-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
executable file
·220 lines (167 loc) · 6.46 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions. The sequence must
be composed of legal moves
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s,s,w,s,w,w,s,w]
def gen_search(problem, frontier, heuristic=None):
"""Nodes are stored in frontier, and take the following form:
(state, actions, cost)
where state is the state we got from getSuccessors,
actions is a list of the actions to get to the state from the start,
and cost is an integer
"""
def getNodePathCost(search_node):
"""Returns the cost of a search node (dude popped out of
getSuccessors function)"""
return search_node[2]
def getNodeState(search_node):
"""Returns the search state of the passed node"""
return search_node[0]
def getNodePrnt(search_node):
return search_node[3]
def getNodeAction(search_node):
"""Returns the actions needed to reach a given node from its parent"""
return search_node[1]
def getNodeDirs(search_node):
"""Returns the directions of an associated node"""
startState = problem.getStartState()
directions = []
current_node = search_node
while (getNodeState(current_node) != startState):
directions.append(getNodeAction(current_node))
current_node = getNodePrnt(current_node)
directions.reverse()
return directions
def makeNewNode(successor, parent):
"""Takes in a successor triple and a search node from frontier, and returns a new frontier type node
a successor triple is: (state, action, stepCost)
where action is the step to get there from parent,
stepCost is the incremental cost"""
succ_state = successor[0]
succ_par = parent
succ_dir = successor[1]
succ_cost = getNodePathCost(parent) + successor[2]
return (succ_state, succ_dir, succ_cost, succ_par)
def isNewNode(state, cost):
return state not in explored and (state not in front_dict or front_dict[state] < cost)
startState = problem.getStartState()
startNode = (startState, None, 0, None)
frontier.push(startNode)
# stores: (state: 0)
explored = {}
# this guy stores: (state: cost)
front_dict = {}
front_dict[startState] = 0
while(True):
if frontier.isEmpty():
print "No solution found!"
return None
currentNode = frontier.pop()
if (problem.isGoalState(getNodeState(currentNode))):
break
explored[getNodeState(currentNode)] = 0
for successor in problem.getSuccessors(getNodeState(currentNode)):
newNode = makeNewNode(successor, currentNode)
if isNewNode(getNodeState(newNode), getNodePathCost(newNode)):
frontier.push(newNode)
front_dict[getNodeState(newNode)] = getNodePathCost(newNode)
return getNodeDirs(currentNode)
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first
[2nd Edition: p 75, 3rd Edition: p 87]
Your search algorithm needs to return a list of actions that reaches
the goal. Make sure to implement a graph search algorithm
[2nd Edition: Fig. 3.18, 3rd Edition: Fig 3.7].
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
"""
frontier = util.Stack()
return gen_search(problem, frontier)
def breadthFirstSearch(problem):
"""
Search the shallowest nodes in the search tree first.
[2nd Edition: p 73, 3rd Edition: p 82]
"""
"*** YOUR CODE HERE ***"
frontier = util.Queue()
return gen_search(problem, frontier)
def uniformCostSearch(problem):
"Search the node of least total cost first. "
"*** YOUR CODE HERE ***"
def getPriority(searchNode):
"""Returns the priority of a search node"""
return searchNode[2]
frontier = util.PriorityQueueWithFunction(getPriority)
return gen_search(problem, frontier)
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"Search the node that has the lowest combined cost and heuristic first."
"*** YOUR CODE HERE ***"
def getPriority(searchNode):
cost = searchNode[2] + heuristic(searchNode[0], problem)
# print "Cost of checked node: ", cost
# print "Total cost of inserted node: ", cost
return cost
frontier = util.PriorityQueueWithFunction(getPriority)
return gen_search(problem, frontier, heuristic)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch