forked from UTK-ML-Dream-Team/accident-severity-prediction
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
1484 lines (1236 loc) · 63.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import pandas as pd
import copy
from time import time
from typing import *
from sklearn.svm import SVC
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from scipy.spatial import distance
from scipy.stats import chisquare
from prettytable import PrettyTable
from project_libs import ColorizedLogger
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score
from project_libs import timeit
from project_libs.project.plotter import plot_bpnn_results
from sklearn.model_selection import RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
import warnings
import pickle
from project_libs.project import one_hot_unencode
import xgboost as xgb
logger = ColorizedLogger('Models', 'green')
np.seterr(divide='raise')
# Implementation ofCase 1, 2, and 3 Bayesian
class BayesianCase:
""" Implementation of Minimum Euclidean distance, Mahalanobis, and Quadratic classifiers. """
mtypes: Tuple[str] = ("euclidean", "mahalanobis", "quadratic")
g_builders: Dict[str, Callable] = dict.fromkeys(mtypes, [])
accuracy: Dict[str, float]
classwise_accuracy: Dict[str, List]
prediction_time: Dict[str, float]
predicted_y: Dict[str, np.ndarray]
means: np.ndarray
stds: np.ndarray
covs: np.ndarray
avg_mean: np.ndarray
avg_std: np.ndarray
first_and_second_case_cov: np.ndarray
avg_var: np.ndarray
tp: Dict[str, int]
fn: Dict[str, int]
fp: Dict[str, int]
tn: Dict[str, int]
def __init__(self, train: np.ndarray = None,
train_x: np.ndarray = None, train_y: np.ndarray = None,
test: np.ndarray = None,
test_x: np.ndarray = None, test_y: np.ndarray = None) -> None:
# Initializations
self.g_builders = {self.mtypes[0]: self._build_g_euclidean,
self.mtypes[1]: self._build_g_mahalanobis,
self.mtypes[2]: self._build_g_quadratic}
self.classwise_accuracy = dict.fromkeys(self.mtypes, [])
self.predicted_y = dict.fromkeys(self.mtypes, None)
self.accuracy = dict.fromkeys(self.mtypes, None)
self.prediction_time = dict.fromkeys(self.mtypes, None)
self.tp = dict.fromkeys(self.mtypes, None)
self.fn = dict.fromkeys(self.mtypes, None)
self.fp = dict.fromkeys(self.mtypes, None)
self.tn = dict.fromkeys(self.mtypes, None)
# Separate features and labels from train and test set
if train is not None:
self.x_train, self.y_train = self.x_y_split(train)
elif train_x is not None and train_y is not None:
self.x_train, self.y_train = train_x, train_y
else:
raise Exception("You should either train or train_x and train_y!")
if test is not None:
self.x_test, self.y_test = self.x_y_split(test)
elif test_x is not None and test_y is not None:
self.x_test, self.y_test = test_x, test_y
else:
raise Exception("You should either train or train_x and train_y!")
# Find the # of samples, features and classes
self.n_samples_train, self.n_features = self.x_train.shape
self.n_samples_test = self.x_test.shape[0]
# Unique values (classes) of the features column
self.unique_classes = np.unique(self.y_train).astype(int)
@staticmethod
def x_y_split(dataset: np.ndarray) -> Tuple[np.array, np.array]:
return dataset[:, :-1], dataset[:, -1].astype(int)
def fit(self) -> None:
""" Trains the model on the training dataset and returns the means and the average variance """
# Calculate means, covariance for each feature
means = []
stds = []
covs = []
for class_n in self.unique_classes:
x_train_current_class = self.x_train[self.y_train == self.unique_classes[class_n]]
means.append(x_train_current_class.mean(axis=0))
stds.append(x_train_current_class.std(axis=0))
covs.append(np.cov(x_train_current_class.T))
# Calculate average covariance and variance
self.means = np.array(means)
self.stds = np.array(stds)
self.covs = np.array(covs)
self.avg_mean = np.mean(self.means, axis=0)
self.avg_std = np.mean(self.stds, axis=0)
def _build_g_euclidean(self, sample, n_class, priors: List[float]):
first_term = np.matmul(self.means[n_class].T, self.x_test[sample]) / self.avg_var
second_term = np.matmul(self.means[n_class].T, self.means[n_class]) / (2 * self.avg_var)
third_term = np.log(priors[n_class])
g = first_term - second_term + third_term
return g
def _build_g_mahalanobis(self, sample, n_class, priors: List[float]):
current_cov = self.first_and_second_case_cov
try:
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.inv(current_cov))
except np.linalg.LinAlgError as e:
logger.debug(f"{e}")
current_cov += + 10e-5
if str(e).strip() == 'Singular matrix':
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.pinv(current_cov))
else:
