MET Nightly build
[bookmark: _Hlk483172806]

	
MET Nightly build
Version 1.0

Code analysis

	
By: met

2023-01-11

Content
Content	1
Introduction	2
Configuration	2
Synthesis	3
Analysis Status	3
Quality gate status	3
Metrics	3
Tests	3
Detailed technical debt	3
Metrics Range	5
Volume	5
Issues	6
Charts	6
Issues count by severity and type	8
Issues List	8
Security Hotspots	9
Security hotspots count by category and priority	9
Security hotspots List	9

[bookmark: _Toc481744297][bookmark: _Toc97156259]Introduction
This document contains results of the code analysis of MET Nightly build.

[bookmark: _Toc97156260]Configuration
· Quality Profiles
· Names: Sonar way [C]; Sonar way [C++]; Sonar way [Python];
· Files: AYNrJr7lEG9UUXOvumWd.json; AYNrJr4EEG9UUXOvumJZ.json; AYNrJrpIEG9UUXOvulLt.json;
· Quality Gate
· Name: Sonar way
· File: Sonar way.xml
[bookmark: _Toc481744298]

[bookmark: _Toc97156261]Synthesis
[bookmark: _Toc97156262]Analysis Status
	Reliability
	Security
	Security Review
	Maintainability

	[image: E.png]
	[image: A.png]
	[image: E.png]
	[image: A.png]

[bookmark: _Toc72936669][bookmark: _Toc97156263]Quality gate status
	Quality Gate Status
	[image: ERROR.png]

	Metric
	Value

	Reliability Rating on New Code
	ERROR (C is worse than A)

	Security Rating on New Code
	OK

	Maintainability Rating on New Code
	OK

	Coverage on New Code
	ERROR (0.0% is less than 80%)

	Duplicated Lines (%) on New Code
	ERROR (3.5% is greater than 3%)

	Security Hotspots Reviewed on New Code
	ERROR (0.0% is less than 100%)

[bookmark: _Toc97156264]Metrics
	Coverage
	Duplication
	Comment
density
	Median number of lines of code per file
	Adherence to coding standard

	0.0 %
	4.6 %
	13.0 %
	84.0
	97.1 %

[bookmark: _Toc97156265]Tests
	Total
	Success Rate
	Skipped
	Errors
	Failures

	0
	0 %
	0
	0
	0

[bookmark: _Toc97156266]Detailed technical debt
	Reliability
	Security
	Maintainability
	Total

	1d 1h 5min
	-
	403d 5h 36min
	404d 6h 41min

[bookmark: _Toc97156267]Metrics Range
	
	Cyclomatic
Complexity
	Cognitive
Complexity
	Lines of code per file
	Comment
density (%)
	Coverage
	Duplication (%)

	Min
	0.0
	0.0
	1.0
	0.0
	0.0
	0.0

	[bookmark: _GoBack]Max
	36041.0
	37540.0
	183808.0
	75.8
	0.0
	91.8

[bookmark: _Toc97156268]Volume
	Language
	Number

	C
	25594

	C++
	158202

	Python
	12

	Total
	183808

[bookmark: _Toc97156269]Issues
[bookmark: _Toc97156270]Charts

[bookmark: _Toc97156271]Issues count by severity and type
	Type / Severity
	INFO
	MINOR
	MAJOR
	CRITICAL
	BLOCKER

	BUG
	0
	0
	27
	0
	11

	VULNERABILITY
	0
	0
	0
	0
	0

	CODE_SMELL
	3
	1976
	4428
	3539
	16

[bookmark: _Toc97156272]Issues List
	Name
	Description
	Type
	Severity
	Number

	Memory access should be explicitly bounded to prevent buffer overflows
	Array overruns and buffer overflows happen when memory access accidentally goes beyond the boundary of the allocated array or buffer. These
overreaching accesses cause some of the most damaging, and hard to track defects.
Noncompliant Code Example

int array[10];
array[10] = 0; // Noncompliant: index should be between 0 & 9

char *buffer1 = (char *) malloc(100);
char *buffer2 = (char *) malloc(50);
memcpy(buffer2, buffer1, 100); // Noncompliant: buffer2 will overflow.

Compliant Solution

int array[10];
array[9] = 0;

char *buffer1 = (char *) malloc(100);
char *buffer2 = (char *) malloc(50);
memcpy(buffer2, buffer1, 50);

See

 MITRE, CWE-119 - Improper Restriction of Operations within the Bounds of a Memory
 Buffer
 MITRE, CWE-131 - Incorrect Calculation of Buffer Size
 MITRE, CWE-788 - Access of Memory Location After End of Buffer
 CERT, ARR30-C. - Do not form or use out-of-bounds pointers or array subscripts
 CERT, STR50-CPP. - Guarantee that storage for strings has sufficient space for
 character data and the null terminator

	BUG
	BLOCKER
	9

	"memcpy", "memmove", and "memset" should only be called with pointers to trivially copyable types
	The functions memcpy, memmove and memset can only be used for objects of trivially copyable types. This
includes scalar types, arrays, and trivially copyable classes.
A class type is trivially copyable if:

 One or more of the following special member functions is trivial and the rest are deleted: copy constructor, move constructor, copy assignment
 operator, and move assignment operator,
 It has a trivial, non-deleted destructor,
 It has trivially copyable members and base classes,
 It has no virtual functions.

Note: a default implementation, both explicit (with =default) or implicit (if the special member function is omitted), is
considered trivial.
Noncompliant Code Example

class Shape {
public:
 int x;
 int y;
 virtual ~Shape(); // This makes the class non trivially copyable
};

void f(Shape *dest, Shape *source)
{
 memcpy(dest, source, sizeof Shape); // Noncompliant
}

Compliant Solution

class Shape {
public:
 int x;
 int y;
 virtual ~Shape(); // This makes the class non trivially copyable
};

void f(Shape *dest, Shape *source)
{
 (*dest) = (*source);
}

	BUG
	BLOCKER
	2

	All code should be reachable
	Some statements (return, break, continue, goto, co_return) and throw
expressions move control flow out of the current code block. Furthermore, some function do not return control flow (e.g. abort(),
std::terminate(), functions with the [[noreturn]] attribute).
Any unlabeled statements that come after such a jump or function call are unreachable, and either this dead code should be removed, or the logic
should be corrected.
Noncompliant Code Example

int fun(int a) {
 int i = 10;
 return i + a; // Noncompliant
 i++; // dead code
}

Compliant Solution

int fun(int a) {
 int i = 10;
 return i + a;
}

See

 MISRA C:2004, 14.1 - There shall be no unreachable code
 MISRA C++:2008, 0-1-1 - A project shall not contain unreachable code
 MISRA C:2012, 2.1 - A project shall not contain unreachable code
 MITRE, CWE-561 - Dead Code
 CERT, MSC56-J. - Detect and remove superfluous code and values
 CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

	BUG
	MAJOR
	24

	Variables should be initialized before use
	Variables should be initialized before their use to avoid unexpected behaviors due to garbage values.
Noncompliant Code Example

int function(int flag, int b) {
 int a;
 if (flag) {
 a = b;
 }
 return a; // Noncompliant - "a" has not been initialized in all paths
}

Compliant Solution

int function(int flag, int b) {
 int a = 0;
 if (flag) {
 a = b;
 }
 return a;
}

See

 MITRE, CWE-457 - Use of Uninitialized Variable
 MISRA C:2004, 9.1 - All automatic variables shall have been assigned a value before being used.
 MISRA C++:2008, 8-5-1 - All variables shall have a defined value before they are used.

	BUG
	MAJOR
	3

	Context-sensitive keywords should not be used as identifiers
	The C++ standards define some identifiers as having special meaning in specific contexts. These are:

 final and override since C++11
 module and import since C++20

While it is technically possible to use them as normal identifiers, it’s clearer for the reader of the code to consider them as if they were
keywords, and only use them with their special meaning.
Noncompliant Code Example

void module(int final); // Noncompliant

Compliant Solution

void precept(int finalValue); // Compliant

	CODE_SMELL
	BLOCKER
	2

	Non-reentrant POSIX functions should be replaced with their reentrant versions
	A function is called reentrant if it can be interrupted in the middle of its execution and then safely called again ("re-entered") before its
previous invocations complete execution.
It is especially important that multi-threaded applications do not call the same non-reentrant function from different threads.
This rule will trigger an issue each time a function in the configurable list is invoked.
Noncompliant Code Example
Given a function that includes localtime:

#include <stdio.h>
#include <time.h>

void print_date_and_time(struct tm *time_ptr)
{
 printf(
 "Current date and time: %d/%02d/%02d %02d:%02d:%02d\n",
 time_ptr->tm_year + 1900,
 time_ptr->tm_mon,
 time_ptr->tm_mday,
 time_ptr->tm_hour,
 time_ptr->tm_min,
 time_ptr->tm_sec);
}

void print_unix_epoch_date_and_time()
{
 time_t unix_epoch_time = (time_t)0;
 struct tm *local_time_ptr = localtime(&unix_epoch_time); // Noncompliant, call to the non-reentrant localtime() function
 print_date_and_time(local_time_ptr);
}

int main(int argc, char* argv[])
{
 time_t current_time;
 struct tm *local_time_ptr;

 time(&current_time);

 local_time_ptr = localtime(&current_time); // Noncompliant, call to the non-reentrant localtime() function

 // As expected, this will print: Current date and time: 1970/00/01 01:00:00
 print_unix_epoch_date_and_time();

 // This will actually also print Current date and time: 1970/00/01 01:00:00
 // Indeed, localtime() is non-reentrant, and always returns the same pointer
 print_date_and_time(local_time_ptr);

 return 0;
}

Compliant Solution

#include <stdio.h>
#include <time.h>

void print_date_and_time(struct tm *time_ptr)
{
 printf(
 "Current date and time: %d/%02d/%02d %02d:%02d:%02d\n",
 time_ptr->tm_year + 1900,
 time_ptr->tm_mon,
 time_ptr->tm_mday,
 time_ptr->tm_hour,
 time_ptr->tm_min,
 time_ptr->tm_sec);
}

void print_unix_epoch_date_and_time()
{
 time_t unix_epoch_time = (time_t)0;
 struct tm local_time;
 localtime_r(&unix_epoch_time, &local_time); // Compliant
 print_date_and_time(&local_time);
}

int main(int argc, char* argv[])
{
 time_t current_time;
 struct tm local_time;

 time(&current_time);

 localtime_r(&current_time, &local_time); // Compliant

 // As expected, this will print: Current date and time: 1970/00/01 01:00:00
 print_unix_epoch_date_and_time();

 // As expected, this will print the current date and time
 print_date_and_time(&local_time);

 return 0;
}

	CODE_SMELL
	BLOCKER
	2

	Move and swap operations should be "noexcept"
	Move operations (move constructor, move assignment operator) are all about efficient resource stealing. When stealing resources from the source,
you don’t have to allocate any memory or perform any other operation that might fail. This is why most people will expect move operation to be
non-throwing.
Additionally, if a move operation fails, the source object can have been partially altered by the move, making recovery very tricky, or just
impossible. Therefore, to ensure robustness, some functions (for instance, std::move_if_noexcept, used by std::vector) will
decide to copy your object if its move operations are not decorated with noexcept. This can significantly slow down your program.
If you can not implement your move operations so that they never throw, you may as well only provide copy operations that will be safer to use.
Swap operations are very similar to move operations, in that they should be equivalent to moving two objects into each other. So if you are adding
a swap function to your type, it should be noexcept too.
Note that for most classes, you should not write your own move operations, but rely on the "Rule-of-Zero" (S4963).
This rule raises an issue when a move or swap operation is not noexcept, which can happen in two cases:

 The operation is user-defined, and is not unconditionally declared as noexcept,
 The operation is implicitly defined, and one of the base classes or member variables of the class does not have noexcept move
 operations.

