-
Notifications
You must be signed in to change notification settings - Fork 16
/
extract_top_docs.py
397 lines (318 loc) · 19.1 KB
/
extract_top_docs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import argparse
import os
import logging
import pathlib
import tqdm
import re
import sys
sys.path.append("./dialogpt")
from dpr.options import add_encoder_params, add_cuda_params, setup_args_gpu, set_seed, print_args
from generate_dense_embeddings import main as dense_encoding
from generate_dense_embeddings import gen_ctx_vectors
from dense_retriever import main as dense_retrieve
from train_dense_encoder_modified import BiEncoderTrainer
from dense_retriever import *
from dialogpt.gpt2_training.train_utils import boolean_string
from dpr.utils.model_utils import load_states_from_checkpoint_only_model
EVAL_ON_EACH = True
def init_retriever_single_rank(args, eval_on_each = EVAL_ON_EACH):
# evaluate based on ranking setting
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
print_args(args)
args.do_lower_case = True
saved_state = load_states_from_checkpoint(args.model_file)
set_encoder_params_from_state(saved_state.encoder_params, args)
tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)
encoder = encoder.question_model
encoder.to(device)
encoder.eval()
args.encoded_ctx_file = args.out_file + '_*'
if eval_on_each:
args.encoded_ctx_file = args.out_file + '_' + str(args.shard_id)
# index all passages
ctx_files_pattern = args.encoded_ctx_file
logger.info('encoded files: %s', ctx_files_pattern )
input_paths = sorted(glob.glob(ctx_files_pattern))
logger.info('Reading all passages data from files: %s', input_paths)
# index all passages
args.encoded_file_patterns = ctx_files_pattern
# load weights from the model file
model_to_load = get_model_obj(encoder)
logger.info('Loading saved model state ...')
prefix_len = len('question_model.')
question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
key.startswith('question_model.')}
model_to_load.load_state_dict(question_encoder_state)
vector_size = model_to_load.get_out_size()
logger.info('Encoder vector_size=%d', vector_size)
index_buffer_sz = args.index_buffer
if args.hnsw_index:
index = DenseHNSWFlatIndexer(vector_size)
index_buffer_sz = -1 # encode all at once
else:
index = DenseFlatIndexer(vector_size)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
args.out_file = os.path.join(os.path.dirname(args.model_file), 'dense_embedding', os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file))
if hasattr(args, 'load_old_model') and args.load_old_model:
args.out_file = os.path.join(os.path.dirname(args.model_file), 'dense_embedding', os.path.basename(args.ctx_file))
if args.encoding:
dense_encoding(args)
exit()
args.encoded_ctx_file = args.out_file + '_*'
if eval_on_each:
args.encoded_ctx_file = args.out_file + '_' + str(args.shard_id)
# index all passages
ctx_files_pattern = args.encoded_ctx_file
logger.info('encoded files: %s', ctx_files_pattern )
input_paths = sorted(glob.glob(ctx_files_pattern))
logger.info('Reading all passages data from files: %s', input_paths)
# index all passages
args.encoded_file_patterns = ctx_files_pattern
if args.hnsw_index:
indexer_file = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file)+'.indexer.cp')
indexer_file_dpr = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file)+'.indexer.cp.index.dpr')
if hasattr(args, 'load_old_model') and args.load_old_model:
indexer_file = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), os.path.basename(args.ctx_file)+'.indexer.cp')
indexer_file_dpr = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), os.path.basename(args.ctx_file)+'.indexer.cp.index.dpr')
if not os.path.exists(indexer_file_dpr):
assert ctx_files_pattern is not None, 'encode file patterns cannot be None'
start_time = time.time()
input_paths = glob.glob(ctx_files_pattern)
logger.info('Reading all passages data from files: \n%s', '\n'.join(input_paths))
logger.info(f'Indexing to file {indexer_file}')
retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz)
print('time cost =', time.time() - start_time, 's')
retriever.index.serialize(indexer_file)
else:
index = DenseHNSWFlatIndexer(vector_size)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
retriever.index.deserialize_from(indexer_file)
else:
retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz, remove_duplicates=False)
return retriever
def init_retriever(args, eval_on_each = EVAL_ON_EACH, encoder=None, tensorizer=None, force_index=False, file_suffix = ''):
args.do_lower_case = True
# evaluate based on ranking setting
if encoder is None:
if not hasattr(args,'load_trained_model') or not args.load_trained_model:
saved_state = load_states_from_checkpoint(args.model_file)
else:
saved_state = load_states_from_checkpoint_only_model(args.model_file)
set_encoder_params_from_state(saved_state.encoder_params, args)
tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)
encoder = encoder.question_model
# load weights from the model file
model_to_load = get_model_obj(encoder)
logger.info('Loading saved model state ...')
