others may optionally copy and host as
well, and the addresses of the peers hosting each object are stored in a Kademlia
DHT.

1https://github.com/drausin/libri
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Peer-to-peer data storage and sharing networks are powerful, but the net-
works themselves are unable to offer any guarantees about the data stored in
them. If the only peer hosting some data goes offline, that data is lost from
the network. Absent sufficient incentives to operate a storage node, networks
are unable to offer durability and performance guarantees required for most
production-level storage needs. Over the last few years, blockchain-based net-
works such as Sia [5], Storj [6], BigchainDB [7, 8], Ethereum Swarm [9, 10],
and Filecoin [11] have been developed in an attempt to solve the incentives
problem: why should any peer dedicate storage space, bandwidth, and machine
resources? These different networks each tackle this problem in slightly different
ways, but they all rely on an economic incentive for peers to store (and keep
storing) data. This economic incentive requires monetary transactions between
parties, and those transactions require a blockchain.

We expect most readers to be familiar with at least the high-level concepts of
a blockchain. Transactions are gossiped among a network of peers, which work
together to order and package blocks of those transactions together. Transac-
tions and blocks are immutable. Each block points to a previous block, forming
a chain. So, if I have some data that I want to store in a decentralized network,
instead of having to host it myself, I can pay another peer (or peers) to do so
instead. These decentralized storage economies are still in their early periods
with major technical and economic details still being worked out.

While the incentives that a blockchain allows add an important feature to a
storage network, they also saddle it with a slow, complex component. Ethereum
has a current cap at 15 transactions per second, with a block time of about 15
seconds. These limits define the request rate and response time for any storage
solution using Ethereum (e.g,. even via an ERC20 token). To anyone who has
worked with commodity data stores (e.g., MySQL, PostgreSQL, DynamoDB,
Cassandra) to build real-world applications, a data store capable of no more
than 15 transactions per second and an eventual consistency window of up to a
minute2 represents an impractical step backward.

Blockchains and the incentive systems they support also add non-trivially
to the maintenance and coordination complexity of the storage system. When
new storage features and bugs fixes are designed, implemented, and deployed,
developers must account for how these changes will (or will not) interact with
the incentive system. These considerations slow development of the core storage
capabilities.

While financial transactions do justify this complexity, many different do-
mains do not necessarily. In the particular domain of health data storage, we
make the following assumptions:

• the community of organization running peers is gated (often for regulatory

2Since it usually takes a few blocks to be sealed for a user to have confidence that their
transaction is still on the longest chain, the total time for a confirmed transaction at 15
seconds/block is perhaps between 30 and 60 seconds.
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compliance);

• organizations run peers in low-variance cloud infrastructure;

• the benefits of read/write access to the shared data repository outweigh
the costs of running the peers.

Coupling these assumptions with a narrow, storage-only (i.e., no processing)
feature set allows us to avoid the complexity of a blockchain.

2.2 Health data sharing

Today, if patients have any access to their electronic health records (EHRs), it is
most often through a health system’s patient portal, where patients authenticate
into a site showing things like lab results, appointments, and prescriptions.
While these portals are indeed better than nothing, they rarely contain the
more detailed EHR documents (e.g., clinical notes), and they often omit EHRs
from whole groups within the system that aren’t yet integrated with it. Many
small-to-medium sized practices don’t have any patient portal. These patient
portals are also read-only: patients cannot upload their EHRs from portal A
into portal B. Some portals are part of regional health information exchanges
(HIEs), where some doctors can log in and see records from others, but like the
portals, these HIEs have incomplete EHR and doctor coverage even within a
large metropolitan regions. Some health systems are exposing RESTful APIs
(often in the form of the HL7 FHIR standard) that allow 3rd parties like Apple
Health to query and aggregate them. While these APIs are good progress, the
vast majority of doctors and EHRs are not accessible via them. Like the patient
portals, these APIs are also generally read only for clinical data and thus do
not fully solve the problem of transferring a subset of EHRs from doctor A to
doctor B.

In recent years, a bevy of blockchain-based EHR storage proposals have
appeared, including DokChain [12], Coral Health [13], Embleema [14], Med-
icalChain [15], MediBloc [16], MedRec [17], and Patientory [18]. Many use
ERC20 tokens [13, 16], direct Ethereum smart contracts [17, 18], or a private
Hyperledger blockchain [12, 15]. Those papers [12, 13, 16] that discuss storage
in any concrete terms mention only in passing using IPFS without any regard
for the durability or performance challenges we discuss in the previous section.
While we are glad to see similar ideas taking shape across the healthcare ecosys-
tem, most of these efforts are still very much in their infancy (and some are mere
proposals), often with very few technical details available to the public.

2.3 Libri’s place

Libri focuses only on storing and sharing data in a decentralized manner. We
believe this decentralization is necessary to include as many organizations in
the healthcare ecosystem as possible. Higher-level needs like authentication,
identity, and EHR-integrations will be built on top of Libri but most likely
as conventional, centralized applications communicating with the shared Libri
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network. Healthcare business logic is hard enough to manage when building in
a centralized world; we don’t see the need to complicate higher-level logic as
well by prematurely decentralizing it. A decentralized storage core is sufficient.

