-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasinmodes.m
242 lines (184 loc) · 5.96 KB
/
basinmodes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
load(MESH_FILE);
StartUp2D; %had to tweak NODETOL in this - apparently 1e-12 is too small.
BuildBCMaps2D;
for ii=1:NUM_H_REFINES
refineflag= ones(K,1);
Hrefine2D(refineflag);
StartUp2D;
end
%interpolate bathymetry profile to unstructured mesh.
if ANALYTIC_DEPTH == false
H = interp2(depthdata.x,depthdata.y,depthdata.H,x,y,'linear');
else
H = H_analytic(x, y);
end
if ~isempty(find(vmapP==0, 1))
disp('vmapP is bad node map, try relaxing NODETOL in StartUp2D');
return;
end
A = dgint(ones(Np,K),V,J); %first, get the area of our basin by integrating '1'.
Hbar = (1/A)*dgint(H,V,J); %basin mean depth
if USEMEANDEPTH == true
H = Hbar*ones(Np,K);
end
c02 = g*Hbar;
c0 = sqrt(c02);
h = H/Hbar; %non-dimensionalized depth
hinv = 1./h; %need this for the Dirichlet problem.
%Build Laplacian operator with Neuman BC's (assumes mesh has boundaries set
%to Wall or Neuman)
[OpNeu,MM] = PoissonIPDG2Dsdd_eig(h);
[efuns,d,convflag]=eigs(OpNeu,MM,numpot+1,'SM');
if convflag ~= 0
disp('eigenvalues didn''t converged! (normal laplacian operator)');
end
d= diag(d);
[lambda,inds] = sort(d,'ascend');
efuns = efuns(:,inds);
%get rid of mode zero
lambda = lambda(2:end);
efuns = efuns(:,2:end);
phi = cell(numpot,1); %Allocate cell array for homogenous Neuman eigenfns
disp('checking normalization of phis...');
for jj=1:numpot
phitmp = efuns(:,jj);
phi{jj} = reshape(phitmp,Np,K);
%normalize eigenfunction
alpha = dgint(phi{jj}.*phi{jj},V,J);
phi{jj} = phi{jj}/sqrt(alpha);
phi{jj} = phi{jj}*(sqrt(A)*c0*Hbar)/sqrt(lambda(jj));
disp(['Rel. error in normalization: ' num2str((lambda(jj)*dgint(phi{jj}.*phi{jj},V,J)-A*c02*Hbar^2)/(A*c02*Hbar^2))]); %works good
end
disp('done check.');
%Build Laplacian operator with Dirichlet BC's
ids = find(BCType == Wall | BCType == Neuman);
BCType(ids) = Dirichlet;
[OpDir,MM] = PoissonIPDG2Dsdd_eig(hinv);
[efuns,d,convflag] = eigs(OpDir,MM,numstrm,'SM');
if convflag ~= 0
disp('eigenvalues didn''t converged! (normal laplacian operator)');
end
d= diag(d);
oldd =d;
[mu,inds] = sort(d,'ascend');
efuns = efuns(:,inds);
disp('checking normalization of psis...');
psi = cell(numstrm,1); %Allocate cell array for homogenous Dirichlet eigenfns
for jj=1:numstrm
psitmp = efuns(:,jj);
psi{jj} = reshape(psitmp,Np,K);
%normalize eigenfunction
alpha = dgint(psi{jj}.*psi{jj},V,J);
psi{jj} = ((sqrt(A)*c0*Hbar)/sqrt(alpha)/sqrt(mu(jj))).*psi{jj};
disp(['Rel. error in normalization: ' num2str((mu(jj)*dgint(psi{jj}.*psi{jj},V,J)-A*c02*Hbar^2)/(A*c02*Hbar^2))]); %works good
end
%Now construct irrotational and solenoidal basis functions
%vphi_j = - grad phi_j, and vpsi_j = hinv (khat cross grad psi_j) .
vphix = cell(numpot,1);
vphiy = cell(numpot,1);
dphi = zeros(3*Nfp,K);
for jj = 1:numpot
phitmp = phi{jj};
[phi_x,phi_y] = Grad2D(phitmp);
%Surface integral contributions to gradient.