current_cov += + 10e-5
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.inv(current_cov))
first_term = -(1 / 2) * np.matmul(first_term_dot_1,
(self.x_test[sample] - self.means[n_class]))
second_term = np.log(priors[n_class])
g = first_term + second_term
return g
def _build_g_quadratic(self, sample, n_class, priors: List[float]):
current_covs = np.abs(self.covs[n_class] + 10e-5)
try:
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.inv(current_covs))
except np.linalg.LinAlgError as e:
logger.debug(f"{e}")
if str(e).strip() == 'Singular matrix':
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.pinv(current_covs))
else:
current_covs += + 10e-5
first_term_dot_1 = np.matmul((self.x_test[sample] - self.means[n_class]).T,
np.linalg.inv(current_covs))
except Exception as e:
logger.debug(f"{e}")
first_term_dot_1 = (self.x_test[sample] - self.means[n_class]).T / current_covs
first_term = -(1 / 2) * np.matmul(first_term_dot_1,
(self.x_test[sample] - self.means[n_class]))
try:
second_term = -(1 / 2) * np.log(np.abs(np.linalg.det(current_covs) + 10e-5))
except Exception as e:
logger.debug(f"{e}")
second_term = -(1 / 2) * np.log(np.abs(current_covs) + 10e-5)
third_term = np.log(priors[n_class])
g = first_term + second_term + third_term
return g
def predict(self, mtype: str, priors: List[float] = None,
first_and_second_case_cov_type: str = 'avg',
save_data: bool = False,
extra_name: str = '') -> np.ndarray:
""" Tests the model on the test dataset and returns the accuracy. """
# Which covariance to use in the first and second case
if first_and_second_case_cov_type == 'avg':
self.first_and_second_case_cov = np.mean(self.covs, axis=0)
elif first_and_second_case_cov_type == 'first':
self.first_and_second_case_cov = self.covs[0]
elif first_and_second_case_cov_type == 'second':
self.first_and_second_case_cov = self.covs[1]
else:
raise Exception('first_and_second_case_cov_type should be one of: avg, first, second')
# Calculate avg_var based on the choice
try:
self.avg_var = np.mean(np.diagonal(self.first_and_second_case_cov), axis=0)
except ValueError as e:
logger.warning(f"{e}")
self.avg_var = self.first_and_second_case_cov
# If no priors were given, set them as equal
if not priors:
priors = [1.0 / len(self.unique_classes) for _ in self.unique_classes]
# Determine the model type and get correct function for building the g
assert mtype in self.mtypes
build_g = self.g_builders[mtype]
# Predict the values
start = time()
_predicted_y = []
for sample in range(self.n_samples_test):
g = np.zeros(len(self.unique_classes))
for n_class in self.unique_classes:
# Calculate g for each class and append to a list
g[n_class] = build_g(sample=sample, n_class=n_class, priors=priors)
_predicted_y.append(g.argmax())
self.predicted_y[mtype] = np.array(_predicted_y)
self.prediction_time[mtype] = time() - start
if save_data:
self.save_pickle(self.predicted_y[mtype][:, np.newaxis],
case=mtype, extra_name=extra_name)
return self.predicted_y[mtype]
def get_statistics(self, mtype: str) -> Tuple[float, List[float], float]:
""" Return the statistics of the model """
# Check if mtype exists
assert mtype in self.mtypes
# Calculate metrics
self.accuracy[mtype] = np.count_nonzero(self.predicted_y[mtype] == self.y_test) / len(
self.predicted_y[mtype])
self.classwise_accuracy[mtype] = []
for class_n in self.unique_classes:
y_test_current = self.y_test[self.y_test == self.unique_classes[class_n]]
predicted_y_current = self.predicted_y[mtype][self.y_test == self.unique_classes[class_n]]
current_acc = np.count_nonzero(predicted_y_current == y_test_current) / len(
predicted_y_current)
self.classwise_accuracy[mtype].append(current_acc)
return self.accuracy[mtype], self.classwise_accuracy[mtype], self.prediction_time[mtype]
def get_confusion_matrix(self, mtype: str) -> Tuple[int, int, int, int]:
# Get True Positives
y_test_positive = self.y_test[self.y_test == self.unique_classes[0]]
y_pred_positive = self.predicted_y[mtype][self.y_test == self.unique_classes[0]]
self.tp[mtype] = np.count_nonzero(y_pred_positive == y_test_positive)
# Get False Positives
self.fn[mtype] = np.count_nonzero(y_pred_positive != y_test_positive)
# Get True Negatives
y_test_negative = self.y_test[self.y_test == self.unique_classes[1]]
y_pred_negative = self.predicted_y[mtype][self.y_test == self.unique_classes[1]]
self.tn[mtype] = np.count_nonzero(y_test_negative == y_pred_negative)
# Get False Negatives
self.fp[mtype] = np.count_nonzero(y_test_negative != y_pred_negative)