3 Architecture

Peers in the Libri network are called Librarians, and clients of these peers are
called Authors. Librarian peers never see the plaintext content of a document
and deal only with encrypted chunks of one. Author clients convert a plaintext
document into these encrypted chunks and back again. This distinction means
that data stored in Libri and all data encountered by Librarian peers is fully
end-to-end encrypted.

Librarians are responsible for the following:

• storing/retrieving documents,

• maintaining routing tables of other peers in the network,

• gossiping storage events to other peers,

• re-replicating data if it becomes under-replicated.

The storing/retrieving and routing table behave quite similarly to a standard
Kademlia [3] distributed hash table (DHT). The storage event gossiping and re-
replication responsibilities add two important capabilities on top of it. Section
3.1 below describes the Librarian API in more detail. Each Librarian exposes
the same synchronous API for other Librarians and Author clients to make
requests against.

Each Librarian and Author has an identity defined by the 256-bit public key
of an secp256k1 ECDSA key-pair. Librarians and Authors sign each request with
their private key (see Section 3.3 below for more details), and each Librarian’s
public key also defines its location on the Kademlia hash ring. Using a public key
for peer identity and request signing closely follows the approach in S/Kademlia
[19], though the node ID is just the public key rather than a hash of it as in
S/Kademlia.

Authors are clients responsible for uploading, downloading, and sharing con-
tent in the Libri network. In these capacities, they handle the following:

• compression/decompression,

• pagination/concatenation,

• end-to-end encryption/decryption,

• Libri network Put/Get requests.

Author clients by default compress all data with GZIP unless otherwise
specified. This compressed stream is then split up into Pages (or chunks) of
2 MB or less. Each Page is individually encrypted and uploaded (via a Put

request) to Libri. When retrieving data from Libri, the Author client is also
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responsible for the reverse process of downloading, decrypting, concatenating,
and decompressing the chunks into the original byte stream that was uploaded.
Currently, the Author client is implemented as a librarian/SDK, akin to other
client-side storage libraries for services like AWS S3.

Both Librarians and Authors may subscribe to the gossiped storage events
of other Librarians. Usually each Librarian or Author will want to receive
a complete log of all events. In a blockchain-based system, there is usually
a single log (i.e., the “consensus”). In Libri, each peer maintains its own log,
which with very high probability captures all storage events. The individual logs
of each peer have exactly the same events in them with high probability, but
very small differences in ordering and timing (< 1s) will exist due to gossip path
differences. We believe these small differences are well worth the performance
benefits and implementation simplicity of avoiding a blockchain or consensus
protocol. Organizations running fleets of nodes may post consolidated versions
of these store logs for the public to download, compare, and query if they desire.

3.1 Librarian API

Each Librarian exposes a synchronous service with the following endpoints:

• Introduce receives a peer ID and IP address and returns a random sample
of other peers from the routing table.

• Find receives a document key and returns either the value for that key if
present or the peers closest to it the routing table.

• Verify receives a document key and an HMAC key and returns either the
HMAC of the value for that key, if present, or the peers closest to it from
the routing table.

• Store receives a key-value pair to store at that peer.

• Get receives a document key and returns the corresponding value, if it
exists, managing the recursive Find operations for the client.

• Put receives a document key-value pair and stores the value with the
appropriate peers, managing the recursive Find and final Store operations
for the client.

• Subscribe receives public key Bloom filters and (continually) streams
Publications matching the filters to the client.

The Find and Store endpoints follow the standard Kademlia protocol. Introduce
is used when a new peer is created and needs to bootstrap some initial other
peers into its routing table. Verify, used by peers to ensure sufficient replica-
tion of the documents they contain, behaves very similarly to Find except that
it returns an HMAC instead of the value. Get and Put are mostly intended for
Authors to call (rather than other Librarians), especially since they involve the
receiver of the call making a number of Find and/or Store calls. In Section
4.1, we discuss authorization and rate limits for endpoints between peers and
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Figure 1: Libri documents take one of three forms: Page, Entry, or Envelope.
The contents are split into one or more Pages and encrypted with an AES-256
Entry Encryption Key (EEK). The IDs of each of these pages are stored in an
Entry along with encrypted metadata. The EEK is encrypted with a ECDH
Key Encryption Key (KEK) and stored with the Entry ID in an Envelope.
Multiple Envelopes are usually generated for a single Entry since one often
wants to share an Entry with multiple recipients.

clients.

Subscribe allows peers to listen to the publications emanating from or re-
layed through other peers. Librarians will usually subscribe to the O(10) other
Librarians, receiving almost all of each subscribed peer’s publications, meaning
that each peer would receive at least one publication notification for every true
publication event with very high probability. Authors not interested in the full
publication log would instead subscribe to O(10) Librarians with Bloom filters
for specific sets of author and/or reader public keys that it is interested in.

3.2 Libri Documents

Libri documents take one of three forms:

• A Page holds a particular sequential chunk of the (compressed) document
content.
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• An Entry holds the encrypted contents of the document, either as a single
Page, or as a list of keys to separate Page documents.

• An Envelope contains the entry encryption key (EEK) between a specific
author and reader.

Documents are serialized to a binary representation for storage in Libri. The
key of any document is the SHA-256 hash of its value bytes. Figure 1 shows an
overview of these three documents. Below we discuss some particulars of each
document type.