Noncompliant Code Example

struct A {
 A (A const &a);
 A (A && a); // Noncompliant
 ~A();
 A &operator=(A const &a);
 A &operator=(A &&a); // Noncompliant
};

void swap(A& a1, A& a2); // Noncompliant

Compliant Solution

struct A {
 A (A const &a);
 A (A && a) noexcept;
 ~A();
 A &operator=(A const &a);
 A &operator=(A &&a) noexcept;
};

void swap(A& a1, A& a2) noexcept;

See

 C++ Core Guidelines
 C.66 - Make move operations noexcept
 C++ Core Guidelines C.85 -
 Make swap operations noexcept

	CODE_SMELL
	BLOCKER
	6

	"goto" should jump to labels declared later in the same function
	Unconstrained use of goto can lead to programs that are extremely difficult to comprehend and analyse. For C++, it can also lead to
the program exhibiting unspecified behavior.
However, in many cases a total ban on goto requires the introduction of flags to ensure correct control flow, and it is possible that
these flags may themselves be less transparent than the goto they replace.
Therefore, the restricted use of goto is allowed where that use will not lead to semantics contrary to developer expectations. "Back"
jumps are prohibited, since they can be used to create iterations without using the well-defined iteration statements supplied by the core
language.
Noncompliant Code Example

int f() {
 int j = 0;
L1:
 ++j;
 if (10 == j) {
 goto L2; // forward jump ignored
 }
 // ...
 goto L1; // Noncompliant
L2:
 return ++j;
}

Compliant Solution

int f() {
 for (int j = 0; j < 11; j++) {
 // ...
 }
 return ++j;
}

See

 MISRA C++:2008, 6-6-2 - The goto statement shall jump to a label declared later in the same function body
 MISRA C:2012, 15.2 - The goto statement shall jump to a label declared later in the same function

	CODE_SMELL
	BLOCKER
	6

	Methods should not be empty
	There are several reasons for a method not to have a method body:

 It is an unintentional omission, and should be fixed to prevent an unexpected behavior in production.
 It is not yet, or never will be, supported. In this case an exception should be thrown in languages where that mechanism is available.
 The method is an intentionally-blank override. In this case a nested comment should explain the reason for the blank override.

Noncompliant Code Example

void fun(int p1) {
}

Compliant Solution

void fun(int p1) {
 int a = doSomething(p1);
 int threshold = 42;
 if (a > threshold) {
 // ...
 }
}

or

void fun(int p1) {
 // Intentionally unimplemented...
}

Exceptions
This rule doesn’t raise an issue for empty class constructors or destructors. For instance this is the only way to define user-defined default
constructors.
	CODE_SMELL
	CRITICAL
	1

	C-style memory allocation routines should not be used
	The malloc, realloc, calloc and free routines are used to dynamically allocate memory in the
heap. But, in contrast to the new and delete operators introduced in C++, they allocate raw memory, which is not type-safe,
and they do not correctly invoke object constructors. Additionally, mixing them with new/delete results in undefined
behavior.
Note that directly replacing those functions with new/delete is usually not a good idea (see S5025).
Noncompliant Code Example

string* pStringArray1 = static_cast<string*>(malloc(10 * sizeof(string))); // Noncompliant
Person *p = (Person*)malloc(sizeof(Person)); // Noncompliant

Compliant Solution

std::array<string, 10> stringArray1 ; // Compliant, use std::vector instead if the size is dynamic
auto p1 = new Person("Bjarne"); // Compliant, but don't do that, prefer the version on next line
auto p2 = std::make_unique<Person>("Bjarne"); // Compliant

See

 C++ Core Guidelines R.10 -
 Avoid malloc() and free()

	CODE_SMELL
	CRITICAL
	13

	Inherited functions should not be hidden
	An inherited member function can be hidden in a derived class and that creates a class that behaves differently depending on which
interface is used to manipulate it.
Overriding happens when the inherited method is virtual and a method declared in the derived class uses the same identifier as well as the same
signature (the return types can be different, as long as they are covariant). However, if the inherited method is non-virtual or if the two
declarations of the method do not share the same signature, the method of the base class will be hidden.
Such a class increases the inheritance complexity, and confuses consumers with its non-polymorphic behavior, which can lead to errors.
Noncompliant Code Example

class Base {
public:
 void shutdown();
 virtual void log(int a);
};

class Derived : public Base {
public:
 void shutdown(); //Noncompliant
 void log(float a); //Noncompliant
};

void stopServer(Base *obj, Derived *obj2) {
 obj->shutdown(); // always calls Base::shutdown even if the given object's type is Derived
 obj->log(2); // calls Base::log(int) even if the given object's type is Derived
 obj2->shutdown(); // calls Derived::shutdown
 obj2->log(2); // calls Derived::log(float), even if this requires a conversion int->float.
}

Compliant Solution

class Base {
public:
 void shutdown();
 virtual void log(int a);
};

class Derived : public Base {
public:
 void shutdownAndUpdate(); // Define a method with a different name
 void log(int a) override; // Or make the method a proper override
};

void stopServer(Base *obj) {
 obj->shutdown(); // calls Base::shutdown and there is no confusion
 obj->log(2); // calls Derived::log(int) if the given object's type is Derived
}

See

 C++ Core Guidelines C.138 - Create an overload set for a derived class and its bases with using

	CODE_SMELL
	CRITICAL
	29

	Control flow statements "if", "for", "while", "switch" and "try" should not be nested too deeply
	Nested if, for, do, while, switch and try statements is a key
ingredient for making what’s known as "Spaghetti code".
Such code is hard to read, refactor and therefore maintain.
Noncompliant Code Example
With the default threshold of 3:

 if (condition1) { // Compliant; depth = 1
 /* ... */
 if (condition2) { // Compliant; depth = 2
 /* ... */
 for(int i = 0; i < 10; i++) { // Compliant; depth = 3, not exceeding the limit
 /* ... */
 if (condition4) { // Noncompliant; depth = 4
 if (condition5) { // Depth = 5, exceeding the limit, but issues are only reported on depth = 4
 /* ... */
 }
 return;
 }
 }
 }
 }

Exceptions
Each use of a macro containing control flow statements is counted as one nesting level, even if the macro contains more than one control flow
statement.

 #define FOREACH(V,ARR) if(ARR!=nullptr) for(int V=0; V<(sizeof(ARR)/sizeof(ARR[0])); V++)

 if (condition1) { // Compliant; depth = 1
 if (condition2) { // Compliant; depth = 2
 FOREACH(i, arr) { // Compliant; depth = 3 (not 4)
 if (condition3) { // Noncompliant; depth = 4
 /* ... */
 }
 }
 }
 }

	CODE_SMELL
	CRITICAL
	414

	Constructors and destructors should only use defined methods and fields
	Calling methods or fields which are not initialized in constructors or destructors can lead to undefined behavior.
For example:
Calling an overridable member function from a constructor or destructor could result in unexpected behavior when instantiating a subclass which
overrides the member function.

 By contract, the subclass class constructor starts by calling the parent class constructor.
 The parent class constructor calls the parent member function and not the one overridden in the child class, which is confusing for child
 class' developer.
 It can produce an undefined behavior if the member function is pure virtual in the parent class.

Noncompliant Code Example

class Parent {
 public:
 Parent() {
 method1();
 method2(); // Noncompliant; confusing because Parent::method2() will always been called even if the method is overridden
 }
 Parent(int i):field(i) {}
 virtual ~Parent() {
 method3(); // Noncompliant; undefined behavior (ex: throws a "pure virtual method called" exception)
 }
 protected:
 int field;

 int method1() { /*...*/ }
 virtual void method2() { /*...*/ }
 virtual void method3() = 0; // pure virtual
};

class Child : public Parent {
 public:
 Child() { // leads to a call to Parent::method2(), not Child::method2()
 }
 Child() : Parent(field) {} // Noncompliant; "field" is not initialized yet
 Child() : Parent(method1()) {} // Noncompliant; "method1" is not initialized yet
 virtual ~Child() {
 method3(); // Noncompliant; Child::method3() will always be called even if a child class overrides method3
 }
 protected:
 void method2() override { /*...*/ }
 void method3() override { /*...*/ }
};

Compliant Solution

class Parent {
 public:
 Parent() {
 method1();
 Parent::method2(); // acceptable but poor design
 }
 virtual ~Parent() {
 // call to pure virtual function removed
 }
 protected:
 void method1() { /*...*/ }
 virtual void method2() { /*...*/ }
 virtual void method3() = 0;
};

class Child : public Parent {
 public:
 Child() {
 }
 virtual ~Child() {
 method3(); // method3() is now final so this is okay
 }
 protected:
 void method2() override { /*...*/ }
 void method3() final { /*...*/ } // this virtual function is "final"
};

See

 CERT, MET05-J. - Ensure that constructors do not call overridable methods
 CERT, OOP50-CPP. - Do not invoke virtual functions from constructors or destructors