prefix_len = len('question_model.')
question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
key.startswith('question_model.')}
model_to_load.load_state_dict(question_encoder_state)
encoder.eval()
vector_size = encoder.get_out_size()
logger.info('Encoder vector_size=%d', vector_size)
encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
args.local_rank,
args.fp16)
index_buffer_sz = args.index_buffer
if args.hnsw_index:
index = DenseHNSWFlatIndexer(vector_size)
index_buffer_sz = -1 # encode all at once
else:
index = DenseFlatIndexer(vector_size)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
# TODO
args.out_file = os.path.join(os.path.dirname(args.model_file), 'dense_embedding', file_suffix, os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file))
if hasattr(args, 'load_old_model') and args.load_old_model:
args.out_file = os.path.join(os.path.dirname(args.model_file), 'dense_embedding', file_suffix, os.path.basename(args.ctx_file))
if force_index:
rows = []
with open(args.ctx_file) as tsvfile:
reader = csv.reader(tsvfile, delimiter='\t')
# file format: doc_id, doc_text, title
### TODO: potential error
rows.extend([(row[0], row[1], row[2]) for row in reader if
row[0] != 'id' and all([len(row[0]) != 0, len(row[1]) >= 10, len(row[2]) != 0])])
if hasattr(args, 'change_id_over_card') and args.change_id_over_card:
args.shard_id = args.local_rank if args.local_rank != -1 else 0
shard_size = int(len(rows) / args.num_shards)
start_idx = args.shard_id * shard_size
end_idx = start_idx + shard_size
logger.info('Producing encodings to file(s): %s', args.out_file)
logger.info('Producing encodings for passages range: %d to %d (out of total %d)', start_idx, end_idx, len(rows))
rows = rows[start_idx:end_idx]
data = gen_ctx_vectors(rows, encoder, tensorizer, args, False)
file = args.out_file + '_' + str(args.shard_id)
pathlib.Path(os.path.dirname(file)).mkdir(parents=True, exist_ok=True)
logger.info(' %s' % file)
with open(file, mode='wb') as f:
pickle.dump(data, f)
if args.local_rank != -1:
torch.distributed.barrier()
args.encoded_ctx_file = args.out_file + '_*'
if eval_on_each:
args.encoded_ctx_file = args.out_file + '_' + str(args.shard_id)
if args.encoding:
dense_encoding(args)
# index all passages
ctx_files_pattern = args.encoded_ctx_file
logger.info('encoded files: %s', ctx_files_pattern )
input_paths = sorted(glob.glob(ctx_files_pattern))
logger.info('Reading all passages data from files: %s', input_paths)
# index all passages
if args.hnsw_index:
indexer_file = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), file_suffix, os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file)+'.indexer.cp')
indexer_file_dpr = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), file_suffix, os.path.basename(args.model_file) + '.' + os.path.basename(args.ctx_file) +'.indexer.cp.index.dpr')
if hasattr(args, 'load_old_model') and args.load_old_model:
indexer_file = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), file_suffix, os.path.basename(args.ctx_file)+'.indexer.cp')
indexer_file_dpr = os.path.join(os.path.dirname(os.path.dirname(ctx_files_pattern)), file_suffix, os.path.basename(args.ctx_file)+'.indexer.cp.index.dpr')
if not os.path.exists(indexer_file_dpr) or force_index:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank in [0, -1]:
assert ctx_files_pattern is not None, 'encode file patterns cannot be None'
start_time = time.time()
input_paths = glob.glob(ctx_files_pattern)
assert len(input_paths) > 0, f"input path {input_paths} needs to be larger than 0"
logger.info('HNSW: Reading all passages data from files: \n%s', '\n'.join(input_paths))
logger.info(f'Indexing to file {indexer_file}')
retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz)
print('time cost =', time.time() - start_time, 's, local_rank =', args.local_rank)
retriever.index.serialize(indexer_file)
if args.local_rank == 0:
torch.distributed.barrier()
if args.local_rank not in [-1, 0]:
logger.info('file exist and not force index, read from files')
index = DenseHNSWFlatIndexer(vector_size)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
retriever.index.deserialize_from(indexer_file)
else:
logger.info('file exist and not force index, read from files')
index = DenseHNSWFlatIndexer(vector_size)
retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
retriever.index.deserialize_from(indexer_file)
else:
retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz, remove_duplicates=False)
all_passages = load_passages(args.ctx_file) # {'1':doc, ctx}
if len(all_passages) == 0:
raise RuntimeError('No passages data found. Please specify ctx_file param properly.')
return retriever, all_passages
def main(args):
if args.retriever_master_rank and args.local_rank != -1:
set_seed(args)
if args.local_rank in [-1, 0]: # only exist in master rank
retriever = init_retriever_single_rank(args, eval_on_each=args.eval_on_each)
all_passages = load_passages(args.ctx_file) # exist on all ranks because of ret_passages
if len(all_passages) == 0:
raise RuntimeError('No passages data found. Please specify ctx_file param properly.')
else:
retriever, all_passages = init_retriever(args, eval_on_each=args.eval_on_each)
questions = []
question_answers = []
for ds_item in parse_qa_csv_file(args.qa_file, simple_parser = True):
question, answers = ds_item
questions.append(question)
question_answers.append(answers)
questions_tensor = retriever.generate_question_vectors(questions)
top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(), args.n_docs, is_hnsw = args.hnsw_index)
print(top_ids_and_scores[0])
if not args.save_to:
# TODO
save_to = os.path.join(os.path.dirname(args.qa_file),(args.output_name+"." if args.output_name else "") + "top_doc.id.txt")
if EVAL_ON_EACH:
save_to = os.path.join(os.path.dirname(args.qa_file), (args.output_name+"." if args.output_name else "") + f"shard{args.shard_id}.top_doc.id.txt")
else:
save_to = args.save_to
if args.output_doc:
save_to_doc = save_to[:-6] + "doc.txt"
logger.info('Save top doc to: %s', save_to_doc)
with open(save_to_doc,'w') as out_d_f:
with tqdm.tqdm(total=len(top_ids_and_scores), desc=f"Extract top {args.n_docs} docs") as pbar:
for idx, res in enumerate(tqdm.tqdm(top_ids_and_scores, desc="Iteration")):
assert(args.n_docs <= len(res[0]))
if args.remove_positive:
out_d_f.write("\t".join([all_passages[str(x).strip()][0] for x in res[0][:args.n_print_docs] if all_passages[str(x).strip()][0]!=all_passages[str(idx+1)][0]])+'\n')
else:
out_d_f.write("\t".join([re.sub('[\t\n]','',all_passages[str(x).strip()][0]) for x in res[0][:args.n_print_docs]])+'\n')
if args.output_prob:
save_to_prob = save_to[:-6] + "prob.txt"
logger.info('Save prob to: %s', save_to_prob)
with open(save_to_prob,'w') as out_d_p:
with tqdm.tqdm(total=len(top_ids_and_scores), desc=f"Extract top {args.n_docs} docs") as pbar:
for idx, res in enumerate(tqdm.tqdm(top_ids_and_scores, desc="Iteration")):
assert(args.n_docs <= len(res[0]))
if args.remove_positive:
out_d_p.write("\t".join([f"{s:.2f}" for x,s in zip(res[0][:args.n_print_docs],res[1][:args.n_print_docs]) if all_passages[str(x).strip()][0]!=all_passages[str(idx+1)][0]])+'\n')
else:
out_d_p.write("\t".join([f"{s:.2f}" for s in res[1][:args.n_print_docs]]) +'\n')
logger.info('Save top id to: %s', save_to)
with open(save_to,'w') as out_f:
with tqdm.tqdm(total=len(top_ids_and_scores), desc=f"Extract top {args.n_docs} docs") as pbar:
for idx, res in enumerate(tqdm.tqdm(top_ids_and_scores, desc="Iteration")):
assert(args.n_docs <= len(res[0]))
if args.remove_positive:
out_f.write("\t".join([str(x) for x in res[0][:args.n_docs] if all_passages[str(x).strip()][0]!=all_passages[str(idx+1)][0]])+'\n')
else:
out_f.write("\t".join([str(x) for x in res[0][:args.n_docs]])+'\n')
if __name__ == '__main__':
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if logger.hasHandlers():
logger.handlers.clear()
console = logging.StreamHandler()
logger.addHandler(console)
parser = argparse.ArgumentParser()
add_cuda_params(parser)
add_encoder_params(parser)
parser.add_argument('--ctx_file', type=str, default=None, help='Path to passages set .tsv file for encoding')
parser.add_argument('--qa_file', required=True, type=str, default=None,
help="Question and answers file of the format: question \\t ['answer1','answer2', ...]")
parser.add_argument('--save_to', required=False, type=str, default=None,
help='output file path to write results to ')
parser.add_argument('--out_file', required=False, type=str, default=None,
help='doc embedding save to')
parser.add_argument('--seed', type=int, default=42, help="seed for random number generator")
parser.add_argument('--shard_id', type=int, default=0, help="Number(0-based) of data shard to process")
parser.add_argument('--num_shards', type=int, default=1, help="Total amount of data shards")
parser.add_argument('--batch_size', type=int, default=32, help="Batch size for the passage encoder forward pass")
parser.add_argument('--n_docs', type=int, default=5, help="Amount of top docs to return")
parser.add_argument('--n_print_docs', type=int, default=5, help="Amount of top docs to return")
parser.add_argument('--validation_workers', type=int, default=16,
help="Number of parallel processes to validate results")
parser.add_argument('--index_buffer', type=int, default=50000,
help="Temporal memory data buffer size (in samples) for indexer")
parser.add_argument("--hnsw_index", action='store_true', help='If enabled, use inference time efficient HNSW index')
parser.add_argument("--output_doc", action='store_true', help='If enabled, output doc and id')
parser.add_argument('--output_name', required=False, type=str, default=None,
help='top doc file save to')
parser.add_argument("--encoding", action='store_true', help='If enabled, encode the doc features offline')
parser.add_argument("--shard_folder", action='store_true', help='If enabled, encode the doc features are sharded')
parser.add_argument("--log_batch_step", default=100, type=int, help="")
parser.add_argument("--remove_positive", action='store_true', help='If enabled, remove positive document from the extraction')
parser.add_argument("--output_prob", action='store_true', help='If enabled, print doc probs')
parser.add_argument("--eval_on_each", action='store_true', help='If enabled, eval on each shard')
parser.add_argument("--retriever_master_rank", type=boolean_string, default=True, help='not for single card')
args = parser.parse_args()
args.do_lower_case = True
if args.local_rank == -1:
logger.info('CUDA available? {}'.format(str(torch.cuda.is_available())))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
args.device, args.n_gpu = device, n_gpu
else:
# distributed training
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of
# sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
n_gpu = torch.distributed.get_world_size()
args.device, args.n_gpu = device, 1
logger.info("device: {} n_gpu: {}, distributed training: {}, "
"16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
assert args.model_file, 'Please specify --model_file checkpoint to init model weights'
main(args)