3.2.1 Page

A Page contains some or all of the content for a single document. The max-
imum Page content size is 2 MB3, from our assumption that at least 50% of
documents will have sizes less than 2 MB. For now, our pagination strategy is
very simple: we just split the (compressed) plaintext of the content into consec-
utive 2 MB chunks. We expect that this straightforward approach, combined
with a reasonable replication strategy (e.g., 3-5x) will be sufficient to ensure
clients always have access to the requisite chunks required to reconstruct their
document. If this assumption proves problematic, we can always implement
more sophisticated chunking via erasure coding in the clients. The Libri server
code is agnostic to the chunking strategy.

Each Page document has

• the public key of the author4 that created it,

• the index of the particular Page to define the order in which subsequent
Page’s plaintext content should be concatenated,

• the ciphertext of the Page’s portion of the content,

• the ciphertext MAC.

3.2.2 Entry

An Entry defines the content of the document. If the total content can fit on
a single Page, the Entry contains that single Page within it, and that Page is
not stored separately in Libri. If the content is large enough to require splitting
across multiple Pages, the Entry just contains the relevant Page document keys.
An Entry also contains the public key of the author, a creation timestamp, and
encrypted metadata and a corresponding MAC.

EntryMetadata contains attributes like the media/MIME type of the data,

3This maximum page size conveys our assumption that large clinical records are split up
into small, granular documents. For example, a patient’s clinical history with a doctor might
be split up into individual records for each encounter.

4We distinguish between Author clients of Libri, which have their own public key ID, and
author public keys, which are used to indicate the creator of a particular document. A user
will typically have many author public keys and many reader public keys. Section 3.4 describes
these different sets of keys in more detail.
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compression codec, full byte size of the entire document (across all Pages), and
content schema references. See Appendix B for more details.

A random 108-byte entry encryption key (EEK) is generated whenever an
Entry is created. The EEK contains four sub-keys:

• 32-byte AES-256 key for Page and entry metadata encryption,

• 32-byte Page block cipher initialization vector (IV) seed,

• 32-byte HMAC-SHA-256 key for ciphertext MACs,

• 12-byte metadata block cipher IV.

The contents in each Page and the Entry metadata are encrypted via an AES-
256 GCM block cipher. Page i’s plaintext content is encrypted using the
EEK AES-256 key and a per-page IV generated from the first 12 bytes of
HMAC-SHA-256(IV seed, i), and a MAC for this ciphertext is calculated from
the EEK HMAC key via HMAC-SHA-256(HMAC Key, Page Ciphertext). The
Entry metadata is serialized to its Protobuf binary representation and encrypted
with the EEK AES-256 key and 12-byte metadata IV.

3.2.3 Envelope

Envelopes exist solely for the purpose of sharing EEKs from the author of a
document to a reader (each identified here just by one of their public keys).
The 108 byte EEK is encrypted in the Envelope using the key encryption key
(KEK) derived from the shared ECDH secret between the author and reader
keys. The KEK contains three sub-keys:

• 32-byte AES-256 key for EEK encryption,

• 12-byte block cipher IV,

• 32-byte HMAC-SHA-256 key for ciphertext MAC.

This 76-byte KEK is derived from a SHA-256 hash-based key derivation function
(HKDF) initialized with the x-coordinate of the shared ECDH secret. The 108
bytes of the EEK are encrypted via an AES-256 GCM block cipher using the
AES-256 key and block cipher IV in the KEK. A MAC of the resulting ciphertext
is also calculated via HMAC-SHA-256(HMAC Key, EEK Ciphertext).

A complete Envelope contains

• document key of entry whose EEK this envelope encrypts,

• author public key,

• reader public key,

• EEK ciphertext,

• EEK ciphertext MAC.

Since usually an author wants to be able to later read a document they create,
they first send an Envelope to themselves, using another one of their public keys
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as the reader public key. This self-share allows clients to avoid locally storing
the EEK plaintext, since they can always decrypt their self-shared Envelope

if/when they want to share the Entry with someone else.

When they do want to share a document, they create a new Envelope re-
encrypting the EEK using the KEK derived from the shared ECDH secret be-
tween one of their author key-pairs and one of the reader. One must then only
monitor the Envelope publications for those with author or reader public keys
that they know they own in order to see what Entrys they can decrypt.

3.2.4 Publication

Envelope storage events are gossiped between Librarian peers in the form of
Publication messages, which are exchanged via the streaming Subscribe re-
quest from one peer to another. A Publication contains a subset of the fields
of the Envelope:

• envelope document key

• entry document key

• author public key

• reader public key

Each Librarian constructs its own Publication stream, which it populates
from Subscribe requests to other Librarians and forwards to Librarians that are
subscribed to it. Because these Publications are gossiped, one Librarian may
have a slightly different Publication order than another, but the differences
should be quite small (< 1s). Organizations running Librarian peers may wish
to set up Author clients Subscribed to them so that the clients can save these
Publications to some more durable storage like a database or message queue.

3.3 Identity

Like most other cryptographic systems, Author and Librarian identity relies on
elliptic curve (secp256k1) public keys. Each request to the Libri API contains
metadata with a unique, random 32-byte request ID and the public key of the
requester. Requesters create a JSON web token (JWT) containing a single
claim—the SHA-256 hash of the Protobuf binary message—and sign it with
their private key.