%(Not sure if this is necessarily needed or not)
dphi(:) = phitmp(vmapM) - phitmp(vmapP);
fluxphix =nx.*(dphi/2); fluxphiy =ny.*(dphi/2);
vphix{jj} = (phi_x - LIFT*(Fscale.*fluxphix));
vphiy{jj} = (phi_y - LIFT*(Fscale.*fluxphiy));
end
%now solenoidal:
%vpsix = hinv (-psi_y) , vpsiy = hinv (psi_x)
vpsix = cell(numstrm,1);
vpsiy = cell(numstrm,1);
dpsi = zeros(3*Nfp,K);
for jj=1:numstrm
psitmp = psi{jj};
[psi_x,psi_y] = Grad2D(psitmp);
%Surface integral contributions to gradient.
dpsi(:) = psitmp(vmapM) - psitmp(vmapP);
fluxpsix = nx.*(dpsi/2); fluxpsiy = ny.*(dpsi/2);
psi_x = psi_x - LIFT*(Fscale.*fluxpsix);
psi_y = psi_y - LIFT*(Fscale.*fluxpsiy);
vpsix{jj} = psi_x;
vpsiy{jj} = psi_y;
end
%Compute constant coefficients (as in Rao&Schwab 1976)
nu = sqrt(c02.*lambda);
a = zeros(numpot,numpot); b = zeros(numpot,numstrm);
d = zeros(numstrm,numstrm);
%compute 'a' matrix:
for ii=1:numpot
for jj=1:numpot
aintegrand = -f.*(1/c02/A/(Hbar.^2)).*h.*(-vphix{ii}.*vphiy{jj} + vphiy{ii}.*vphix{jj});
a(ii,jj) = dgint(aintegrand,V,J);
end
end
%compute 'b' matrix:
for ii=1:numpot
for jj=1:numstrm
bintegrand = -f.*(1/c02/A/(Hbar.^2)).*(vphix{ii}.*vpsix{jj} + vphiy{ii}.*vpsiy{jj});
b(ii,jj) = dgint(bintegrand,V,J);
end
end
%get 'c' matrix, using the symmetry:
c = -b';
%compute 'd' matrix
for ii=1:numstrm
for jj=1:numstrm
dintegrand = f.*(1/c02/A/(Hbar.^2)).*hinv.*(-vpsiy{ii}.*vpsix{jj} + vpsiy{jj}.*vpsix{ii});
d(ii,jj) = dgint(dintegrand,V,J);
end
end
disp('checking coefficients symmetries');
norm(a+a',2)
norm(c+b',2)
norm(d+d',2)
disp('done.');
nudiag = diag(nu);
finalMat = 1i*[-a -b -nudiag;
-c -d zeros(numstrm,numpot);
nudiag zeros(numpot,numstrm) zeros(numpot,numpot)];
%Sanity check: is finalMat hermitian?
[efuns,myeigs] = eig(finalMat);
myeigs = diag(myeigs);
[dump,inds] = sort(abs(myeigs),'ascend'); %sort by absolute frequency.
myeigs = myeigs(inds);
periods = 2*pi./myeigs;
periods = periods/3600
scaledeigs = myeigs/f;
efuns = efuns(:,inds);
nummodes=2*numpot+1*numstrm;
potential = cell(nummodes,1);
streamfcn = cell(nummodes,1);
eta = cell(nummodes,1);
for jj=1:nummodes
potential{jj} = zeros(Np,K);
eta{jj} = zeros(Np,K);
for kk=1:numpot
potential{jj} = potential{jj} + efuns(kk,jj)*phi{kk};
eta{jj} = eta{jj} + efuns(kk+numpot+numstrm,jj)*(sqrt(lambda(kk))/c0)*phi{kk};
end
end
for jj=1:nummodes
streamfcn{jj} = zeros(Np,K);
for kk=1:numstrm
streamfcn{jj} = streamfcn{jj} + efuns(kk+numpot,jj)*psi{kk};
end
end
%Plot the first 4 gravity modes.
figure(1); clf; colormap(darkjet);
start=numstrm+1;
for jj=1:2:8
subplot(2,2,ceil(jj/2));
PlotField2D(N,x,y,real(eta{jj+start}));
view([0 90]);
axis equal;
axis tight;
colorbar;
title(['T= ' num2str(2*pi/abs(myeigs(jj+start))/3600) ' h']);
drawnow;
end
if DUMP_TO_FILE == true
save('basinmodes_output.mat');
end