# Error Checking
# from sklearn.metrics import confusion_matrix
# print(confusion_matrix(self.y_test, self.predicted_y[mtype]))
# print(np.array([[self.tp[mtype], self.fn[mtype]], [self.fp[mtype], self.tn[mtype]]]))
return self.tp[mtype], self.fn[mtype], self.fp[mtype], self.tn[mtype]
def print_statistics(self, name: str, mtype: str) -> None:
# Check if statistics have be calculated
if any(v is None for v in [self.accuracy, self.classwise_accuracy, self.prediction_time]):
self.get_statistics(mtype)
logger.info(f"Parametric Model (case: {mtype}) for the {name} dataset")
logger.info(f"The overall accuracy is: {self.accuracy[mtype]:.4f}")
logger.info(f"The classwise accuracies are: {self.classwise_accuracy[mtype]}")
logger.info(f"Total time: {self.prediction_time[mtype]:.4f} sec(s)")
logger.info(f"|{'':^15}|{'Positive':^15}|{'Negative':^15}|", color='red')
logger.info(f"|{'Positive':^15}|{self.tp[mtype]:^15}|{self.fn[mtype]:^15}|", color='red')
logger.info(f"|{'Negative':^15}|{self.fp[mtype]:^15}|{self.tn[mtype]:^15}|", color='red')
@staticmethod
def save_pickle(var: Any, case: str, extra_name: str = ''):
path = f'data/bayesian/bayesian_{case}_case_{extra_name}_predicted.pickle'
with open(path, 'wb') as handle:
pickle.dump(var, handle, protocol=pickle.HIGHEST_PROTOCOL)
# Logistic Regression Algorithm
class Log_Reg:
def __init__(self, learning_rate, iters):
self.learning_rate = learning_rate
self.iters = iters
self.weights, self.bias = None, None
def predict(self, X, threshold):
linear_pred = (np.dot(X, self.weights) + self.bias)
probabilities = 1 / (1 + np.exp(-1 * linear_pred))
return [1 if i > threshold else 0 for i in probabilities]
def fit(self, X, y):
self.weights = np.zeros(X.shape[1])
self.bias = 0
for i in range(self.iters):
linear_pred = np.dot(X, self.weights) + self.bias
probability = 1 / (1 + np.exp(-1 * linear_pred))
partial_w = (1 / X.shape[0]) * (2 * np.dot(X.T, (probability - y)))
partial_d = (1 / X.shape[0]) * (2 * np.sum(probability - y))
self.weights -= self.learning_rate * partial_w
self.bias -= self.learning_rate * partial_d
def F1_score_func(self, actual, pred):
self.cm = confusion_matrix(actual, pred)
accuracy = (self.cm[0, 0] + self.cm[1, 1]) / self.cm.sum()
precision = self.cm[1, 1] / (self.cm[1, 1] + self.cm[0, 1])
sensitivity = self.cm[1, 1] / (self.cm[1, 1] + self.cm[1, 0])
F1_Score = (2 * precision * sensitivity) / (precision + sensitivity)
self.F1_Score = F1_Score
self.accuracy = accuracy
def evaluation(self, preds, actual):
# self.cm = confusion_matrix(actual, preds)
accuracy = accuracy_score(actual, preds)
pt = PrettyTable(['Logistic Regression', 'Accuracy', 'Sensitivity',
'Specificity', 'Precision', 'F1 Score'])
pt.add_row(['Evaluation', accuracy,
self.cm[1, 1] / (self.cm[1, 1] + self.cm[1, 0]),
self.cm[0, 0] / (self.cm[0, 1] + self.cm[0, 0]),
self.cm[1, 1] / (self.cm[1, 1] + self.cm[0, 1]),
self.F1_Score])
print(self.cm, '\n\n', pt)
# Implementation of neural network
class MultiLayerPerceptron:
""" Multi Layer Perceptron Model. """
n_layers: int
units: List[int]
biases: List[np.ndarray]
weights: List[np.ndarray]
activation: List[Union[None, Callable]]
activation_derivative: List[Union[None, Callable]]
loss_functions: List[Callable]
loss_function_derivatives: List[Callable]
def __init__(self, units: List[int], activations: List[str], loss_functions: Iterable[str],
symmetric_weights: bool = True, seed: int = None) -> None:
"""
g = activation function
z = w.T @ a_previous + b
a = g(z)
"""
if seed:
np.random.seed(seed)
self.units = units
# logger.info(f"Units per Layer: {self.units}")
self.n_layers = len(self.units)
activations = ['linear' if activation_str is None else activation_str
for activation_str in activations]
self.activation = [getattr(self, activation_str)
for activation_str in activations]
self.activation_derivative = [getattr(self, f"{activation_str}_derivative")
for activation_str in activations]
self.loss_functions = [getattr(self, loss_function) for loss_function in loss_functions]
self.loss_function_derivatives = [getattr(self, f"{loss_function}_derivative")
for loss_function in loss_functions]
self.initialize_weights(symmetric_weights)
def initialize_weights(self, symmetric_weights: bool):
if symmetric_weights:
self.biases = [np.random.randn(y, 1) for y in self.units[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(self.units[:-1], self.units[1:])]
else:
self.biases = [np.random.rand(y, 1) for y in self.units[1:]]
self.weights = [np.random.rand(y, x) for x, y in zip(self.units[:-1], self.units[1:])]
# logger.info(f"Shapes of biases: {[bias.shape for bias in self.biases]}")
# logger.info(f"Shapes of weights: {[weights.shape for weights in self.weights]}")
def train(self, data: np.ndarray, one_hot_y: np.ndarray,
