-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrls.py
43 lines (34 loc) · 1.55 KB
/
rls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from scipy import signal
class Rls:
#h is an orderx1 sized array
#f_factor is the forgetting factor
#delta is the initial value for P(0)
def __init__(self,order=5, f_factor = .97, delta=.5):
self.order = order
self.f_factor = f_factor
self.w = np.zeros((self.order,1),dtype=np.float32)
self.k = np.zeros((self.order,1),dtype=np.float32)
self.P = 1/delta * np.eye(self.order)
def train(self, x, desired):
#The size of x and desired must be the same
assert x.shape == desired.shape, "Shape of x, {0}, must be same as length of desired, {1}".format(x.shape, desired.shape)
assert x.shape[0] > self.order, "Length dim of x, {0}, must be greater than the lms filter order, {1}".format(x.shape, self.order)
for n in range(0,x.shape[0]-self.order):
x_n = np.array(x[n:n+self.order,...])
alpha = desired[n,...] - (np.transpose(x_n) @ self.w)
g = self.P*np.conj(x_n)*np.linalg.pinv(self.f_factor + np.transpose(x_n)*self.P*np.conj(x_n))
self.P = 1/self.f_factor*self.P-g*np.transpose(x_n)/self.f_factor*self.P
self.w = self.w + alpha*g
return None
def filter(self, x):
return signal.lfilter(self.w[:,0], 1, x[:,0])
def get_taps(self):
return self.w
def reset_taps(self):
self.h = np.zeros((self.order,1))
def set_f_factor(self, f_factor : float):
self.f_factor = f_factor
def set_order(self, order : int):
self.order = order
self.reset_taps()