	CODE_SMELL
	CRITICAL
	4

	"explicit" should be used on single-parameter constructors and conversion operators
	If you invoked a method with arguments of the wrong type, you would typically expect an error at compile time (if not in the IDE). However, when
the expected parameter is a class with a single-argument constructor, the compiler will implicitly pass the method argument to that constructor to
implicitly create an object of the correct type for the method invocation. Alternately, if the wrong type has a conversion operator to the correct
type, the operator will be called to create an object of the needed type.
But just because you can do something, that doesn’t mean you should, and using implicit conversions makes the execution flow
difficult to understand. Readers may not notice that a conversion occurs, and if they do notice, it will raise a lot of questions: Is the source type
able to convert to the destination type? Is the destination type able to construct an instance from the source? Is it both? And if so, which method is
called by the compiler?
Moreover, implicit promotions can lead to unexpected behavior, so they should be prevented by using the explicit keyword on
single-argument constructors and (C++11) conversion operators. Doing so will prevent the compiler from performing implicit conversions.
Noncompliant Code Example

struct Bar {
};

struct Foo {
 Foo(Bar& bar); // Noncompliant; allow implicit conversion from 'Bar' to 'Foo'
};

struct Baz {
 operator Foo(); // Noncompliant; allow implicit conversion from 'Baz' to 'Foo'
};

void func(const Foo& b); // this function needs a 'Foo' not a 'Bar' nor a 'Baz'

int test(Bar& bar, Baz& baz) {
 func(bar); // implicit conversion using Foo::Foo(Bar& bar)
 func(baz); // implicit conversion using Baz::operator Foo()
 func(baz);
}

Compliant Solution

struct Bar {
};

struct Foo {
 explicit Foo(Bar& bar); // Compliant, using "explicit" keyword
};

struct Baz {
 Foo asFoo(); // Compliant, explicit function
 explicit operator Foo(); // Compliant, using C++11 "explicit" keyword for conversion function
};

void func(const Foo& b); // this function needs a 'Foo' not a 'Bar' nor a 'Baz'

int test(Bar& bar, Baz& baz) {
 func(Foo(bar)); // explicit conversion using Foo::Foo(Bar& bar)
 func(baz.asFoo()); // explicit conversion using Baz::asFoo()
 func(static_cast<Foo>(baz)); // explicit conversion using Baz::operator Foo()
}

Exceptions
C++20 introduced conditional explicit(expr) that allows developers to make a constructor or conversion operator conditionally explicit
depending on the value of expr. The new syntax allows a constructor or conversion operator declared with an explicit(expr)
specifier to be implicit when expr evaluates to false. The issue is not raised in such situation.
Additionally, developers can use explicit(false) to mark constructors or conversion operators as intentionally implicit.
See

 MISRA C++:2008, 12-1-3 - All constructors that are callable with a single argument of fundamental type shall be declared explicit.

 C++
 Core Guidelines C.46 - By default, declare single-argument constructors explicit
 C++ Core
 Guidelines C.164 - Avoid implicit conversion operators

	CODE_SMELL
	CRITICAL
	21

	Special member function should not be defined unless a non standard behavior is required
	All special member functions (default constructor, copy and move constructors, copy and move assignment operators, destructor) can be automatically
generated by the compiler if you don’t prevent it (for many classes, it is good practice to organize your code so that you can use these default
versions, see S4963).
There are cases where it’s still useful to manually write such a function, because the default implementation is not doing what you need. But if
the manually written function is equivalent to the default implementation, this is an issue:

 It’s more code to write, test and maintain for no good reason
 Writing the code of those functions correctly is surprisingly difficult
 Once you write one such function, you will typically have to write several (see S3624)
 If you want your class to be trivial or to be an aggregate, those functions cannot be user-provided anyways

In most cases, you should just remove the code of the redundant function. In some cases, the compiler will not automatically generate the default
version of the function, but you can force it to do so by using the = default syntax.
For default constructors, you will often be able to use the default version if you use in-class initialization instead of the initializer list (see
S5424). You will have to make it explicitly defaulted if your class has any other constructor.
For destructors, you may want to use the =default syntax to be able to declare it as virtual (see S1235).
This rule raises an issue when any of the following is implemented in a way equivalent to the default implementation:

 default constructor
 destructor
 move constructor
 move-assignment operator
 copy constructor
 copy-assignment operator

Noncompliant Code Example

struct Book {
 string Name;

 Book() { } // Noncompliant
 Book(const Book &Other) : Name(Other.Name) { } // Noncompliant
 Book &operator=(const Book &);
};

Book &Book::operator=(const Book &Other) { // Noncompliant
 Name = Other.Name;
 return *this;
}

Compliant Solution

struct Book {
 string Name;

 Book() = default; // Restores generation of default
 Book(const Book &Other) = default;
 Book &operator=(const Book &) = default;
};

// Or, more common:
struct Book {
 string Name;
};

See

 C++ Core Guidelines C.30 - Define a destructor if a class needs an explicit action at object destruction

	CODE_SMELL
	CRITICAL
	15

	When the "Rule-of-Zero" is not applicable, the "Rule-of-Five" should be followed
	In C++, you should not directly manipulate resources (a database transaction, a network connection, a mutex lock), but encapsulate them in RAII
wrapper classes that will allow to manipulate them safely. When defining one of those wrapper classes, you cannot rely on the compiler-generated
special member functions to manage the class' resources for you (see the Rule-of-Zero, S4963). You must define those functions yourself to
make sure the class' resources are properly copied, moved, and destroyed.
In that case, make sure you consider what should be done for all five special functions (all three of them if your compiler is pre-C++11):

 The destructor, to release the resource when the wrapper is destroyed
 The copy constructor and the copy-assignment operator, to handle what should happen to the resource when the wrapper is copied (a valid option
 is to disable those operations with =delete)
 The move constructor and the move-assignment operator, to handle what should happen to the resource when the wrapper is moved (since C++11). If
 you cannot find a way to implement them more efficiently than the copy operations, as an exception to this rule, you can just leave out these
 operations: the compiler will not generate them and will use the copy operations as a fallback.

Those operations work together, and letting the compiler automatically generate some of them, but not all, means that when one of those functions
is called, the integrity of the resource will probably be compromised (for instance, it might lead to double release of a resource when the wrapper is
copied).
Noncompliant Code Example

class FooPointer { // Noncompliant, missing copy constructor and copy-assignment operator
 Foo* pFoo;
public:
 FooPointer(int initValue) {
 pFoo = new Foo(initValue);
 }
 ~FooPointer() {
 delete pFoo;
 }
};

int main() {
 FooPointer a(5);
 FooPointer b = a; // implicit copy constructor gives rise to double free memory error
 return 0;
}

Compliant Solution

class FooPointer { // Compliant, although it's usually better to reuse an existing wrapper for memory
 Foo* pFoo;
public:
 FooPointer(int initValue) {
 pFoo = new Foo(initValue);
 }
 FooPointer(FooPointer& other) {
 pFoo = new Foo(other.pFoo->value);
 }
 FooPointer& operator=(const FooPointer& other) {
 int val = other.pFoo->value;
 delete pFoo;
 pFoo = new Foo(val);
 return *this;
 }
 FooPointer(FooPointer &&fp) noexcept {
 pFoo = fp.pFoo;
 fp.pFoo = nullptr;
 }
 FooPointer const & operator=(FooPointer &&fp) {
 FooPointer temp(std::move(fp));
 std::swap(temp.pFoo, pFoo);
 return *this;
 }
 ~FooPointer() {
 delete pFoo;
 }
};

int main() {
 FooPointer a(5);
 FooPointer b = a; // no error
 return 0;
}

See

 CERT, OOP54-CPP. - Gracefully handle self-copy assignment

	CODE_SMELL
	CRITICAL
	29

	Member variables should not be "protected"
	Protected member variables are similar to global variables; any derived class can modify them. When protected member variables are used, invariants
cannot be enforced. Also, protected member variables are hard to maintain since they can be manipulated through multiple classes in different
files.
If a class is just a data store without logic, it can safely contain only public member variables and no member functions. Otherwise,
data members are tightly coupled to the class' logic, and encapsulation must be used. In this case, having only private member variables enforces
invariants for data and ensures that logic is defined only in the member functions of the class. Structuring it this way makes It easier to guarantee
integrity and easier for maintainers to understand the code.
But when an object provides encapsulation by using protected member variables, data integrity logic can be spread through the class
and all its derived class, becoming a source of complexity and that will be error-prone for maintainers and extenders.
That’s why protected member variables should be changed to private and manipulated exclusively through
public or protected member functions of the base class.
This rule raises an issue when a class or struct contains protected member variables.
Noncompliant Code Example

class Stat {
public:
 long int getCount() {
 return count;
 }
protected:
 long int count = 0; // Noncompliant; expose a protected member variable.
 // By just looking at "Stat" class, it's not possible to be sure that "count"
 // is modified properly, we also need to check all derived classes
};

class EventStat : public Stat {
public:
 void onEvent() {
 if (count < LONG_MAX) {
 count++;
 }
 }
};

Compliant Solution

class Stat {
public:
 long int getCount() {
 return count;
 }
protected:
 void increment() { // Compliant; expose a protected member function
 if (count < LONG_MAX) {
 count++;
 }
 }
private:
 long int count = 0; // member variable is private
};

class EventStat : public Stat {
public:
 void onEvent() {
 increment();
 }
};

Exceptions
Const member variables and reference member variables are ignored since they don’t break invariants.
See

 MISRA C++:2008, 11-0-1 - Member data in non-POD class types shall be private.
 C++ Core Guidelines C.133
 - Avoid protected data

	CODE_SMELL
	CRITICAL
	216

	Cognitive Complexity of functions should not be too high
	Cognitive Complexity is a measure of how hard the control flow of a function is to understand. Functions with high Cognitive Complexity will be
difficult to maintain.
See

 Cognitive Complexity

	CODE_SMELL
	CRITICAL
	235

	A conditionally executed single line should be denoted by indentation
	In the absence of enclosing curly braces, the line immediately after a conditional is the one that is conditionally executed. By both convention
and good practice, such lines are indented. In the absence of both curly braces and indentation the intent of the original programmer is entirely
unclear and perhaps not actually what is executed. Additionally, such code is highly likely to be confusing to maintainers.
Noncompliant Code Example

if (condition) // Noncompliant
doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();

Compliant Solution

if (condition)
 doTheThing();

doTheOtherThing();
somethingElseEntirely();

foo();

	CODE_SMELL
	CRITICAL
	4

	"nullptr" should be used to denote the null pointer
	Before C++11, the only way to refer to a null pointer was by using the integer literal 0, which created ambiguity with regard to
whether a pointer or an integer was intended. Even with the NULL macro, the underlying value is still 0.
C++11 introduced the keyword nullptr, which is unambiguous and should be used systematically.
Noncompliant Code Example

void f(char *c);
void g(int i);
void h()
{
 f(0); // Noncompliant
 f(NULL); // Noncompliant
 g(0); // Compliant, a real integer
 g(NULL); // Noncompliant, NULL should not be used for a real integer
}

Compliant Solution

void f(char *c);
void g(int i);
void h()
{
 f(nullptr); // Compliant
 g(0); // Compliant, a real integer
}

See

 C++ Core
 Guidelines ES.47 - Use nullptr rather than 0 or NULL

	CODE_SMELL
	CRITICAL
	945

	The "Rule-of-Zero" should be followed
	Most classes should not directly handle resources, but instead, use members that perform resource handling for them:

 For memory, it can be std::unique_ptr, std::shared_ptr, std::vector…
 For files, it can be std::ofstream, std::ifstream…
 …

Classes that avoid directly handling resources don’t need to define any of the special member functions required to properly handle resources:
destructor, copy constructor, move constructor, copy-assignment operator, move-assignment operator. That’s because the versions of those functions
provided by the compiler do the right thing automatically, which is especially useful because writing these functions correctly is typically tricky
and error-prone.
Omitting all of these functions from a class is known as the Rule of Zero because no special function should be defined.
In some cases, this rule takes a slightly different shape, while respecting the fact that no definition of those functions will be provided:

 For the base class of a polymorphic hierarchy, the destructor should be declared as public and virtual, and defaulted
 (=default). The copy-constructor and copy-assignment operator should be deleted. (If you want to copy classes in a polymorphic
 hierarchy, use the clone idiom.) The move operation will be automatically deleted by the compiler.
 For other kinds of base classes, the destructor should be protected and non-virtual, and defaulted
 (=default).

Noncompliant Code Example

class FooPointer { // Noncompliant. The code is correct (it follows the rule of 5), but unnecessarily complex
 Foo* pFoo;
public:
 FooPointer(int initValue) {
 pFoo = new Foo(initValue);
 }
 ~FooPointer() {
 delete pFoo;
 }
 FooPointer(FooPointer const &fp) = delete;
 FooPointer const & operator=(FooPointer const &fp) = delete;
 FooPointer(FooPointer &&fp) noexcept {
 pFoo = fp.pFoo;
 fp.pFoo = nullptr;
 }
 FooPointer const & operator=(FooPointer &&fp) {
 FooPointer temp(std::move(fp));
 std::swap(temp.pFoo, pFoo);
 return *this;
 }
};

Compliant Solution

class FooPointer { // Compliant, std::unique_ptr is use to handle memory management
 unique_ptr<Foo> pFoo;
public:
 FooPointer(int initValue) : pFoo(std::make_unique<Foo>(initValue) {}
};

A polymorphic base class can look like this:

class Base { // Compliant, the virtual destructor is defaulted
public:
 virtual ~Base() = default;
 Base(Base const &) = delete;
 Base &operator=(Base const &) = delete;
};

Exceptions

 Empty destructors are treated as though they were defaulted.
 There are several cases when this rule should not be followed. For instance, if your class is manually handling a resource, logging when being
 constructed/copied, maintaining some kind of counter, having non-transient data that should not be copied (like capacity for
 std::vector)… In that case, it should still follow the rule of 5 (S3624). And you should consider if you can isolate this
 specific behavior in a base class or a dedicated member data, which would allow you to still follow the rule of 0.

See

 S3624
 S1235

	CODE_SMELL
	CRITICAL
	82

	"void *" should not be used in typedefs, member variables, function parameters or return type
	void* is a pointer to memory of unknown type, and therefore works outside of the safety net provided by the type system. While it can
be useful in a function body to interface with external code, there is no good reason to step out of the robust C++ type system when defining a
function, either for the function parameters, or for the function return type. For the same reasons, having a member variable of type
void* is not recommended.
If you want to work with raw memory buffer, use unsigned char * (or byte * if your compiler supports it).
If you want to work with different types of data, define a function template and use typed pointers, instead of void *. If you want a
single object to be able to stores objects of different types, std::any can also be a type-safe alternative to void*.
If you want to provide to users of an API an opaque type, declare a type and don’t provide its definition (like with FILE*).
Note that void* is commonly used to communicate data of unknown type with C code. This rule will nevertheless raise an issue in this
case, but it can be ignored.
Noncompliant Code Example

void saveBuffer(void *buffer, size_t size); // Noncompliant
void duplicate(void* destination, size_t count, void *source, size_t size); // Noncompliant
class Process {
 // ...
 void *userData;
};
using UserData = void*; // Noncompliant

Compliant Solution

void saveBuffer(unsigned char *buffer, size_t size);
template<class T>
void duplicate(T* destination, size_t count, T *source);
class Process {
 // ...
 std::any userData;
};

Exceptions
void* can be useful when interfacing with C. As such, the rule will ignore extern "C" functions, as well as types with
standard layout.
See

 C++ Core Guidelines
 I.4 - Make interfaces precisely and strongly typed
 C++ Core Guidelines
 T.3 - Use templates to express containers and ranges

	CODE_SMELL
	CRITICAL
	11

	Memory should not be managed manually
	If you manage memory manually, it’s your responsibility to delete all memory created with new, and to make sure it’s
deleted once and only once. Ensuring this is done is error-prone, especially when your function can have early exit points.
Fortunately, the C++ language provides tools that automatically manage memory for you. Using them systematically makes the code simpler and more
robust without sacrificing performance.
This rule raises an issue when you use:

 new - you should prefer a factory function that returns a smart pointer, such as std::make_unique or, if shared
 ownership is required, std::make_shared,
 new[] - you should prefer a container class, such as std::vector,
 delete or delete[] - if you followed the previous advice, there is no need to manually release memory.

If your compiler does not support make_unique, it’s easy to write your own:

template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args) {
 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

Noncompliant Code Example

void f() {
 auto c = new Circle(0, 0, 5);
 c->draw();
 delete c;
}

Compliant Solution

void f() {
 auto c = make_unique<Circle>(0, 0, 5);
 c->draw();
 unique_ptr<Circle> c2{new Circle(0, 0, 5)}; // Clumsy, but still compliant by exception
}

Exceptions
If the result of a new is immediately passed as an argument to a function, we assume that the function takes ownership of the newly created object,
and won’t raise an issue.
See

 C++ Core
 Guidelines R.11 - Avoid calling new and delete explicitly
 C++ Core Guidelines C.149 - Use unique_ptr or shared_ptr to avoid forgetting to delete objects created using new

	CODE_SMELL
	CRITICAL
	770

	Macros should not be used to define constants
	A macro is a textual replacement, which means that it’s not respecting the type system, it’s not respecting scoping rules… There is no reason not
to use a constant instead.
Most of the time, a macro can be replaced by a constexpr declaration (a constant that is guaranteed to be computed during
compilation). If your compiler is too old to properly handle constexpr, you may use const instead.
If you have a series of related integer macros, you might also consider replacing them by an enum.
Noncompliant Code Example

#define MAX_MEMORY 640 // Noncompliant

#define LEFT 0 // Noncompliant
#define RIGHT 1 // Noncompliant
#define JUMP 2 // Noncompliant
#define SHOOT 3 // Noncompliant

Compliant Solution

constexpr size_t MAX_MEMORY = 640;
enum class Actions {Left, Right, Jump, Shoot};

See

 C++ Core
 Guidelines - ES.31 - Don’t use macros for constants or “functions”
 C++ Core
 Guidelines - Enum.1 - Prefer enumerations over macros

	CODE_SMELL
	CRITICAL
	123

	Argument of "printf" should be a format string
	It is a security vulnerability to call printf with a unique string argument which is not a string literal. Indeed, if this argument
comes from a user input, this user can :

 make the program crash, by executing code equivalent to: printf("%s%s%s%s%s%s%s%s")
 view the stack or a memory at any location, by executing code equivalent to: printf("%08x %08x %08x %08x %08x\n")

Noncompliant Code Example

void f(char* userInput) {
 printf(userInput); // Noncompliant
}

Compliant Solution

void f(char* userInput) {
 printf("%s", userInput); // Compliant
}

See

 Owasp: format string attack

	CODE_SMELL
	CRITICAL
	10

	Size of variable length arrays should be positive
	Variable length arrays should have a well-defined, positive size.
Noncompliant Code Example

void f1() {
 int n;
 int a[n]; // Noncompliant; n is undefined
}

void f2() {
 int n = 0;
 int a[n]; // Noncompliant; array of zero size
}

	CODE_SMELL
	CRITICAL
	1

	Non-const global variables should not be used
	A global variable can be modified from anywhere in the program. At first, this might look convenient, but in fact, it makes programs very hard to
understand: When you see a function call, you cannot know if the function will affect the value of the variable or not. You have lost the ability to
reason locally about your code and must always have the whole program in mind.
Additionally, in multi-threaded environments, global variables are often subject to race conditions.
Some global variables defined in external libraries (such as std::cout, std::cin, std::cerr) are fine to
use, but you should have a good reason to create your own. If you do use a global variable make sure that they can be safely accessed
concurrently.
This rule detects all declarations of global variables (in the global namespace or in any namespace) that are not constant.
Noncompliant Code Example

double oneFoot = 0.3048;
double userValue;
void readValue();
void writeResult();

int main() {
 readValue();
 writeResult();
}

Compliant Solution

constexpr double footToMeter = 0.3048;

double readValue();
void writeResult(double);

int main() {
 auto userValue = readValue();
 writeResult(userValue * footToMeter);
}

See

 C++ Core Guidelines
 I.2 - Avoid non-const global variables

	CODE_SMELL
	CRITICAL
	594

	Use discriminated unions or "std::variant"
	In order to save memory, unions allow you to use the same memory to store objects from a list of possible types as long as one object is stored at
a time. Unions are not inherently safe, as they expect you to externally keep track of the type of value they currently hold.
Wrong tracking has the potential to corrupt memory or to trigger undefined behaviors.
A straightforward way to avoid it is storing the information about the currently active alternative along with the union. Here follow suggested
patterns to do that:

typedef int altType1;
typedef float altType2;

// Pattern 1
union alternativesCommonStartingFieldPattern {
 struct {
 bool isAlt1;
 altType1 a1;
 } one;

 struct {
 bool isAlt1;
 altType2 a2;
 } two;
};

double getValueAsDouble(alternativesCommonStartingFieldPattern *pattern1) {
 return pattern1->one.isAlt1?pattern1->one.a1:pattern1->two.a2;
}

This pattern uses the fact that when two alternatives of a standard layout union are standard-layout-structs that share a common initial sequence,
it is allowed to read this common initial sequence on one alternative even if the other alternative is the one currently active. This is commonly used
to limit the number of bits required to store the discriminant.

// Pattern 2
struct wrappedUnionPattern {
 enum {ALTTYPE1, ALTTYPE2} type;

 union {
 altType1 a1;
 altType2 a2;
 };
};

double getValueAsDouble(wrappedUnionPattern *pattern2) {
 return (pattern2->type==wrappedUnionPattern::ALTTYPE1)?pattern2->a1:pattern2->a2;
}

This pattern is more straightforward, and wraps the union inside a structure that will also store the discriminant. Note that in this case, the
union itself can be anonymous.

// Pattern 3 (C++17)
using stdVariantPattern = std::variant<altType1, altType2>;

double getValueAsDouble(stdVariantPattern *pattern3) {
 return std::visit([](auto&& alternative) -> double { return alternative;}, *pattern3);
}

This pattern relies on C++17’s std::variant to store the alternative.
In general, std::variant is:

 Safer as the type of the current value is always known and checked before usage.
 More practical as it can have members of any type, including non trivial types (see S6025). It also supports redundant types, which
 is useful when alternatives have the same type with different semantic meanings.
 Easier to use as it provides many member/helper functions.

One noticeable difference with unions is that the alternatives in a std::variant do not have a name. You can access them by type or by
index, using std::get (throws if the wrong alternative is accessed) or std::get_if (returns a null pointer if the wrong
alternative is used). But very often, instead of accessing a specific alternative, visitors are used to distinguish cases of the variant.
This rule raises an issue when unions are used outside of the 3 suggested patterns.
Noncompliant Code Example

void rawUnion() {
 union IntOrDouble { // Noncompliant: union is not wrapped
 int i;
 double d;
 };
 IntOrDouble intOrDouble;
 intOrDouble.d = 10.5;
}

Compliant Solution

struct IntOrChar {
 enum { INT, CHAR } tag;
 union { // Compliant
 int i;
 char c;
 };
};

void simpleVariant() {
 std::variant<int, double> intOrDouble = 10.5; // Compliant
}{code}

	CODE_SMELL
	CRITICAL
	6

	A cast shall not remove any const or volatile qualification from the type of a pointer or reference
	Using const in your code improves reliability and maintenance. When passing a const value, developers assume that its
value won’t be changed. But using const_cast<>() to cast away a const qualifier, destroys developer assumptions and
code reliability. It is a bad practice and reveals a flaw in the design. Furthermore, it may have an undefined behavior.
Noncompliant Code Example

User& func(const int& value, const User& user) {
 const_cast<int&>(value) = 2; // Noncompliant and undefined behavior
 return const_cast<User&>(user); // Noncompliant
}

Compliant Solution

User& func(int& value, User& user) {
 value = 2;
 return user;
}

See

 MISRA C:2004, 11.5 - A cast shall not be performed that removes any const or volatile qualification from the type addressed by a pointer
 MISRA C++:2008, 5-2-5 - A cast shall not remove any const or volatile qualification from the type of a pointer or reference
 MISRA C:2012, 11.8 - A cast shall not remove any const or volatile qualification from the type pointed to by a pointer
 CERT, EXP32-C. - Do not access a volatile object through a nonvolatile reference

 CERT, EXP05-C. - Do not cast away a const qualification
 CERT, EXP55-CPP. - Do not access a cv-qualified object through a cv-unqualified type

 C++ Core Guidelines Type.3 - Don’t use const_cast to cast away const (i.e., at all): Don’t cast away const.

	CODE_SMELL
	CRITICAL
	16

	Track uses of "TODO" tags
	TODO tags are commonly used to mark places where some more code is required, but which the developer wants to implement later.
Sometimes the developer will not have the time or will simply forget to get back to that tag.
This rule is meant to track those tags and to ensure that they do not go unnoticed.
Noncompliant Code Example

void foo() {
 // TODO
}

See

 MITRE, CWE-546 - Suspicious Comment

	CODE_SMELL
	INFO
	3

	Collapsible "if" statements should be merged
	Merging collapsible if statements increases the code’s readability.
Noncompliant Code Example

if (condition1) {
 if (condition2) { // NonCompliant
 /* ... */
 }
}

Compliant Solution

if (condition1 && condition2) { // Compliant
 /* ... */
}

	CODE_SMELL
	MAJOR
	130

	Unused "private" fields should be removed
	If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will
improve maintainability because developers will not wonder what the variable is used for.
Noncompliant Code Example

class MyClass {
 private:
 int foo = 42; // Noncompliant, foo is unused

 public:
 int compute(int a) {
 return a * 42;
 }
};

Compliant Solution

class MyClass {
 public:
 int compute(int a) {
 return a * 42;
 }
};

	CODE_SMELL
	MAJOR
	1

	Functions should not have too many parameters
	A long parameter list can indicate that a new structure should be created to wrap the numerous parameters or that the function is doing too many
things.
Noncompliant Code Example
With a maximum number of 4 parameters:

void doSomething(int param1, int param2, int param3, int param4, int param5) {
 ...
}

Compliant Solution

void doSomething(int param1, int param2, int param3, int param4) {
 ...
}

See

 C++ Core
 Guidelines I.23: Keep the number of function arguments low

	CODE_SMELL
	MAJOR
	46

	Nested blocks of code should not be left empty
	Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.
Noncompliant Code Example

void foo()
{
 int x;
 if (x == 42)
 /* Noncompliant - the following nested block is empty */
 {
 }
 else
 {
 printf("x != 42");
 }
}

void bar()
/* Compliant - functions are not nested blocks */
{
}

Compliant Solution

void foo()
{
 int x;
 if (x != 42)
 /* Compliant */
 {
 printf("x != 42");
 }
}

/* ... */

Exceptions
When a block contains a comment, this block is not considered to be empty.
	CODE_SMELL
	MAJOR
	9

	Redundant pairs of parentheses should be removed
	The use of parentheses, even those not required to enforce a desired order of operations, can clarify the intent behind a piece of code. But
redundant pairs of parentheses could be misleading, and should be removed.
Noncompliant Code Example

int x = (y / 2 + 1); //Compliant even if the parenthesis are ignored by the compiler

if (a && ((x+y > 0))) { // Noncompliant
 //...
}

return ((x + 1)); // Noncompliant

Compliant Solution

int x = (y / 2 + 1);

if (a && (x+y > 0)) {
 //...
}

return (x + 1);

Exceptions
When the result of an assignment is used as a condition, clang raises a warning to make sure the purpose was not to use == in place of
=. Adding some parentheses around the assignment is a common way to silence this clang warning. So, no issue is raised in such case.

if ((x = 7)) {} // Compliant

	CODE_SMELL
	MAJOR
	1033

	Variables should not be shadowed
	Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of
code. Further, it could lead maintainers to introduce bugs because they think they’re using one variable but are really using another.
Noncompliant Code Example

class Foo
{
public:
 void doSomething();

private:
 int myField;
};

void Foo::doSomething()
{
 int myField = 0; // Noncompliant
 // ...
}

void f(int x, bool b) {
 int y = 4;
 if (b) {
 int x = 7; // Noncompliant
 int y = 9; // Noncompliant
 // ...
 }
}

Compliant Solution

class Foo
{
public:
 void doSomething();

private:
 int myField;
};

void Foo::doSomething()
{
 int myInternalField = 0; // Compliant
 // ...
}

void f(int x, bool b) {
 int y = 4;
 if (b) {
 int z = 7; // Better yet: Use meaningful names
 int w = 9;
 // ...
 }
}

Exceptions
It is common in a constructor to have constructor arguments shadowing the fields that they will initialize. This pattern avoids the need to select
new names for the constructor arguments, and will not be reported by this rule:

class Point{
public:
 Point(int x, int y) : x(x), y(y) {} // Compliant by exception
private:
 int x;
 int y;
};

See

 MISRA C:2004, 5.2 - Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and therefore hide that
 identifier
 MISRA C++:2008, 2-10-2 - Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope
 MISRA C:2012, 5.3 - An identifier declared in an inner scope shall not hide an identifier declared in an outer scope
 CERT, DCL01-C. - Do not reuse
 variable names in subscopes
 CERT, DCL51-J. - Do
 not shadow or obscure identifiers in subscopes

	CODE_SMELL
	MAJOR
	49

	Assignments should not be made from within sub-expressions
	Assignments within sub-expressions are hard to spot and therefore make the code less readable. Ideally, sub-expressions should not have
side-effects.
Noncompliant Code Example

if ((str = cont.substring(pos1, pos2)).isEmpty()) { // Noncompliant
 //...

Compliant Solution

str = cont.substring(pos1, pos2);
if (str.isEmpty()) {
 //...

Exceptions
Assignments explicitly enclosed in parentheses are ignored.

while ((run = keepRunning())) {
 //...
}

See

 MISRA C:2004, 13.1 - Assignment operators shall not be used in expressions that yield a Boolean value
 MISRA C++:2008, 6-2-1 - Assignment operators shall not be used in sub-expressions
 MISRA C:2012, 13.4 - The result of an assignment operator should not be used
 MITRE, CWE-481 - Assigning instead of Comparing
 CERT, EXP45-C. - Do not perform assignments in selection statements
 CERT, EXP51-J. - Do not perform assignments in conditional expressions

	CODE_SMELL
	MAJOR
	439

	Track uses of "FIXME" tags
	FIXME tags are commonly used to mark places where a bug is suspected, but which the developer wants to deal with later.
Sometimes the developer will not have the time or will simply forget to get back to that tag.
This rule is meant to track those tags and to ensure that they do not go unnoticed.
Noncompliant Code Example

int divide(int numerator, int denominator) {
 return numerator / denominator; // FIXME denominator value might be 0
}

See

 MITRE, CWE-546 - Suspicious Comment

	CODE_SMELL
	MAJOR
	1

	Unused functions and methods should be removed
	A function that is never called is dead code, and should be removed. Cleaning out dead code decreases the size of the maintained codebase, making
it easier to understand the program and preventing bugs from being introduced.
This rule detects functions that are never called from inside a translation unit, and cannot be called from the outside.
Noncompliant Code Example

static void unusedStaticFunction() { // Noncompliant
}

class Server {
public:
 void start() { // Compliant, the member function "start()" is public
 log("start");
 }
private:
 void clear() { // Noncompliant, the member function "clear()" is unused
 }
 void log(const char * msg) { // Compliant, the member function "log()" is used in "start() { ... }"
 printf(msg);
 }
};

See

 MISRA C++:2008, 0-1-10 - Every defined function shall be called at least once.