Organizations will typically run a fleet of Librarians, perhaps 8 or 16. Each
Librarian will have its own distinct ID, but the organization may wish to identify
all of them as belonging to the same organization. When this is the case, the
organization generates its own public-private key pair and securely distributes
that key pair to each of its Librarians. Each Librarian then includes the orga-
nization public key in the request metadata and also includes the same JWT
signed with its organization public key.

When Librarians receive requests, they first verify the peer public key signa-
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ture of that request. If an organization signature is present, they verify that as
well. Organization IDs in particular allow a Librarian to segment the requests
it receives into tiers of trust. Organization A could configure its Librarians to
trust requests from organizations B, C, & D, whereas those from others may be
treated more skeptically. We discuss the authorization and rate limit results of
these differentiated trust tiers below in Section 4.1.

3.4 Authors

Authors are the clients of the Libri network: they write and read documents.
To convert binary content into the documents to be written to the network,
authors follow a basic process of compression, pagination, and encryption.

Compression is optional but recommended, since its performance cost is
usually low and can result in much smaller files that need to be uploaded and
stored. The compression codec used is included in the Entry metadata. The
compressed content is then split up—paginated—into chunks of at most 2 MB.
Each of these chunks is then individually encrypted using the EEK, which is
generated randomly for each content. The EEK is encrypted by the KEK gen-
erated from the shared author-reader ECDH secret and is used to create the
Envelope. When small content requires only a single Page, that Page is stored
within the Entry for the content. The Author then Puts the Envelope and
Entry into the network via calls to one or more Librarians, which store each
document with the appropriate other Librarians close to its key in the Kademlia
hash ring.

Downloading a document follows a similar pattern in reverse. The Author
client first Gets the Envelope for a given document key and confirms that it has
the private key indicated by the reader public key in the Envelope. Assuming it
does, it constructs the KEK and uses it to decrypt the EEK ciphertext. It then
Gets the Entry indicated by the Entry key in the Envelope followed possibly
by the additional Pages indicated in the Entry and uses the EEK to decrypt
the Entry metadata, which gives—among other things—the compression codec
used. Pages are iteratively decrypted, concatenated, and decompressed to for
the final binary content.

When one author wants to share a document with another (which we des-
ignate the reader), they only need to create a new Envelope, since the reader
just needs to receive the (encrypted) EEK rather than the whole document re-
encrypted. The author gets one of the reader’s public keys 5 and samples one
of its own key-pairs to construct the KEK. The author then encrypts the EEK
with the new KEK and includes its public key, the reader’s public key, the key
of the Entry it is sharing, and the EEK ciphertext in the newly constructed
Envelope.

Each client maintains two sets of key-pairs: author keys and reader keys.

5The author gets one of the reader’s public keys either directly via email or QR code or
indirectly via a 3rd party that the Reader has registered some of its public keys with
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Technically, each client could just have a single key-pair they use to send and
receive documents. But if every entity using Libri only had a single key-pair
identifying them, one could potentially re-identify patients based on their (data-
sharing) relationships with doctors. Similar re-identification attacks have been
shown to be successful on “anonymized” credit card transactions. Since even
the knowledge that a patient visits a particular doctor is protected health infor-
mation (PHI), clients must have more than one key-pair. For a further layer of
anonymity, the keys clients use to send documents (the author keys) are distinct
from those they use to receive them (the reader keys). This distinction means
that knowing one of they keys a doctor uses to receive documents a patient
might share with them does not let the patient see even a subset of the docu-
ments that doctor is sharing with other patients. In our initial Author client
implementation, each Author has 64 author key-pairs and 64 reader key-pairs.
Each key-pair is individually encrypted via scrypt [20] using a master password.

4 Considerations

4.1 Incentives & Authorization

A key result in Libri’s avoidance of a blockchain and tokens is the lack of any
economic incentives for peers to participate in the network. This absence of
economic incentives in the face of real economic costs 6 requires that the organi-
zations get some benefit to offset the cost. We believe this benefit is unmediated,
read/write access to what will become a massive repository of encrypted health-
care data. While $5000 per year of infrastructure costs certainly is not nothing,
is it small relative to the current alternatives: paying humans to mediate this
data exchange through more analog methods (fax, snail mail, CDs in padded
envelopes, or even wrangling email attachments). These economics do not make
much sense for individual hobbyists in the way they do for other decentralized
systems, but they do for larger organizations that have much to gain from sim-
ple, efficient access to what will be a vast repository of health data. We hope
that government organizations will participate as well, especially since a durable
repository of all health data should be considered a public good and thus worth
supporting for the benefit of all. Since hobbyists will have much less incentive
to run peers, we expect that the peers run by organizations will have much
higher uptime (basically 100%) and more consistent resource guarantees, which
together ensure that the network as a whole operates efficiently and with lower
performance variance than other decentralized systems.