batch_size: int = 1, lr: float = 0.01, momentum: float = 0.0,
max_epochs: int = 1000, early_stopping: Dict = None,
shuffle: bool = False, regularization_param: float = 0.0,
debug: Dict = None, save_data: bool = False,
min_epoch: int = 1) -> Tuple[List, List, List]:
# Set Default values
if not debug:
debug = {'epochs': 10 ** 10, 'batches': 10 ** 10,
'ff': False, 'bp': False, 'w': False, 'metrics': False}
# Lists to gather accuracies and losses
accuracies = []
losses = []
times = []
# --- Train Loop --- #
# data_x, _ = self.x_y_split(data)
data_x = data
try:
for epoch in range(min_epoch, max_epochs + 1):
if epoch % debug['epochs'] == 0:
logger.info(f"Epoch: {epoch}", color="red")
show_epoch = True
else:
show_epoch = False
epoch_timeit = timeit(internal_only=True)
with epoch_timeit:
# Shuffle
if shuffle:
shuffle_idx = np.random.permutation(data_x.shape[0])
data_x = data_x[shuffle_idx, :]
one_hot_y = one_hot_y[shuffle_idx, :]
# Create Mini-Batches
train_batches = [(data_x[k:k + batch_size], one_hot_y[k:k + batch_size])
for k in range(0, data_x.shape[0], batch_size)]
# Run mini-batches
for batch_ind, (x_batch, one_hot_y_batch) in enumerate(train_batches):
batch_ind += 1
if show_epoch and batch_ind % debug['batches'] == 0:
logger.info(f" Batch: {batch_ind}", color='yellow')
self.run_batch(batch_x=x_batch, batch_y=one_hot_y_batch, lr=lr,
momentum=momentum,
regularization_param=regularization_param, debug=debug)
# Calculate Batch Accuracy and Losses
if show_epoch and batch_ind % debug['batches'] == 0:
accuracy, _ = self.accuracy(data_x, one_hot_y, debug)
batch_losses = self.total_loss(data_x, one_hot_y, regularization_param,
debug)
self.print_stats(batch_losses, accuracy, data_x.shape[0], ' ')
epoch_time = epoch_timeit.total
# Gather Results
times.append(epoch_time)
accuracy, _ = self.accuracy(data_x, one_hot_y, debug)
epoch_losses = self.total_loss(data_x, one_hot_y, regularization_param, debug)
accuracies.append(accuracy / data_x.shape[0])
losses.append(epoch_losses)
if save_data:
self.save_model(epoch, accuracies, losses, times)
# Calculate Epoch Accuracy and Losses
if show_epoch:
self.print_stats(epoch_losses, accuracy, data_x.shape[0], ' ')
if early_stopping:
if 'max_accuracy' in early_stopping and epoch > early_stopping['wait']:
recent_accuracy = accuracies[-1]
if recent_accuracy >= early_stopping['max_accuracy']:
logger.info(f"Early stopping (Max acc): "
f"{recent_accuracy} = {early_stopping['max_accuracy']}",
color='yellow')
break
if 'accuracy' in early_stopping and epoch > early_stopping['wait']:
recent_accuracy = accuracies[-1] * data_x.shape[0]
previous_accuracy = accuracies[-2] * data_x.shape[0]
if recent_accuracy - previous_accuracy < early_stopping['accuracy']:
logger.info(f"Early stopping (acc): {recent_accuracy}-{previous_accuracy}"
f" = {(recent_accuracy - previous_accuracy)} < "
f"{early_stopping['accuracy']}", color='yellow')
break
if 'loss' in early_stopping and epoch > early_stopping['wait']:
if losses[-1][0][1] - losses[-2][0][1] < early_stopping['loss']:
print(losses[-1][0][1], losses[-2][0][1])
logger.info(f"Early stopping (loss): "
f"{losses[-1][0][1]:5f}-{losses[-2][0][1]:5f} = "
f"{(losses[-1][0][1] - losses[-2][0][1]):5f} < "
f"{early_stopping['loss']}", color='yellow')
break
except KeyboardInterrupt:
logger.warn(f"Forcefully stopped after epoch {epoch - 1}")
if len(accuracies) > 0:
logger.info(f"Finished after {epoch} epochs", color='red')
logger.info(f"Avg epoch time: {sum(times) / len(times):.4f} sec(s)", color='yellow')
logger.info(f"Accumulated epoch time: {sum(times):.4f} sec(s)", color='yellow')
self.print_stats(epoch_losses, accuracy, data_x.shape[0], '')
return accuracies, losses, times
def test(self, data: np.ndarray, one_hot_y: np.ndarray, debug: Dict = None) \
-> Tuple[float, np.ndarray]:
if not debug:
debug = {'epochs': 10 ** 10, 'batches': 10 ** 10,
'ff': False, 'bp': False, 'w': False, 'metrics': False}
# data_x, _ = self.x_y_split(data)
data_x = data
accuracy, predictions = self.accuracy(data_x, one_hot_y, debug)
accuracy /= data_x.shape[0]
return accuracy, predictions
@staticmethod
def print_stats(losses, accuracy, size, padding):
for loss_type, loss in losses:
logger.info(f"{padding}{loss_type} Loss: {loss:.5f}")
logger.info(f"{padding}Accuracy: {accuracy}/{size}")
def run_batch(self, batch_x: np.ndarray, batch_y: np.ndarray, lr: float,
momentum: float, regularization_param: float, debug: Dict):
for batch_iter, (row_x, row_y) in enumerate(zip(batch_x, batch_y)):
row_x, row_y = row_x[np.newaxis, :], row_y[:, np.newaxis]