	CODE_SMELL
	MAJOR
	3

	Unused function parameters should be removed
	Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.
There are some cases when you want to have an unused parameter (usually because the function has to conform to a fixed prototype, because it is
virtual or it is going to be called from a template). In this case, and if the parameter is never used, an accepted practice is to leave it unnamed.
If it is only sometimes used (for instance, depending on conditional compilation), you may, since C++17, use the [[maybe_unused]]
attribute to be explicit about it.

void f([[maybe_unused]] int i) {
 assert(i < 42); // In optimized mode, this assert will be removed, and i will be unused
}

In case of Objective-C it is acceptable to have unused parameters if the method is supposed to be overridden.
Noncompliant Code Example

void doSomething(int a, int b) { // Noncompliant, "b" is unused
 compute(a);
}

Compliant Solution

void doSomething(int a) {
 compute(a);
}

See

 MISRA C++:2008, 0-1-11 - There shall be no unused parameters (named or unnamed) in nonvirtual functions.
 MISRA C:2012, 2.7 - There should be no unused parameters in functions
 CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

 C++ Core
 Guidelines - F.9 - Unused parameters should be unnamed

	CODE_SMELL
	MAJOR
	35

	Polymorphic base class destructor should be either public virtual or protected non-virtual
	When a class with no virtual destructor is used as a base class, surprises can occur if pointers to instances of this class are used.
Specifically, if an instance of a derived class is deleted through a pointer to the base type, the behavior is undefined and can lead to
resource leaks, crashes or corrupted memory.
If it is not expected for base class pointers to be deleted, then the destructor should be made protected to avoid such a misuse.
Noncompliant Code Example

class Base { // Noncompliant: no destructor is supplied, and the default version is not virtual
public:
 Base() {}
 virtual void doSomething() {}
};

class Derived : public Base {
}

void f() {
 Base *p = new Derived();
 delete p; // Undefined behavior
}

Compliant Solution

class Base {
public:
 Base() {}
 virtual ~Base() = default;
 virtual void doSomething() {}
};

See

 CERT, OOP52-CPP. - Do not delete a polymorphic object without a virtual destructor

 Virtuality article
 C++ Core Guidelines C.35 - A base class destructor should be either public and virtual, or protected and nonvirtual
 C++ Core Guidelines C.127 - A class with a virtual function should have a virtual or protected destructor

	CODE_SMELL
	MAJOR
	5

	Pass by reference to const should be used for large input parameters
	To pass an input parameter to a function, there are two possibilities: pass by value, or pass by reference to const. Which one is best depends of
the size of the object, which is an indicator of the cost to copy it. A small one, with cheap copy constructors, should be passed by value, while a
larger one should be passed by reference to const.
This rule detects when a parameter has been passed by value, while it should have been passed by reference to const:

 Because it is too large
 Because it contains virtual functions and passing it by value will slice the extra members if you happen to pass an object of a derived class.

In some cases, you may want to pass by value a large object, if you modify it in the function but you don’t want the initial object to be impacted
by these changes. We do not detect such a situation, which will be a false positive.
There are other ways to pass input parameters for sinks (for instance by rvalue references), but this rule is only about the choice between pass by
value and pass by reference to const.
Noncompliant Code Example

struct Student {string firstName; string lastName; Date birthDate;};
class XmlNode {
 virtual ~XmlNode();
 virtual string toString();
};
void registerStudent(School &school, Student p); // Noncompliant, Student is a large object
void dump(ostream &out, XmlNode node); // Noncompliant, XmlNode is a polymorphic type

Compliant Solution

struct Student {string firstName; string lastName; Date birthDate;};
class XmlNode {
 virtual ~XmlNode();
 virtual string toString();
};
void registerStudent(School &school, Student const & p); // Compliant, avoids useless copy
void dump(ostream &out, XmlNode const &node); // Compliant, no slicing

Exceptions
This rule does not flag large objects passed by value to coroutines because passing arguments by reference to a coroutine often leads to dangling
references, e.g., after suspension and resumpion of the coroutine.
See

 C++ Core Guidelines F.16 - For “in” parameters, pass cheaply-copied types by value and others by reference to const

	CODE_SMELL
	MAJOR
	152

	Sections of code should not be commented out
	Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
Exceptions
This rule does not apply to code documentation using Doxygen, QDoc, markdown, or HTML tags.
See

 MISRA C:2004, 2.4 - Sections of code should not be "commented out".
 MISRA C++:2008, 2-7-2 - Sections of code shall not be "commented out" using C-style comments.
 MISRA C++:2008, 2-7-3 - Sections of code should not be "commented out" using C++ comments.
 MISRA C:2012, Dir. 4.4 - Sections of code should not be "commented out"

	CODE_SMELL
	MAJOR
	243

	"switch" statements should not have too many "case" clauses
	When switch statements have large sets of case clauses, it is usually an attempt to map two sets of data. A real map
structure would be more readable and maintainable, and should be used instead.
	CODE_SMELL
	MAJOR
	3

	Structures should not have too many fields
	A structure, such as a struct, union or class that grows too much tends to aggregate too many
responsibilities and inevitably becomes harder to understand and therefore to maintain, and having a lot of fields is an indication that a structure
has grown too large.
Above a specific threshold, it is strongly advised to refactor the structure into smaller ones that focus on well defined topics.
	CODE_SMELL
	MAJOR
	17

	Unused assignments should be removed
	A dead store happens when a local variable is assigned a value that is not read by any subsequent instruction. Calculating or retrieving a value
only to then overwrite it or throw it away, could indicate a serious error in the code. Even if it’s not an error, it is at best a waste of resources.
Therefore all calculated values should be used.
Noncompliant Code Example

i = a + b; // Noncompliant; calculation result not used before value is overwritten
i = compute();

Compliant Solution

i = a + b;
i += compute();

Exceptions
This rule ignores:

 variable declarations initializers
 prefix and postfix increments and decrements x++;
 null pointer assignments x = NULL;
 self assignments (i.e. x = x;)

See

 MITRE, CWE-563 - Assignment to Variable without Use ('Unused Variable')
 CERT, MSC13-C. - Detect and remove unused values
 CERT, MSC56-J. - Detect and remove superfluous code and values

	CODE_SMELL
	MAJOR
	44

	Two branches in a conditional structure should not have exactly the same implementation
	Having two cases in a switch statement or two branches in an if chain with the same implementation is at
best duplicate code, and at worst a coding error. If the same logic is truly needed for both instances, then in an if chain they should
be combined, or for a switch, one should fall through to the other.
Noncompliant Code Example

switch (i) {
 case 1:
 doFirstThing();
 doSomething();
 break;
 case 2:
 doSomethingDifferent();
 break;
 case 3: // Noncompliant; duplicates case 1's implementation
 doFirstThing();
 doSomething();
 break;
 default:
 doTheRest();
}

if (a >= 0 && a < 10) {
 doFirstThing();
 doTheThing();
}
else if (a >= 10 && a < 20) {
 doTheOtherThing();
}
else if (a >= 20 && a < 50) {
 doFirstThing();
 doTheThing(); // Noncompliant; duplicates first condition
}
else {
 doTheRest();
}

Exceptions
Blocks in an if chain that contain a single line of code are ignored, as are blocks in a switch statement that contain a
single line of code with or without a following break.

if (a == 1) {
 doSomething(); //no issue, usually this is done on purpose to increase the readability
} else if (a == 2) {
 doSomethingElse();
} else {
 doSomething();
}

But this exception does not apply to if chains without else-s, or to switch-es without default clauses when
all branches have the same single line of code. In case of if chains with else-s, or of switch-es with default
clauses, rule S3923 raises a bug.

if (a == 1) {
 doSomething(); //Noncompliant, this might have been done on purpose but probably not
} else if (a == 2) {
 doSomething();
}

	CODE_SMELL
	MAJOR
	13

	"static" members should be accessed statically
	While it is possible to access static members from a class instance, it’s bad form, and considered by most to be misleading
because it implies to the readers of your code that there’s an instance of the member per class instance.
Noncompliant Code Example

class MyClass {
public :
 static void Mymethod() {
 // ...
 }
};

MyClass* pmyclass = new MyClass();
pmyclass->Mymethod(); // Noncompliant

Compliant Solution

class MyClass {
public :
 static Mymethod() {
 // ...
 }
};

Myclass::Mymethod();

	CODE_SMELL
	MAJOR
	49

	Multiline blocks should be enclosed in curly braces
	Curly braces can be omitted from a one-line block, such as with an if statement or for loop, but doing so can be
misleading and induce bugs.
This rule raises an issue when the whitespacing of the lines after a one line block indicates an intent to include those lines in the block, but
the omission of curly braces means the lines will be unconditionally executed once.
Note that this rule considers tab characters to be equivalent to 1 space. If you mix spaces and tabs you will sometimes see issues in code which
look fine in your editor but are confusing when you change the size of tabs.
Noncompliant Code Example

if (condition)
 firstActionInBlock();
 secondAction(); // Noncompliant; executed unconditionally
thirdAction();

if (condition) firstActionInBlock(); secondAction(); // Noncompliant; secondAction executed unconditionally

if (condition) firstActionInBlock(); // Noncompliant
 secondAction(); // Executed unconditionally

if (condition); secondAction(); // Noncompliant; secondAction executed unconditionally

String str = null;
for (int i = 0; i < array.length; i++)
 str = array[i];
 doTheThing(str); // Noncompliant; executed only on last array element

Compliant Solution

if (condition) {
 firstActionInBlock();
 secondAction();
}
thirdAction();

String str = null;
for (int i = 0; i < array.length; i++) {
 str = array[i];
 doTheThing(str);
}

See

 MITRE, CWE-483 - Incorrect Block Delimitation

	CODE_SMELL
	MAJOR
	1

	Member data should be initialized in-class or in a constructor initialization list
	There are three ways to initialize a non-static data member in a class:

 With an in-class initializer (since C++11)
 In the initialization list of a constructor
 In the constructor body

You should use those methods in that order of preference. When applicable, in-class initializers are best, because they apply automatically to all
constructors of the class (except for default copy/move constructors and constructors where an explicit initialization for this member is provided).
But they can only be used for initialization with constant values.
If your member value depends on a parameter, you can initialize it in the constructor’s initialization list. If the initialization is complex, you
can define a function to compute the value, and use this function in the initializer list.
Initialization in the constructor body has several issues. First, it’s not an initialization, but an assignment. Which means it will not work with
all data types (const-qualified members, members of reference type, member of a type without default constructor…). And even if it works, the member
will first be initialized, then assigned to, which means useless operations will take place. To prevent "use-before-set" errors, it’s better to
immediately initialize the member with its real value.
It’s hard to find a good example where setting the value of a member in the constructor would be appropriate. One case might be when you assign to
several data members in one operation. As a consequence constructor bodies are empty in many situations.
This rules raises an issue in two conditions:

 When you assign a value to a member variable in the body of a constructor.
 When you default-initialize in an initializer list a member variable, that would be value-initialized by default
 For C++11 or later, when you initialize a member variable in the initializer list of a constructor, but could have done so directly in the
 class:

 The variable has either no in-class initializer, or an in-class initializer with the same value as in the constructor
 The initial value does not depend on a constructor parameter

Noncompliant Code Example

class S {
 int i1;
 int i2;
 int i3;
public:
 S(int halfValue, int i2 = 0) : i2(i2), i3(42) { // Noncompliant for i1 and i3, compliant for i2
 this->i1 = 2*halfValue;
 }
};

Compliant Solution

class S {
 int i1;
 int i2;
 int i3 = 42; // In-class initializer
public:
 S(int halfValue, int i2 = 0) : i1(2*halfValue), i2(i2) {} // Compliant
};

See

 C++ Core Guidelines C.48 - Prefer in-class initializers to member initializers in constructors for constant initializers
 C++ Core
 Guidelines C.49 - Prefer initialization to assignment in constructors

	CODE_SMELL
	MAJOR
	80

	Conditional operators should not be nested
	Just because you can do something, doesn’t mean you should, and that’s the case with nested ternary operations. Nesting ternary operators
results in the kind of code that may seem clear as day when you write it, but six months later will leave maintainers (or worse - future you)
scratching their heads and cursing.
Instead, err on the side of clarity, and use another line to express the nested operation as a separate statement.
Noncompliant Code Example

int max(int p1, int p2, int p3) {
 return p1 > p2 ? (p1 > p3 ? p1 : p3) : (p2 > p3 ? p2 : p3); // Noncompliant
}

Compliant Solution

int max(int p1, int p2, int p3) {
 if (p1 > p2) {
 return p1 > p3 ? p1 : p3;
 } else {
 return p2 > p3 ? p2 : p3;
 }
}

Exceptions
For C++11 mode only, the issue is not raised for ternary operators used inside constexpr functions. In C++11 such functions are
limited to just a return statement, so the use of a ternary operator is required in them. This restriction is lifted in later standards, and thus
issues are raised.
	CODE_SMELL
	MAJOR
	9

	Function pointers should not be used as function parameters
	When you want to define a function that can accept a function pointer as an argument, there are three ways in C++ to declare the parameter
type:

 A function pointer: void f(void (*callback)());
 A std::function: void f(std::function<void()> callback);
 A template argument: template<class Callback> void f(Callback callback);

Using a function pointer is an inferior solution, for the following reasons:

 Only a function pointer can be passed as an argument, while the other options offer the caller more flexibility because they can take more
 advanced functors, such as lambdas with some captured state
 The syntax is obscure
 It typically has worse performance than the template parameter solution.

See S5213 for a discussion of how to choose between std::function and a template parameter.
Noncompliant Code Example

using Criterion = bool (*)(DataPoint const&);
void filter(DataSet* data, Criterion criterion); // Noncompliant

using Callback = void (*)(EventInfo const&);
class Button {
public:
 void addOnClick(Callback c) {myOnClickHandler = c;} // Noncompliant
private:
 Callback myOnClickHandler;
};

Compliant Solution

template<class Criterion>
void filter(DataSet* data, Criterion criterion); // Compliant, uses the more efficient template argument

using Callback = std::function<void(EventInfo const&)>;
class Button {
public:
 void addOnClick(Callback c) {myOnClickHandler = c;} // Compliant, uses the more flexible std::function
private:
 Callback myOnClickHandler;
};

See

 C++
 Core Guidelines T.40 - Use function objects to pass operations to algorithms

	CODE_SMELL
	MAJOR
	7

	Implicit casts should not lower precision
	Implicit casts discard information when the resulting type has a lower precision than the original type.
Noncompliant Code Example

int a = 2.1f; // Noncompliant

long double f();
double d = 0;
d += f(); // Noncompliant

	CODE_SMELL
	MAJOR
	498

	Size argument of memory functions should be consistent
	The memory functions memset, memcpy, memmove, and memcmp take as last argument the number of
bytes they will work on. If this size argument is badly defined (eg it is greater than the size of the destination object), it can lead to undefined
behavior.
This rule raises an issue when the size argument of a memory function seems inconsistent with the other arguments of the function.
Noncompliant Code Example

struct A {};

void f() {
 struct A dest;
 memset(&dest, 0, sizeof(&dest)); // Noncompliant; size is based on "A*" when the destination is of type "A"
 struct A src;
 memcpy(&dest, &src, sizeof(&dest)); // Noncompliant; size is based on "A*" when the source is of type "A"

 if (memset(&dest, 0, sizeof(dest) != 0)) { // Noncompliant; size argument is a comparison
 // ...
 }
}

Compliant Solution

struct A {};

void f() {
 struct A dest;
 memset(&dest, 0, sizeof(dest)); // Compliant
 struct A src;
 memcpy(&dest, &src, sizeof(dest)); // Compliant

 if (memset(&dest, 0, sizeof(dest)) != 0) { // Compliant
 // ...
 }
}

	CODE_SMELL
	MAJOR
	1

	Classes should not contain both public and private data members
	Mixing (non-const) public and private data members is a bad practice because it causes confusion about the intention of
the class:

 If the class is a collection of loosely related values, all the data members should be public.
 On the other hand, if the class is trying to maintain an invariant, all the data members should be private.

If we mix data members with different levels of accessibility, the purpose of the class is muddled.
Noncompliant Code Example

class MyClass // Noncompliant
{
public:
 int firstNumber1() const { return firstNumber; }
 void setFirstNumber(int firstNumber) { this->firstNumber = firstNumber; }
 int secondNumber = 2;
 const int constNumber = 0; // const data members are fine
private:
 int firstNumber = 1;
};

Compliant Solution

class MyClass // Depending on the case, the solution might be different. Here, since this class does not enforce any invariant, we make all the data members public
{
public:
 int firstNumber;
 int secondNumber;
 const int constNumber = 0;
};

Exceptions
Since const data members cannot be modified, it’s not breaking encapsulation to make a const value public, even in a class that
enforces an invariant.
See

 C++ Core Guidelines C.134: Ensure all non-const data members have the same access level
 C++ Core Guidelines
 C.9: Minimize exposure of members

	CODE_SMELL
	MAJOR
	19

	Member functions that don't mutate their objects should be declared "const"
	No member function can be invoked on a const-qualified object unless the member function is declared "const".
Qualifying member functions that don’t mutate their object with the "const" qualifier makes your interface easier to understand; you can deduce
without diving into implementation if a member function is going to mutate its object.
Also, const-qualified member functions make working with const-qualified objects possible. The compiler ensures that only member functions that are
declared "const" can be invoked on "const" objects. Avoiding declaring non-mutating member functions const might break const-correctness: it will
not be possible to invoke such non-mutating functions on const-qualified objects.
Noncompliant Code Example

class A {
 void f(){ // Noncompliant
 std::cout<< "f doesn't mutate A";
 }
};

Compliant Solution

class A {
 void f() const {
 std::cout<< "f doesn't mutate A";
 }
};

Exceptions
Virtual member functions that don’t mutate their objects don’t necessarily need to be declared const. This might be done in order to allow them to
be overridden by non-const functions.
	CODE_SMELL
	MAJOR
	62

	Integer literals should not be cast to bool
	Even though C++ provides "true" and "false" as boolean literals, it allows using integer literals in places where boolean type is expected. This
can be done through implicit or explicit casting.
In contexts where boolean type is expected, integral literals should be avoided. Using boolean literals instead would make your code more readable
and less error-prone.
Noncompliant Code Example

void f(){
 bool isX = 1; // Noncompliant
 bool isY = 0; // Noncompliant
 bool ternaryIsX = isX ? 1 : isY; // Noncompliant
 bool cCast= (bool)0; // Noncompliant
 bool cppCast= static_cast<bool>(1); // Noncompliant
 if(1) { // Noncompliant
 ...
 }
}

Compliant Solution

void f(){
 bool isX = true;
 bool isY = false;
 bool ternaryIsX = isX ? true : isY;
 bool cCast= false;
 bool cppCast= true;
 if(true) {
 ...
 }
}

	CODE_SMELL
	MAJOR
	40

	"auto" should be used to avoid repetition of types
	When used as a type specifier in a declaration, auto allows the compiler to deduce the type of a variable based on the type of the
initialization expression.
When the spelling of the initialization expression already contains the type of the declared variable, it leaves no ambiguity and auto
should be used as it makes the code easier to read and reduces duplication. This includes initializations using new, template factory
functions for smart pointers and cast expressions.
The rule S6234 detects more controversial situations when auto can improve readability.
Noncompliant Code Example

#include <memory>
#include <vector>

class C {};
class LongAndBoringClassName : public C {};

void f() {
 LongAndBoringClassName *newClass1 = new LongAndBoringClassName(); // Noncompliant
 LongAndBoringClassName *newClass2 = new LongAndBoringClassName(); // Noncompliant

 std::unique_ptr<LongAndBoringClassName> newClass3 = std::make_unique<LongAndBoringClassName>(); // Noncompliant
 std::shared_ptr<LongAndBoringClassName> newClass4 = std::make_shared<LongAndBoringClassName>(); // Noncompliant

 C* c = new LongAndBoringClassName(); // Compliant
 LongAndBoringClassName *newClass5 = static_cast<LongAndBoringClassName*>(c); // Noncompliant
}

Compliant Solution

#include <memory>
#include <vector>

class C {};
class LongAndBoringClassName : public C {};

void f() {
 auto newClass1 = new LongAndBoringClassName(); // Compliant
 auto *newClass2 = new LongAndBoringClassName(); // Compliant

 auto newClass3 = std::make_unique<LongAndBoringClassName>(); // Compliant
 auto newClass4 = std::make_shared<LongAndBoringClassName>(); // Compliant

 C* c = new LongAndBoringClassName(); // Compliant
 auto newClass5 = static_cast<LongAndBoringClassName*>(c); // Compliant
}

See

 C++ Core
 Guidelines ES.11 - Use auto to avoid redundant repetition of type names

	CODE_SMELL
	MAJOR
	316

	C-style array should not be used
	C-style arrays (such as int i[10]) are not very convenient to use:

 They are fixed size (even C VLA are not truly variable size, and they are not supported in C++)
 If the number of elements in the array can vary, it will lead to manual memory allocation (or people will use fixed-size arrays that "should be
 large enough", which is both a waste of memory and a limitation of the program)
 It is very easy to lose the size of the array since an array passed to a function decays into a pointer

The C++ standard library proposes two types that are better than C-style arrays and together cover all the use cases of C-style arrays:

 For fixed-size arrays, where the memory is on the stack, use std::array. It is like a C-style array, except that it has a normal
 argument passing semantic, and the size is always a part of the type. If std::array is not available to you (before C++11), you can
 roll your own version.
 For variable-size arrays, use std::vector. It can be resized and handles memory allocation transparently.
 For character strings, you should use std::string instead of arrays of characters.
 For arrays of characters that are not strings (e.g., alphabet, exit codes, keyboard control list) perfer std::array or
 std::vector as per the first two bullets.