Since requests between Libri peers are “free” of economic costs, we restrict
their usage via simple rate limiting. Each peer maintains per-second and per-
day rate limit counters for requests from every other peer and for each Libri
endpoint. They also maintain limits on the number of distinct peers they may
receive requests from per second and per day. Peers have the concept of “know-

6We estimate that a modest 8-peer fleet at 1 CPU, 6 GB RAM, & 100 GB storage per
peer would cost about $400 per month on Google Cloud Platform.
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ing” other peers or the organizations they belong to. If a peer is configured (e.g.,
via a peer and/or organization ID whitelist) to know certain other peers, it may
allow higher rate limits from those peer. The extreme example of this form
of authorization is that an organization probably will want to restrict Get and
Put endpoint requests to only its own clients, since each Put and Get request
requires the server to make a number of additional Find and Store requests.

Occasionally, Librarians peers will fall into a bad or unavailable state, per-
haps because they are momentarily undergoing some sort of routine maintenance
(e.g., being redeployed with an updated version or having their local storage
backed up) or because they are legitimately no longer available. In either case,
we wish to proactively avoid sending requests to those peers. Each Librarian
maintains a current healthy vs. not-healthy state of every other Librarian in
its routing table. This state is updated after every request (both successful
and unsuccessful) to another Librarian. Each Librarian also has a healthcheck
endpoint that others may call to confirm that it is up and receiving requests.
By avoiding sending requets to known-unhealthy peers, Librarians reduce the
variance and latency of some of the more involved query patterns, like those
required for Gets and Puts.

4.2 Durability

When clients store documents in Libri, they store them in the network as a
whole, rather than with specific peers, as is the case with other decentralized
storage networks[2, 4]. The Libri network is thus responsible for ensuring that,
once stored, documents are never lost due to peer drop-outs or network con-
nectivity issues. Librarian peers thus are responsible for maintaining their own
locale of the hash ring, ensuring that documents they’re storing are sufficiently
replicated and storing additional copies in other peers if they become under-
replicated.

Let’s say that organizations A, B, C, & D are each running a fleet of 8
peers, but then organization D decides to stop running these peers. A, B, & C
are responsible for storing the additional copies of D’s documents. These peers
must first detect that documents are under-replicated and then send additional
Store requests to each other to bring the replication level back to normal.

In addition to serving synchronous requests, each Librarian also has an asyn-
chronous process that loops through the documents in its own internal storage.
For each document, it sends out Verify requests, which behaves almost exactly
like the Find requests except that if the peer has the document, instead of re-
turning the value, it returns a MAC of the value using the HMAC key given in
the request, thereby proving that they do in fact have the document of inter-
est. Most verification operations will conclude with the other peers storing the
replicas successfully proving they they do indeed have the value stored.

If one of the peers that once stored the value no longer has it or is unavailable,
the verifier will detect that the document is under-replicated and will issue a
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series of Store requests (the same as what would occur during a Put) in order to
re-store the document on additional peers. Because each peer stores documents
with keys close to its ID on the hash ring, the requests it will make to verify
and possibly re-replicate documents will be within its local neighborhood on the
ring and thus will be fast and efficient.

Librarians currently wait 1 second between verifications, meaning that if a
Librarian is storing n documents, it is verifying the replication of each document
on a period of roughly n seconds. Assuming a replication factor of k, the network
as a whole is thus verifiying each document on average k/n seconds. It is hard
to know exactly what the “right” verification period should be. We expect to
monitor how quickly the network is able to “heal” itself after losing peers and
update the replication period accordingly.

4.3 Protecting against malicious actors

As with any decentralized system where one does not necessarily have identity
and/or reputation information for every peer, Libri is designed to be resilient
to many different types of malicious actors. Below we discuss some of the most
common forms of attack and Libri’s defense against them.

4.3.1 DDOS

While decentralized systems are intended to be more resilient to distributed
denial of service (DDOS) attacks than traditional, centralized services, many—
Libri included—are probably small enough that a well-equipped group could
reasonably DDOS all nodes. In the event of an attack, each organization run-
ning Librarian peers could choose to change their firewall rules to block all
external traffic, partitioning their fleet from the rest of the (overwhelmed) net-
work, and operate in degraded read-only mode. Depending on the overall size
of the network and the number of peers in their fleet, organizations might still
have access to a non-trivial subset of the documents.

We also expect that organizations running nodes to usually maintain some
local copy of the subset of data in Libri they care about, since interacting with
that local copy will always be faster and less variable than the Libri network.
In the face of a prolonged, Libri-wide DDOS attack, organizations may decide
to fall back to degraded read-only mode against their local caches and pause
writes to Libri until the attack has subsided.

Of course, adding nodes and partner organizations to increase the size and
diversity of the network is the best defense against DDOS.

4.3.2 Spam

A spam attack might take the form of one or more clients issuing many Get or
Put requests, potentially trying to download or upload many terabytes of data
in order to overwhelm the network. We expect that unknown vs. known peer

14



and organization rate limits will reduce what otherwise could be a massive flood
of requests to a much smaller fraction of the total. For example, a Librarian
might only accept 1 Find request per second from all unknown Librarians but
50 requests per second from all of its known peers and organizations. It might
accept zero Store requests from unknown peers and 25 requests per second
from its known peers. While such rate limiting doesn’t eliminate the spam
problem entirely, it can reduce its impact to be just a small fraction of the
overall requests.