z, a = self.feed_forward(row_x, debug)
dw_, db_ = self.back_propagation(row_y, z, a, debug)
if batch_iter == 0:
dw = dw_
db = db_
else:
dw = list(map(np.add, dw, dw_))
db = list(map(np.add, db, db_))
self.update_weights_and_biases(dw, db, lr, momentum, batch_iter + 1,
regularization_param, debug)
def feed_forward(self, batch_x: np.ndarray, debug: Dict = None) -> \
Tuple[List[np.ndarray], List[np.ndarray]]:
if debug is None:
debug = {'ff': False}
z_ = batch_x.T
z = [z_]
a_ = z_
a = [a_]
for l_ind, layer_units in enumerate(self.units[1:]):
z_ = self.weights[l_ind] @ a_ + self.biases[l_ind] # a_ -> a_previous
z.append(z_)
a_ = self.activation[l_ind](z_)
a.append(a_)
if debug['ff']:
if l_ind == 0:
logger.info(" Feed Forward", color="cyan")
logger.info(f" Layer: {l_ind}, units: {layer_units}", color="magenta")
logger.info(f" z{z_.T} = w[{l_ind}]{self.weights[l_ind]} @ a_ + "
f"b[{l_ind}]{self.biases[l_ind].T}")
logger.info(f" a{a_.T} = g[{l_ind}](z{z_.T})")
return z, a
def back_propagation(self, batch_y: np.ndarray, z: List[np.ndarray], a: List[np.ndarray],
debug: Dict) -> Tuple[List[np.ndarray], List[np.ndarray]]:
db = []
dw = []
# Calculate back propagation input which is da of last layer
da = self.loss_function_derivatives[0](z[-1], a[-1], batch_y)
for l_ind, layer_units in list(enumerate(self.units))[-1:0:-1]: # layers: last->2nd
g_prime = self.activation_derivative[l_ind - 1](z[l_ind])
try:
dz = da * g_prime
except Exception as e:
print("l_ind: ", l_ind)
print("layer_units: ", layer_units)
print("da: ", da)
print("g_prime: ", g_prime)
raise e
db_ = dz
dw_ = dz @ a[l_ind - 1].T
da = self.weights[l_ind - 1].T @ dz # To be used in the next iteration (previous layer)
db.append(db_)
dw.append(dw_)
if debug['bp']:
if layer_units == self.units[-1]:
logger.info(" Back Propagation", color="cyan")
logger.info(f" Layer: {l_ind}, units: {layer_units}", color="magenta")
logger.info(f" g_prime{g_prime.shape} = activation_derivative[{l_ind - 1}]"
f"(z[{l_ind}]{z[l_ind].shape})"
f"{self.activation_derivative[l_ind - 1](z[l_ind]).shape} =\n"
f"\t\t\t\t\t\t\t{g_prime.T}")
logger.info(f" dz{dz.shape} = da{da.shape} * g_prime{g_prime.shape}")
logger.info(f" db{db_.shape} = dz{dz.shape}")
logger.info(f" dw = dz{dz.shape} @ a[{l_ind - 1}]{a[l_ind - 1].shape}")
logger.info(f" da{da.shape} = self.weights[{l_ind - 1}].T"
f"{self.weights[l_ind - 1].T.shape} @ dz{dz.shape} = \n"
f"\t\t\t\t\t\t\t{da.T}")
dw.reverse()
db.reverse()
return dw, db
def update_weights_and_biases(self, dw: List[np.ndarray], db: List[np.ndarray],
lr: float, momentum: float, batch_size: int,
regularization_param: float, debug: Dict) -> None:
for l_ind, layer_units in enumerate(self.units[:-1]):
# self.weights[l_ind] -= (lr / batch_size) * dw[l_ind]
self.weights[l_ind] = (1 - lr * (regularization_param / batch_size)) * self.weights[
l_ind] - (lr / batch_size) * dw[l_ind] + momentum * self.weights[l_ind]
self.biases[l_ind] -= (lr / batch_size) * db[l_ind]
if debug['w']:
if l_ind == 0:
logger.info(" Update Weights", color="cyan")
logger.info(f" Layer: {l_ind}, units: {layer_units}", color="magenta")
logger.info(f" w({self.weights[l_ind].shape}) -= "
f"({lr}/{batch_size}) * dw({dw[l_ind].shape}")
logger.info(f" b({self.weights[l_ind].shape}) -= "
f"({lr}/{batch_size}) * db({db[l_ind].shape}")
def save_model(self, epoch, accuracies, losses, times):
self.save_pickle(var=self, path=f'data/bpnn/model_train_{epoch}.pickle')
self.save_pickle(var=accuracies, path=f'data/bpnn/accuracies_train_{epoch}.pickle')
self.save_pickle(var=losses, path=f'data/bpnn/losses_train_{epoch}.pickle')
self.save_pickle(var=times, path=f'data/bpnn/times_train_{epoch}.pickle')
@staticmethod
def save_pickle(var: Any, path: str):
with open(path, 'wb') as handle:
pickle.dump(var, handle, protocol=pickle.HIGHEST_PROTOCOL)
@classmethod
def load_model_instance(cls, epoch: int):
model = cls.load_pickle(f'data/bpnn/model_train_{epoch}.pickle')
accuracies = cls.load_pickle(f'data/bpnn/accuracies_train_{epoch}.pickle')
losses = cls.load_pickle(f'data/bpnn/losses_train_{epoch}.pickle')
times = cls.load_pickle(f'data/bpnn/times_train_{epoch}.pickle')
return model, accuracies, losses, times
@staticmethod
def load_pickle(path: str) -> Any:
with open(path, 'rb') as handle:
var = pickle.load(handle)
return var
@staticmethod
def linear(z):
return z
linear_derivative = linear
@staticmethod
def sigmoid(z):
"""The sigmoid function."""
z = np.clip(z, -500, 500) # Handle np.exp overflow
a = 1.0 / (1.0 + np.exp(-z))
return a
@classmethod
def sigmoid_derivative(cls, a):
"""Derivative of the sigmoid function."""
