-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbostan_mori.cpp
606 lines (563 loc) · 18.1 KB
/
bostan_mori.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
//
// Bostan-Mori 法
// find [x^N] P(x)/Q(x)
// time complexity: O(K log K log N), where K = max(deg(P(x)), deg(Q(x)))
//
// verified:
// TDPC T - フィボナッチ
// https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
//
// ARC 160 D - Mahjong
// https://atcoder.jp/contests/arc160/tasks/arc160_d
//
#include <bits/stdc++.h>
using namespace std;
// modint
template<int MOD> struct Fp {
// inner value
long long val;
// constructor
constexpr Fp() : val(0) { }
constexpr Fp(long long v) : val(v % MOD) {
if (val < 0) val += MOD;
}
constexpr long long get() const { return val; }
constexpr int get_mod() const { return MOD; }
// arithmetic operators
constexpr Fp operator + () const { return Fp(*this); }
constexpr Fp operator - () const { return Fp(0) - Fp(*this); }
constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; }
constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp &r) {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp &r) {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp &r) {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp &r) {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp pow(long long n) const {
Fp res(1), mul(*this);
while (n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
constexpr Fp inv() const {
Fp res(1), div(*this);
return res / div;
}
// other operators
constexpr bool operator == (const Fp &r) const {
return this->val == r.val;
}
constexpr bool operator != (const Fp &r) const {
return this->val != r.val;
}
constexpr Fp& operator ++ () {
++val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -- () {
if (val == 0) val += MOD;
--val;
return *this;
}
constexpr Fp operator ++ (int) const {
Fp res = *this;
++*this;
return res;
}
constexpr Fp operator -- (int) const {
Fp res = *this;
--*this;
return res;
}
friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) {
return os << x.val;
}
friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) {
return r.pow(n);
}
friend constexpr Fp<MOD> inv(const Fp<MOD> &r) {
return r.inv();
}
};
namespace NTT {
long long modpow(long long a, long long n, int mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, int mod) {
long long b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
u %= mod;
if (u < 0) u += mod;
return u;
}
int calc_primitive_root(int mod) {
if (mod == 2) return 1;
if (mod == 167772161) return 3;
if (mod == 469762049) return 3;
if (mod == 754974721) return 11;
if (mod == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
long long x = (mod - 1) / 2;
while (x % 2 == 0) x /= 2;
for (long long i = 3; i * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int get_fft_size(int N, int M) {
int size_a = 1, size_b = 1;
while (size_a < N) size_a <<= 1;
while (size_b < M) size_b <<= 1;
return max(size_a, size_b) << 1;
}
// number-theoretic transform
template<class mint> void trans(vector<mint> &v, bool inv = false) {
if (v.empty()) return;
int N = (int)v.size();
int MOD = v[0].get_mod();
int PR = calc_primitive_root(MOD);
static bool first = true;
static vector<long long> vbw(30), vibw(30);
if (first) {
first = false;
for (int k = 0; k < 30; ++k) {
vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
vibw[k] = modinv(vbw[k], MOD);
}
}
for (int i = 0, j = 1; j < N - 1; j++) {
for (int k = N >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(v[i], v[j]);
}
for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
long long bw = vbw[k];
if (inv) bw = vibw[k];
for (int i = 0; i < N; i += t) {
mint w = 1;
for (int j = 0; j < t/2; ++j) {
int j1 = i + j, j2 = i + j + t/2;
mint c1 = v[j1], c2 = v[j2] * w;
v[j1] = c1 + c2;
v[j2] = c1 - c2;
w *= bw;
}
}
}
if (inv) {
long long invN = modinv(N, MOD);
for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
}
}
// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749; // imod1 / MOD0;
// small case (T = mint, long long)
template<class T> vector<T> naive_mul(const vector<T> &A, const vector<T> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
vector<T> res(N + M - 1);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
res[i + j] += A[i] * B[j];
return res;
}
// mul by convolution
template<class mint> vector<mint> mul(const vector<mint> &A, const vector<mint> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int MOD = A[0].get_mod();
int size_fft = get_fft_size(N, M);
if (MOD == 998244353) {
vector<mint> a(size_fft), b(size_fft), c(size_fft);
for (int i = 0; i < N; ++i) a[i] = A[i];
for (int i = 0; i < M; ++i) b[i] = B[i];
trans(a), trans(b);
vector<mint> res(size_fft);
for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
trans(res, true);
res.resize(N + M - 1);
return res;
}
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
for (int i = 0; i < M; ++i)
b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
mint mod0 = MOD0, mod01 = mod0 * MOD1;
vector<mint> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
};
// Formal Power Series
template <typename mint> struct FPS : vector<mint> {
using vector<mint>::vector;
// constructor
FPS(const vector<mint>& r) : vector<mint>(r) {}
// core operator
inline FPS pre(int siz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), siz));
}
inline FPS rev() const {
FPS res = *this;
reverse(begin(res), end(res));
return res;
}
inline FPS& normalize() {
while (!this->empty() && this->back() == 0) this->pop_back();
return *this;
}
// basic operator
inline FPS operator - () const noexcept {
FPS res = (*this);
for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
return res;
}
inline FPS operator + (const mint& v) const { return FPS(*this) += v; }
inline FPS operator + (const FPS& r) const { return FPS(*this) += r; }
inline FPS operator - (const mint& v) const { return FPS(*this) -= v; }
inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; }
inline FPS operator * (const mint& v) const { return FPS(*this) *= v; }
inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; }
inline FPS operator / (const mint& v) const { return FPS(*this) /= v; }
inline FPS operator << (int x) const { return FPS(*this) <<= x; }
inline FPS operator >> (int x) const { return FPS(*this) >>= x; }
inline FPS& operator += (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
return *this;
}
inline FPS& operator += (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
return this->normalize();
}
inline FPS& operator -= (const mint& v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
return *this;
}
inline FPS& operator -= (const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
return this->normalize();
}
inline FPS& operator *= (const mint& v) {
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
return *this;
}
inline FPS& operator *= (const FPS& r) {
return *this = NTT::mul((*this), r);
}
inline FPS& operator /= (const mint& v) {
assert(v != 0);
mint iv = modinv(v);
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
return *this;
}
inline FPS& operator <<= (int x) {
FPS res(x, 0);
res.insert(res.end(), begin(*this), end(*this));
return *this = res;
}
inline FPS& operator >>= (int x) {
FPS res;
res.insert(res.end(), begin(*this) + x, end(*this));
return *this = res;
}
inline mint eval(const mint& v){
mint res = 0;
for (int i = (int)this->size()-1; i >= 0; --i) {
res *= v;
res += (*this)[i];
}
return res;
}
inline friend FPS gcd(const FPS& f, const FPS& g) {
if (g.empty()) return f;
return gcd(g, f % g);
}
// advanced operation
// df/dx
inline friend FPS diff(const FPS& f) {
int n = (int)f.size();
FPS res(n-1);
for (int i = 1; i < n; ++i) res[i-1] = f[i] * i;
return res;
}
// \int f dx
inline friend FPS integral(const FPS& f) {
int n = (int)f.size();
FPS res(n+1, 0);
for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1);
return res;
}
// inv(f), f[0] must not be 0
inline friend FPS inv(const FPS& f, int deg) {
assert(f[0] != 0);
if (deg < 0) deg = (int)f.size();
FPS res({mint(1) / f[0]});
for (int i = 1; i < deg; i <<= 1) {
res = (res + res - res * res * f.pre(i << 1)).pre(i << 1);
}
res.resize(deg);
return res;
}
inline friend FPS inv(const FPS& f) {
return inv(f, f.size());
}
// division, r must be normalized (r.back() must not be 0)
inline FPS& operator /= (const FPS& r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
if (this->size() < r.size()) {
this->clear();
return *this;
}
int need = (int)this->size() - (int)r.size() + 1;
*this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev();
return *this;
}
inline FPS& operator %= (const FPS &r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
FPS q = (*this) / r;
return *this -= q * r;
}
inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; }
inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; }
// log(f) = \int f'/f dx, f[0] must be 1
inline friend FPS log(const FPS& f, int deg) {
assert(f[0] == 1);
FPS res = integral(diff(f) * inv(f, deg));
res.resize(deg);
return res;
}
inline friend FPS log(const FPS& f) {
return log(f, f.size());
}
// exp(f), f[0] must be 0
inline friend FPS exp(const FPS& f, int deg) {
assert(f[0] == 0);
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1);
}
res.resize(deg);
return res;
}
inline friend FPS exp(const FPS& f) {
return exp(f, f.size());
}
// pow(f) = exp(e * log f)
inline friend FPS pow(const FPS& f, long long e, int deg) {
long long i = 0;
while (i < (int)f.size() && f[i] == 0) ++i;
if (i == (int)f.size()) return FPS(deg, 0);
if (i * e >= deg) return FPS(deg, 0);
mint k = f[i];
FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i);
res.resize(deg);
return res;
}
inline friend FPS pow(const FPS& f, long long e) {
return pow(f, e, f.size());
}
// sqrt(f), f[0] must be 1
inline friend FPS sqrt_base(const FPS& f, int deg) {
assert(f[0] == 1);
mint inv2 = mint(1) / 2;
FPS res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1);
for (mint& x : res) x *= inv2;
}
res.resize(deg);
return res;
}
inline friend FPS sqrt_base(const FPS& f) {
return sqrt_base(f, f.size());
}
};
// Binomial coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].getmod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
// Bostan-Mori
// find [x^N] P(x)/Q(x)
// O(K log K log N), K = max(deg(P(x)), deg(Q(x)))
template <typename mint> mint BostanMori(const FPS<mint> &P, const FPS<mint> &Q, long long N) {
assert(!P.empty() && !Q.empty());
if (N == 0) return P[0] / Q[0];
FPS<mint> P2{P}, minusQ{Q};
for (int i = 1; i < (int)Q.size(); i += 2) {
minusQ[i] = -minusQ[i];
}
P2 *= minusQ;
FPS<mint> Q2 = Q * minusQ;
FPS<mint> S, T;
if (N % 2 == 0) {
for (int i = 0; i * 2 < (int)P2.size(); ++i) {
S.emplace_back(P2[i * 2]);
}
} else {
for (int i = 0; i * 2 + 1 < (int)P2.size(); ++i) {
S.emplace_back(P2[i * 2 + 1]);
}
}
for (int i = 0; i * 2 < (int)Q2.size(); ++i) {
T.emplace_back(Q2[i * 2]);
}
return BostanMori(S, T, N >> 1);
}
//------------------------------//
// Examples
//------------------------------//
void TDPC_T() {
const int MOD = 1000000007;
using mint = Fp<MOD>;
// 入力
long long K, N;
cin >> K >> N;
// Bostan-Mori
FPS<mint> P(K), Q(K + 1);
Q[0] = 1;
for (int i = 0; i < P.size(); ++i) P[i] = mint(1 - i);
for (int i = 1; i < Q.size(); ++i) Q[i] = mint(-1);
cout << BostanMori(P, Q, N - 1) << endl;
}
void ARC160_D() {
const int MOD = 998244353;
using mint = Fp<MOD>;
long long N, M, K;
cin >> N >> M >> K;
if (M % K != 0) {
cout << 0 << endl;
return;
}
BiCoef<mint> bc(N*3);
FPS<mint> P(K*(N-K+1)+1, 0), Q(N*2-K+2, 0);
for (int i = 0; i <= N-K+1; ++i) {
P[i*K] = bc.com(N-K+1, i);
if (i % 2 == 1) P[i*K] = -P[i*K];
}
for (int i = 0; i <= N*2-K+1; ++i) {
Q[i] = bc.com(N*2-K+1, i);
if (i % 2 == 1) Q[i] = -Q[i];
}
cout << BostanMori(P, Q, M/K) << endl;
}
int main() {
TDPC_T();
//ARC160_D();
}