4.3.3 Sybil

A Sybil attack occurs when one actor creates many peers in order to disrupt the
network’s regular operation, perhaps by ignoring or disobeying requests (e.g.,
not storing data when it says that it has). Like DDOS, the feasibility of this
attack is inversely proportional to the size of the network. Furthermore, since
peers maintaining whitelists of “known” organizations will likely have much
strictly rate limits on unknown peers, new peers may not receive many requests
or have the opportunity to send many bad requests.

4.3.4 Honest Gepetto

In the honest Gepetto [6] attack, an organization might run legitimate, well-
behaved nodes for some time before pulling their peers off the network all at
once. Since each document is replicated a number of times, the probability that
their nodes would contain all copies of some document is very low, effectively
eliminating the risk of full data loss. But the documents these peers did store
would now be under-replicated. The remaining peers in the neighborhood of
each pulled peer would manage re-replicating documents up to their sufficient
replication level.

5 Implementation

Libri is implemented to be as simple to develop and maintain as possible. We
thus use off-the-shelf tools when available and strive to be specific and opinion-
ated rather than overly flexible and generic. Below we describe some implemen-
tation details.

5.1 Librarian peers

Librarian peers are intended to be run from Docker containers in a cloud
provider, like Google or Amazon. These containers are orchestrated via Ter-
raform and Kubernetes, which also manage the persistent SSDs attached to
each container for storage, a Prometheus server for monitoring and alerting, and
Grafana server for dashboards. While it certainly is possible to run a Librar-
ian peer on a laptop, we orient towards cloud deployment and infrastructure to
standardize configuration and make use of the superior reliability, performance,
and features offered there.
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Figure 2: A hypothetical set of Libri users. Larger organizations like health
sytems, payers, and health tech companies run their own Librarian nodes.
Consumer-facing tools, analytics, and other third party applications use a Libri
proxy service maintained by a tech company.

Each Librarian exposes an RPC service over http. The service interface is
defined in GRPC, which uses Protobuf for message serialization. GRPC has
been battle-tested at Google for over the last decade and has server and client
libraries in most common languages. It also has nice features like streaming
endpoints, which we use when gossiping publication events between peers. We
expect to only develop and maintain a single server implementation in Golang.

Librarians use RocksDB for local storage. RocksDB is an embedded key-
value store maintained by Facebook and is optimized for fast writes on SSDs.
Each Librarian’s RocksDB directory is written to a network-attached SSD vol-
ume, which is incrementally backed up to durable cloud storage (e.g., S3).

5.2 Hypothetical organization’s setup

An organization runs peers to get read/write access to the DHT as well as
the stream of all publication events. A modest integration might look like the
following.

The organization runs 8 peers that bootstrap from long-lived peers and in-
troduce themselves to the rest of the Libri network. They may also have an
internal service that uses the Author client library to proxy Put and Get re-
quests to Libri via their 8 Librarian peers. This service may also send publi-
cation notifications on to an internal message bus (like Kafka) or filter them
down to only those involving that organization (via their set of public keys). If
they see that someone just shared a document with one of their public keys,
they could then use Author client library download, decrypt, decompress, and

16



concatenate the relevant Pages before storing in their own internal data system
(which presumably uses its own encryption at rest and in transit).

Smaller organizations and almost all consumers will not want to run their
own peers. We expect an ecosystem of 3rd-party companies to build consumer-
facing apps and APIs that will proxy access to the data in Libri much like
companies like Coinbase proxy a consumer’s access to the underlying Bitcoin
network.

Figure 2 shows a schematic of such a setup.

6 Experiments

Decentralized storage systems like IPFS, Sia, and Storj have existed for at least
a few years, but we have found very few empirical examinations of their per-
formance. We believe that part of the evaluation for storage systems like these
should include how efficiently they are able to handle the routine operations re-
quired of them. Below we describe some preliminary experiments on ephemeral
Libri clusters. All the configuration and results for the experiments in their
paper are publicly available7.

6.1 Performance across cluster size and load

In this first set of initial experiments, we examined how a Libri cluster performs
as the load on it and cluster size increase. In theory Get and Put requests in
Kademlia-based architecture should scale as O(log(n)) for a cluster with n peers,
but we wanted to examine the extent to which these latencies scale in practice as
n increases. We also want to understand how well each of these clusters handles
increasing client request load. We use the Get and Put endpoint latencies as
our primary metrics of interest during these experiments, though other metrics
like data throughput and cluster queries per second (QPS) are also relevant.
Centralized key-value stores like DynamoDB, BigTable, Cassandra, and Riak
boast request latencies in the single-digit millisecond ranges at thousands of
queries per second. While decentralized storage systems will never be able to
match that performance, we believe that it’s valuable to strive toward roughly
the same orders of magnitude if decentralized storage is going to be used in a
production setting.

6.1.1 Methods

We simulated hypothetical user load with random documents in order to ex-
amine each cluster’s performance. While the real distribution in healthcare
document sizes is hard to know and will probably be very wide, we assume here
that we are working with PDFs (unfortunately, still one of the most common
forms of data exchange between healthcare organizations) on the order of a few
hundred KBs. Documents were generated by first sampling a byte length from

7https://github.com/drausin/libri-experiments/tree/develop/experiments/exp03
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user load (UPD) Put + Get rate (QPS) Put throughput (Mbps)

64k 5.8 4.3
256k 23.7 18.9

1024k 92.2 73.2

Table 1: Query rate and throughput for each uploads per day (UPD) load.
Results are shown for the 64-peer cluster, but those for other cluster sizes were
similar.

a gamma distribution with shape 1.5 and scale 170 (implying a mean of 256
KB and 95% interval of [18, 794] KB and then randomly generating document
content of the sampled length.