return cls.sigmoid(a) * (1 - cls.sigmoid(a))
@staticmethod
def relu(z):
return np.maximum(0.0, z).astype(z.dtype)
@staticmethod
def relu_derivative(a):
return (a > 0).astype(a.dtype)
@staticmethod
def tanh(z):
""" Should use different loss. """
return np.tanh(z)
@staticmethod
def tanh_derivative(a):
""" Should use different loss. """
return 1 - a ** 2
@staticmethod
def softmax(z):
# y = np.exp(z - np.max(z))
# a = y / np.sum(np.exp(z))
from scipy.special import softmax
a = softmax(z)
return a
softmax_derivative = sigmoid_derivative
@staticmethod
def classify(y: np.ndarray) -> np.ndarray:
total = y.shape[0]
prediction = np.zeros(total)
prediction[y.argmax()] = prediction[y.argmax()] = 1
return prediction
def predict(self, x: Iterable[np.ndarray], debug: bool = False) -> \
Tuple[List[np.ndarray], List[np.ndarray]]:
y_predicted = []
y_raw_predictions = []
for x_row in x:
if debug:
logger.info(f" x_row: {x_row[:20].T}", color='white')
x_row = x_row[np.newaxis, :]
z, a = self.feed_forward(x_row)
prediction_raw = a[-1]
prediction = self.classify(prediction_raw)
if debug:
logger.info(f" prediction_raw: {prediction_raw.T}")
logger.info(f" prediction: {prediction}")
y_raw_predictions.append(prediction_raw)
y_predicted.append(prediction)
return y_predicted, y_raw_predictions
def accuracy(self, data_x: np.ndarray, data_y: np.ndarray,
debug: Dict) -> Tuple[int, np.ndarray]:
if debug['metrics']:
logger.nl()
logger.info('Accuracy', color='cyan')
predictions, _ = self.predict(data_x, debug=debug['metrics'])
result_accuracy = sum(int(np.array_equal(pred.astype(int), true.astype(int)))
for (pred, true) in zip(predictions, data_y))
if debug['metrics']:
logger.info(f'result_accuracy: {result_accuracy}')
return result_accuracy, np.stack(predictions, axis=0)
def total_loss(self, data_x: np.ndarray, data_y: np.ndarray, regularization_param: float,
debug: Dict) -> List[Tuple[str, float]]:
if debug['metrics']:
logger.nl()
logger.info('Total Loss', color='cyan')
predictions, predictions_raw = self.predict(data_x, debug['metrics'])
mean_costs = [0.0 for _ in range(len(self.loss_functions))]
for ind, prediction_raw in enumerate(predictions_raw):
current_y = data_y[ind]
for loss_ind, loss_func in enumerate(self.loss_functions):
mean_costs[loss_ind] += loss_func(prediction_raw, current_y) / len(predictions_raw)
mean_costs[loss_ind] += 0.5 * (regularization_param / len(predictions_raw)) * sum(
np.linalg.norm(w) ** 2
for w in self.weights)
if debug['metrics']:
logger.info(f'ind: {ind}, prediction_raw: {prediction_raw.T}, current_y: {current_y}')
costs_with_names = []
for loss_ind, loss_func in enumerate(self.loss_functions):
costs_with_names.append((loss_func.__name__, 1.0 / len(data_y) * mean_costs[loss_ind]))
if debug['metrics']:
logger.info(f'Mean Costs: {mean_costs}')
return costs_with_names
@staticmethod
def cross_entropy(a, y):
return np.sum(np.nan_to_num(-y * np.log(a + 1e-15) - (1 - y) * np.log(1 - a + 1e-15)))
@staticmethod
def cross_entropy_derivative(z, a, y):
return a - y
@staticmethod
def mse(a, y):
return np.sum((a - y) ** 2)
mse_derivative = cross_entropy_derivative
@staticmethod
def x_y_split(dataset: np.ndarray) -> Tuple[np.array, np.array]:
return dataset[:, :-1], dataset[:, -1][:, np.newaxis].astype(int)
@staticmethod
def two_classes_split(dataset: np.ndarray) -> Tuple[np.array, np.array]:
data_x_c1_idx = dataset[:, -1] == 0
data_x_c1 = dataset[data_x_c1_idx][:, :-1]
data_x_c2_idx = dataset[:, -1] == 1
data_x_c2 = dataset[data_x_c2_idx][:, :-1]
return data_x_c1, data_x_c2
def train_bpnn(name, dataset, targets, hidden_layers, activations, loss_functions, lr, momentum,
batch_size, early_stopping, max_epochs, regularization_param, shuffle,
symmetric_weights, seed, debug, save_data=False):
logger.nl()
logger.info(f"Training {name} dataset..")