In an attempt to root cluster load in our expected real-world use case of
uploading, sharing, and downloading health-related documents, we define our
load by uploads per day (UPD). For this experiment, we assume that each “up-
load” involves four distinct Puts: the Entry, the self-shared Envelope, and two
additional Envelopes representing sharing the document with two other parties.
We also simulate each of the share parties downloading both the Envelope with
their public key and original Entry, resulting in four total Get requests for each
upload. Each “upload” thus involves, directly and indirectly, 8 total requests to
the Libri network.

We ran 12 trials, each with an ephemeral Libri cluster deployed using Ku-
bernetes on infrastructure provisioned in Google Cloud Platform via Terraform.
Each Librarian received 1 CPU, 6 GB RAM, and 10 GB network-attached SSD
storage. Request latencies were captured via Prometheus monitoring and vi-
sualized in Grafana dashboards. We tested the cluster sizes (i.e., number of
Librarian peers) 8, 16, 32, & 64 and 64K, 256K, and 1024K UPD. Each trial
ran for an hour, since the primary goal of this experiment was to measure short-
term request latencies rather than long term cluster behavior. Table 1 gives the
queries per second (QPS) and throughput (Mbps) produced by each user load
level.

Request latencies were measured via the 50th- and 95th-percentile values of
the latency distributions (a.k.a., p50 and p95, respectively) for the Put and
Get endpoints. These quantiles are estimated by Prometheus via its histogram
counts of the request latencies8.

6.1.2 Results and Discussion

Figure 3 shows the Put and Get latency estimates aggregated over all Librarians
as the cluster size increases from 8 to 64 peers. In each of the four charts, the
1024K UPD load almost always has the best latency performance. While this
result may initially seem counterintuitive, it is almost certainly an artifact of

8https://prometheus.io/docs/practices/histograms/
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the way Prometheus calculates quantiles from histograms, which tend to skew
a little more conservative when the counts in each histogram bin are higher.

We first note the order of magnitude of the latencies. Median Put latencies
are in the tens of milliseconds, and p95s are generally between 100-250ms. Me-
dian Get latencies are in the single-digit milliseconds, and p95s are generally
in the mid-to-high tens of milliseconds. The 8-peer cluster receiving 1024 UPD
is a little overwhelmed, but increasing the cluster size to 16 and then 32 peers
seems to spread the load out effectively. In all but the Put p50, increasing the
cluster size has little effect on the latencies, showing that the increased commu-
nications required with a larger cluster have little effect on the overall latency.
The increase in Put p50 as the cluster size grows makes sense because each Put

has to find the k Librarians closest to a document key to send Store requests
to. As the cluster size n increases, this search time will grow proportional to
log(n), and indeed the shape of the 64K and 256K UPD tends does seem roughly
logarithmic.

Figure 4 shows the query rate across all endpoints and storage (Put) through-
put of both the cluster overall and the average per peer as the UPD load and
cluster size vary. The total cluster query rate shows a fairly consistent (with the
exception of 1024 UPD on the 8-peer cluster) increasing linear trend of roughly
4 QPS/peer, meaning that each additional peer adds roughly 4 QPS to the total
cluster QPS.

The total average peer query rate predictably drops as the cluster size in-
creases for each UPD load. Since we know that 1024 UPD on an 8-peer cluster
had anomalously poor latency results while the 16-peer clusters served that same
load with good performance, we posit a roughly 50 QPS limit per peer (between
the 72 QPS on the 8-peer cluster and 41 QPS on the 16-peer cluster) in order
to maintain good latency performance. The cluster-wide throughputs are quite
consistent across cluster size with the slightly lower throughput at 1024 UPD
on the 8-peer cluster. At 1024 UPD and cluster sizes 16 and larger, the cluster
throughput is roughly 72 Mbps. As above with QPS, we might similarly posit
a roughly 5 Mbps throughput limit per peer in order to maintain good cluster
performance.

The latency, request rate, and throughput results from this experiment show
how a modest Libri cluster can achieve quite good performance: on average,
Gets in the single-digit milliseconds and Puts in the tens of milliseconds when
serving 80 Get + Put QPS with a 72 Mbps throughput. These experiments
also show that while increasing the cluster size increases the number of requests
within the cluster, its effects on Put and Get latencies are small, its effects on
overall QPS scale linearly with the cluster size, and those on and throughput
are undetectable. These results give us initial confidence that a Libri cluster
will be able to scale well with the first wave of users and load associated in the
first few years of its existence.

We emphasize that these experiments are preliminary, and we expect to bol-
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ster them with additional tests run on clusters distributed across cloud provider
availability zones and regions. We also plan to deploy a continually-running
“wild” test network (a.k.a., testnet) for us to run periodic load tests on. While
many decentralized systems boast many thousands of peers, we do not think
Libri should scale to that many when each Libri peer can potentially be quite
large (in the resources available to it) when hosted in a cloud environment. We
expect a vibrant Libri network will contain on the order of hundreds of nodes.
So while these experiments on clusters up to 64 peers involve fewer peers than
the size we expect in perhaps 5 years from now, we expect the size of the network
to grow relatively slowly over that period of time.
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7 Future Work

Libri is and will always be a fully open source network. Openness engenders
trust, and trust is critical when managing something as important and sensitive
as long-term health records. We hope to build a vibrant open source community,
where prioritization, important features, and bugfixes are contributed by as
many participants in the network as possible.