# Number of units per layer
n_units = [int(dataset.shape[1]), *hidden_layers, int(targets.shape[1])]
logger.info(n_units)
# Initialize Model
mlp_model = MultiLayerPerceptron(units=n_units, activations=activations,
symmetric_weights=symmetric_weights,
loss_functions=loss_functions, seed=seed)
# Train
accuracies, losses, times = mlp_model.train(data=dataset, one_hot_y=targets,
batch_size=batch_size, lr=lr, momentum=momentum,
shuffle=shuffle, max_epochs=max_epochs,
early_stopping=early_stopping,
regularization_param=regularization_param,
debug=debug, save_data=save_data)
return mlp_model, accuracies, losses, times
def test_and_plot_bpnn(title, test_set=None, one_hot_targets=None, model=None, accuracies=None,
losses=None,
times=None,
subsample=1, min_acc: float = 0.0, save_predictions: bool = False):
import types
# Test the full dataset
if isinstance(test_set, float):
test_accuracy = test_set
elif test_set is None:
test_accuracy = None
else:
model.predict = types.MethodType(MultiLayerPerceptron.predict, model)
test_accuracy, predictions_onehot = model.test(test_set.copy(), one_hot_targets.copy())
if save_predictions:
path = f'data/bpnn'
path_pred = f'{path}/predicted_y.pickle'
path_pred_onehot = f'{path}/predicted_onehot_y.pickle'
predictions = one_hot_unencode(predictions_onehot)
MultiLayerPerceptron.save_pickle(var=predictions, path=path_pred)
MultiLayerPerceptron.save_pickle(var=predictions_onehot, path=path_pred_onehot)
# Plot
plot_bpnn_results(title=title,
test_accuracy=test_accuracy,
accuracies=accuracies,
losses=losses,
times=times,
subsample=subsample, min_acc=min_acc)
# Implementation of kmeans clustering algorithm
class kmeans:
def __init__(self, X_train, max_iter=1000, k=2, dist='euclidean'):
self.X = X_train
self.k = k
self.max_iter = max_iter
self.centroids = []
self.switch = []
self.epoch = []
self.dist = dist
def fit(self):
np.random.seed(42)
idx = np.random.choice(len(self.X), self.k, replace=False)
centroids = self.X[idx, :]
pre_labels = np.argmin(distance.cdist(self.X, centroids, self.dist), axis=1)
for itr in range(self.max_iter):
tmp_centroids = []
for i in range(self.k):
# handle the case for orphan centroids
if self.X[pre_labels == i, :].shape[0] == 0:
tmp_centroids.append(centroids[i])
# print("orphan i ",i)
else:
tmp_centroids.append(self.X[pre_labels == i, :].mean(axis=0))
# centroids = np.vstack([self.X[pre_labels==i,:].mean(axis=0) for i in range(self.k)])
centroids = np.vstack(tmp_centroids)
current_labels = np.argmin(distance.cdist(self.X, centroids, self.dist), axis=1)
# print(itr, end=" ")
# print("swaps ", 100 * ( 1-(sum(pre_labels==current_labels)/len(pre_labels)) ) )
self.switch.append(100 * (1 - (sum(pre_labels == current_labels) / len(pre_labels))))
self.epoch.append(itr + 2)
if np.array_equal(pre_labels, current_labels):
break
pre_labels = current_labels
# print("epochs ",len(self.epoch))
self.centroids = centroids
@staticmethod
def classification_report(y_true, y_pred):
tn_00 = sum(y_pred[y_true == 0] == y_true[y_true == 0]) # true negatives
tp_11 = sum(y_pred[y_true == 1] == y_true[y_true == 1]) # true positives
fp_01 = sum(y_true == 0) - tn_00 # false positives
fn_10 = sum(y_true == 1) - tp_11 # false negatives
# confusion_matrix = np.array([[tn_00, fp_01], [fn_10, tp_11]])
class_0_accuracy = 100.0 * sum(y_pred[y_true == 0] == y_true[y_true == 0]) / sum(y_true == 0)
class_1_accuracy = 100.0 * sum(y_pred[y_true == 1] == y_true[y_true == 1]) / sum(y_true == 1)
# print("Kmeans Classification Report:")
print(f"Overall Accuracy: {round(100.0 * accuracy_score(y_true, y_pred), 2)} %")
print(f"F1-Score: {round(f1_score(y_true, y_pred), 3)}")
print(f"F1-Score Macro: {round(f1_score(y_true, y_pred, average='macro'), 3)}")
print(f"Class 0 accuracy: {round(class_0_accuracy, 2)} %")
print(f"Class 1 accuracy: {round(class_1_accuracy, 2)} %")
print("Confusion Matrix:")
confusion_matrix = PrettyTable(['', 'Predicted 0', 'Predicted 1', 'Total'])
confusion_matrix.add_row(['Actual 0', tn_00, fp_01, tn_00 + fp_01])
confusion_matrix.add_row(['Actual 1', fn_10, tp_11, fn_10 + tp_11])
confusion_matrix.add_row(
['Total', tn_00 + fn_10, fp_01 + tp_11, tn_00 + fn_10 + fp_01 + tp_11])
print(confusion_matrix)
def predict(self, data, y_true):
y_pred = np.argmin(distance.cdist(data, self.centroids, 'euclidean'), axis=1)
if accuracy_score(y_true, y_pred) < 0.5:
y_pred = 1 - y_pred
return y_pred
def plot_membership_switches(self):
plt.figure(figsize=(10, 8))
plt.plot(self.epoch, self.switch)
plt.title('Kmeans: Samples Membership Changes vs. Epoch')
plt.xlabel("Epoch")
plt.ylabel("Membership Changes (%)")
plt.grid(True)
plt.show()
# functions used for classification with kNN
def accuracy_score_knn(y, y_model):
assert len(y) == len(y_model)
classn = len(np.unique(y)) # number of different classes
correct_all = y == y_model # all correctly classified samples
acc_overall = np.sum(correct_all) / len(y)
acc_i = [] # list stores classwise accuracy
for i in np.unique(y):
acc_i.append(np.sum(correct_all[y == i]) / len(y[y == i]))
return acc_i, acc_overall
def euclidean(x1, x2):
edist = np.sqrt(np.sum((x1 - x2) ** 2))
return edist
def kNN_distances(train, ytrain, test):
alldist = []
# Calculate distance between test samples and all samples in training set
for i in test: # Loop through all observations in test set
point_dist = [] # Array to store distances from each observation in test set
for j in range(len(train)): # Loop through each point in the training data
distances = euclidean(np.array(train[j, :]), i) # Calculate Euclidean distances
point_dist.append(distances) # Add distance to array
point_dist = np.array(point_dist)
alldist.append(point_dist)
alldist = np.array(alldist)
return alldist
def bestk(train, alldist, ytrain, ytest, k_opt):
accuracy_classwise = []
accuracy_overall = []
# Assessing accuracy for different values of k
for k in k_opt:
ypredict_knn = kNN(train, alldist, ytrain, ytest, k)
acc_i, acc_overall = accuracy_score_knn(ytest, ypredict_knn)
accuracy_overall.append(acc_overall)
accuracy_classwise.append(acc_i)
accuracy_overall = np.array(accuracy_overall) # List of overall accuracy values for each k
accuracy_classwise = np.array(accuracy_classwise) # List of classwise accuracy values for each k
# optimal k for maximizing overall accuracy
best_k_overall = k_opt[accuracy_overall.argmax()]
# best overall accuracy
best_acc_overall = accuracy_overall[accuracy_overall.argmax()]
# class 0 accuracy for k with best overall accuracy
class0_acc_overall = accuracy_classwise[accuracy_overall.argmax()][0]
# class 1 accuracy for k with best overall accuracy
class1_acc_overall = accuracy_classwise[accuracy_overall.argmax()][1]
# optimal k for maximizing class 0 accuracy
best_k_class0 = k_opt[accuracy_classwise[:, 0].argmax()]
# best class 0 accuracy
best_acc_class0 = accuracy_classwise[accuracy_classwise[:, 0].argmax()][0]
# overall accuracy for k with best class 0 accuracy
overall_acc_class0 = accuracy_overall[accuracy_classwise[:, 0].argmax()]
# class 1 accuracy for k with best class 0 accuracy
class1_acc_class0 = accuracy_classwise[accuracy_classwise[:, 0].argmax()][1]
# optimal k for maximizing class 1 accuracy
best_k_class1 = k_opt[accuracy_classwise[:, 1].argmax()]
# best class 1 accuracy
best_acc_class1 = accuracy_classwise[accuracy_classwise[:, 1].argmax()][1]
# overall accuracy for k with best class 1 accuracy
overall_acc_class1 = accuracy_overall[accuracy_classwise[:, 1].argmax()]
# class 1 accuracy for k with best class 0 accuracy
class0_acc_class1 = accuracy_classwise[accuracy_classwise[:, 1].argmax()][0]
# Combine values for maximizing overall accuracy
k_overall = [best_k_overall, best_acc_overall, class0_acc_overall, class1_acc_overall]
# Combine values for maximizing class 0 accuracy
k_class0 = [best_k_class0, best_acc_class0, overall_acc_class0, class1_acc_class0]
# Combine values for maximizing class 0 accuracy
k_class1 = [best_k_class1, best_acc_class1, overall_acc_class1, class0_acc_class1]
return k_opt, accuracy_overall, accuracy_classwise, k_overall, k_class0, k_class1
def kNN(train, alldist, ytrain, ytest, k):
ypredict = []
for i in range(len(alldist)):
dist = np.argsort(alldist[i])[:k] # Sort the array of distances and retain k points
labels = ytrain[dist] # Getting y-values for k nearest neighbors in training set
# Sort and use majority voting for different values of k
lab = np.bincount(labels).argmax() # Most frequent value in array
ypredict.append(lab)
return ypredict
# For evaluation with an sklearn confusion matrix:
def evaluate_cm(sklearn_cm, output):
accuracy = (sklearn_cm[0, 0] + sklearn_cm[1, 1]) / sklearn_cm.sum()
precision = sklearn_cm[1, 1] / (sklearn_cm[1, 1] + sklearn_cm[0, 1])
sensitivity = sklearn_cm[1, 1] / (sklearn_cm[1, 1] + sklearn_cm[1, 0])
specificity = sklearn_cm[0, 0] / (sklearn_cm[0, 0] + sklearn_cm[0, 1])
f1_score = (2 * precision * sensitivity) / (precision + sensitivity)
if output == 'PRINT':
print('accuracy: ', accuracy, 'precision: ', precision,
'sensitivity: ', sensitivity, 'specificity: ',
specificity, 'f1_score: ', f1_score)
elif output == 'RETURN':
return (accuracy, precision, sensitivity, specificity, f1_score)
# Winner-Take-All Code
# Accuracy for WTA
def accuracy_score_wta(y, y_model):
assert len(y) == len(y_model)
classn = len(np.unique(y)) # number of different classes
correct_all = y == y_model # all correctly classified samples
acc_overall = np.sum(correct_all) / len(y)
acc_i = [] # this list7 stores classwise accuracy
for i in np.unique(y):
acc_i.append(np.sum(correct_all[y == i]) / len(y[y == i]))
return acc_i, acc_overall, y, y_model