Core development will be led by Elixir Health, which will offer optional paid
services on top of Libri, including web and mobile app, identity and access
management, and a proxy API to Libri for other 3rd party organizations and
apps not yet interested in running their own nodes.

Libri and Elixir Health welcome all members of our healthcare ecosystem:
doctors and healthcare systems, public and private insurance organizations,
life sciences and device companies, public health and medical research groups,
and consumer health organizations like gyms, fitness, and diet trackers. Each
organization has a role to play in and much to benefit from a shared, accessible
repository of all health data.

The next large technical hurdle is ramping up integrations with healthcare
organizations. Initially, some records will be unstructured (or semi-structured)
(PDFs, images) and some will be structured (HL7, FHIR, CCD). Easily storing,
accessing, and sharing these documents—regardless of the form—dramatically
improves on the piecemeal system we have now. Once this unstandardized,
heterogenous data flows easily, our collective incentives for better standards,
compatibility, and documentation increase. We expect to spend a great deal of
collaborative energy on this front. The schema and data dictionary specification
given in EntryMetadata (see Appendix B) is intended to start us off on that
direction.

8 Conclusion

The field of decentralized storage is still in its infancy, with few networks sup-
porting true production loads. The network designs that do exist have few per-
formance studies to give confidence that they can in fact support the production
loads they aim to. Libri is intended to be simple and opinionated, which frees
it from many of the challenges (e.g., consensus protocols, incentives) associated
with other decentralized systems. Documents are encrypted and shared between
parties through a very explicit API, and these documents are kept replicated
by the network as a whole. Preliminary experimental results indicate that Libri
networks exhibit very good request latency, rate, and throughput properties,
giving us confidence that we can immediately begin testing a persistent cluster
with production-level load.
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Appendix A Document structure

Below we describe the structure of each of the three Libri document types: Page,
Entry, and Envelope. We use Protobuf types and add a length to bytes arrays
when it is fixed. Each document key (e.g., entry key) is the SHA-256 hash of
the document serialized to binary.

Page structure

name type description

author public key bytes[32] public key of author/sender
index uint32 index of this Page in the Entry

ciphertext bytes encrypted contents of Page, up to 2 MB
ciphertext mac bytes[32] ciphertext HMAC

Entry structure

name type description

author public key bytes[32] public key of author/sender
page Page for single-Page content
page keys repeated bytes[32] for multi-Page content
created time uint32 client epoch time when Entry created
metadata ciphertext bytes ciphertext of serialized EntryMetadata

metadata ciphertext mac bytes EntryMetadata ciphertext MAC

Envelope structure

name type description

entry key bytes[32] document key of Entry whose EEK is encrypted
author public key bytes[32] public key of author/sender
reader public key bytes[32] public key of reader/receiver
eek ciphertext bytes[124] encrypted EEK (including 16-byte encryption info)
eek ciphertext mac bytes[32] EEK ciphertext HMAC
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Appendix B Entry metadata

EntryMetadata contains attributes of the Entry that inform decompression,
decryption, and concatenation. It also optionally contains arbitrary domain-
specific properties and the schema/data dictionary versions that it conforms
to.

EntryMetadata structure

name type description

media type string media/MIME type of the data
compression codec CompressionCodec identifies compression used
ciphertext size uint64 size of entire ciphertext (across all Pages)
ciphertext mac bytes[32] MAC of entire ciphertext
uncompressed size uint64 size of entire uncompressed content
uncompressed mac bytes[32] MAC of entire uncompressed content
properties map<string,string> domain-specific metadata
filepath string relative filepath of the file to write contents to
schema SchemaArtifact content schema
data dictionary SchemaArtifact content data dictionary

SchemaArtifact denotes the schema artifact associated with the serialized
plaintext of a particular Entry. Artifacts can mainly be two separate types:

Schema can be of any type (e.g., Protobuf, Avro, JSON, XML, XSD, etc)
that minimally describe the format of the data and optionally/preferably
also include the data dictionary (i.e., the semantic meaning of the schema
components) as well.

Data dictionary is especially important when the schema is broad/loose (as
is the case in some standard data formats like HL7). This additional
documentation adds clarity about the semantic meaning/use of each field.
For example, a schema may contain two similar fields, A1 and A2, and one
entry data producer may store a value in A1, whereas another producer
may store the same semantic value in A2. The schema for both messages
is the same, but the schema interpretation is different.

New schemas should obviously be as well-defined and unambiguous as pos-
sible, but many legacy data formats require additional interpretation. Clients
can choose to do what they want with the schema and data dictionary, but
commonly they will have combinations of these that they know how to handle
explicitly.
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SchemaArtifact structure

name type description

group string group owning the schema (commonly a Github user)
project string project in which schema resides (commonly a Github project)
path string path to schema file within project
name string (optional) name of the schema with the file
version string semantic version of the schema (e.g., “0.1.0”)
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