The rule S945 is related to this rule but focuses on passing arguments of an array type. S5025 will flag the use of dynamic
memory allocation that could be replaced by std::vector.
Noncompliant Code Example

void f() {
 int a[10]; // Noncompliant
}

Compliant Solution

void f() {
 std::array<int, 10> a1; // If the size really is a constant
 // Or
 std::vector<int>a2; // For variable size

 auto s = "Hello!"; // Compliant by exception
}

Exceptions
This rule will not report the use of C-style arrays in extern "C" code (since those arrays are often required here for compatibility
with external code) and in the arguments of main.
See

 C++ Core Guidelines SL.con.1 - Prefer using STL array or vector instead of a C array

	CODE_SMELL
	MAJOR
	365

	Emplacement should be prefered when insertion creates a temporary with sequence containers
	In some cases, emplace_back is more efficient and less verbose than push_back. It is expected to be faster when the
object is constructed into the container instead of being constructed then assigned. This also happens when the pushed object has a different type
from the one held by the container.
This rule supports standard sequence containers: std::vector, std::list, std::deque,
std::forward_list, std::stack, std::queue and std::priority_queue.
An issue will only be raised when an insertion function on a supported container leads to the construction of a large temporary object that can be
avoided by using the provided emplacement member function.
Noncompliant Code Example

class Circle { // Large object
std::string s;
int x;
int y;
int radius;
public:
 Circle(int x, int y, int radius);
}

void f() {
 std::vector<std::pair<int, std::string>> vec1;
 std::string s;
 vec1.push_back(std::make_pair(21, s)); // Noncompliant
 std::vector<std::string> vec2;
 vec2.push_back("randomStr"); // Noncompliant, conversion from char const * to string
 std::vector<Circle> circles;
 circles.push_back(Circle{2, 42, 10}); // Noncompliant
}

Compliant Solution

void f() {
 std::vector<std::pair<int, std::string>> vec1;
 std::string s;
 vec1.emplace_back(21, s); // Compliant
 std::vector<std::string> vec2;
 vec2.emplace_back("randomStr"); // Compliant
 std::vector<Circle> circles;
 circles.emplace_back(2, 42, 10); // Compliant
}

Exceptions

 When emplace_back isn’t exception-safe. When emplacing in a container of smart pointers a raw new expression, the memory will be
 leaked if emplace_back throws an exception.

See

 Effective modern C++ item 42: Consider emplacement instead of insertion.

	CODE_SMELL
	MAJOR
	20

	Transparent comparator should be used with associative "std::string" containers
	C++14 has introduced transparent comparators: the function objects that support heterogeneous comparison (i.e., comparison of values of different
types, such as std::string and char const*). When using such comparator, the search-optimized containers, namely,
std::set, std::multiset, std::map, and std::multimap, enable additional lookup-function overloads
that support types different from the key_type.
Invoking a lookup function (such as find, count, or lower_bound) with a non-std::string
argument, i.e., a raw C-string literal (s.find("Nemo")), or a temporary std::string created of an
std::string_view, on a container of std::string with non-transparent comparator, leads to a temporary
std::string object, because the lookup function will support only an argument of the key_type.
C++20 extends support for heterogeneous lookup to unordered associative containers (std::unordered_set,
std::unordered_multiset, std::unordered_map, and std::unordered_multimap) that provide additional overloads
when the equality functor and the hasher are both transparent. The standard provides transparent equality functors in the form
std::equal_to<>. However, there is no standard transparent hasher object and one needs to be defined in the program. For
std::string such hasher may be provided by converting each supplied object to std::string_view and hashing it using
std::hash<std::string_view>:

struct StringHash {
 using is_transparent = void; // enables heterogeneous lookup

 std::size_t operator()(std::string_view sv) const {
 std::hash<std::string_view> hasher;
 return hasher(sv);
 }
};

Prefer using a transparent comparator with associative std::string containers to avoid creating the temporary. Note that transparent
comparators are strongly discouraged if used with types that are not directly comparable as it will lead to the creation of
O(log(container.size()))) temporaries with lookup functions such as find, count, and
lower_bound.
Custom non-transparent functor (comparator, equality or hasher) may have different semantics than corresponding operators on
std:::string. In such case, the heterogeneous lookup can still be enabled, by declaring the is_transparent nested type in
the functor, and adjusting the implementation to accept either std::string_view or any type (i.e. turning it into a template). The later
change is required to avoid the creation of std::string temporaries for each invocation and thus degradation of performance.
This rule will detect std::set, std::multiset, std::map, std::multimap, and since C++20
std::unordered_set, std::unordered_multiset, std::unordered_map, and std::unordered_multimap
types, that use std::string as key and do not enable heterogeneous lookup.
Noncompliant Code Example

void f() {
 // the default std::less<std::string> is not transparent
 std::set<std::string> m = { "Dory", "Marlin", "Nemo", "Emo"}; // Noncompliant
 m.find("Nemo"); // This leads to a temporary std::string{"Nemo"}.
 std::string_view n{"Nemo"};
 m.find(std::string(n)); // extra temporary std::string
}

void g() {
 // the default std::equal_to<std::string> and std::hash<std::string> are not transparent
 std::unordered_set<std::string> m = { "Dory", "Marlin", "Nemo", "Emo"}; // Noncompliant
 m.find("Nemo"); // This leads to a temporary std::string{"Nemo"}.
 std::string_view n{"Nemo"};
 m.find(std::string(n)); // extra temporary std::string
}

struct UpToTenLess {
 bool operator()(const std::string& lhs, const std::string& rhs) const {
 return lhs.compare(0, 10, rhs, 0, 10);
 }
};

void g() {
 // UpToTenLess is not transparent
 std::set<std::string, UpToTenLess> m = { "Dory", "Marlin", "Nemo", "Emo"}; // Noncompliant
 m.find("Nemo"); // This leads to a temporary std::string{"Nemo"}.
 std::string_view n{"Nemo"};
 m.find(std::string(n)); // extra temporary std::string
}

Compliant Solution

void f() {
 // std::less<> is transparent
 std::set<std::string, std::less<>> m = // Compliant
 { "Dory", "Marlin", "Nemo", "Emo"};
 m.find("Nemo"); // No temporary is created, the raw C-string literal
 // is compared directly with std::string elements
 std::string_view n{"Nemo"};
 m.find(n); // No need to create the std::string
}

struct StringHash {
 using is_transparent = void; // enables heterogenous lookup

 std::size_t operator()(std::string_view sv) const {
 std::hash<std::string_view> hasher;
 return hasher(sv);
 }
};

void g() {
 // std::equal_to<> and StringHash are both transparent
 std::unordered_set<std::string, StringHash, std::equal_to<>> m = { "Dory", "Marlin", "Nemo", "Emo"}; // Compliant
 m.find("Nemo"); // std::string_view is created out of raw C-string literal
 std::string_view n{"Nemo"};
 m.find(n); // No need to create a std::string
}

struct UpToTenLess {
 using is_transparent = void;

 bool operator()(std::string_view lhs, std::string_view rhs) const {
 return lhs.compare(0, 10, rhs, 0, 10);
 }
};

void g() {
 // UpToTenLess is now transparent
 std::set<std::string, UpToTenLess> m = { "Dory", "Marlin", "Nemo", "Emo"};
 m.find("Nemo"); // std::string_view is created out of raw C-string literal
 std::string_view n{"Nemo"};
 m.find(n); // No need to create a std::string
}

See
S6021 for when it might be a bad idea to use transparent comparators.
	CODE_SMELL
	MAJOR
	71

	If a function has internal linkage then all re-declarations shall include the static storage class specifer
	This rule is a strict implementation of a MISRA (Motor Industry Software Reliability Association) rule. MISRA defines best practices for developing
safety-critical software. You can learn more about this rule in the MISRA documents referenced below.
See

 MISRA C++ 2008, 3-3-2
 MISRA C 2004, 8.11
 MISRA C 2012, 8.8

	CODE_SMELL
	MAJOR
	499

	"bool" expressions should not be used as operands to built-in operators other than =, &&, ||, !, ==, !=, unary &, and the conditional operator
	The use of bool operands with other operators is unlikely to be meaningful (or intended). Best case it will be confusing to
maintainers, worst case it will not have the intended effect. Either way, it is highly recommended to stick to boolean operators when dealing with
bool operands.
This rule allows the detection of such uses, which often occur because the logical operators (&&, || and
!) can be easily confused with the bitwise operators (&, | and ~).
Noncompliant Code Example

bool b1 = true;
bool b2 = false;
int8_t s8a;
if (b1 & b2) // Noncompliant
if (~b1) // Noncompliant
if (b1 < b2) // Noncompliant
if (b1 ^ b2) // Noncompliant

Compliant Solution

if (b1 && b2)
if (!b1)
if (b1 == false)
if (b1 == b2)
if (b1 != b2)
s8a = b1 ? 3 : 7;

Exceptions
Operators |= and &= are ignored when used with bool operands. Operator ++ is also ignored
with a bool operand because it is covered by rule S2668.

void test(bool b1, bool b2, int i1) {
 b1 |= b2; // ignored
 b1++; // ignored here, handled by S2668
 b1 &= b2; // ignored
 b1 &= i1; // Noncompliant; right operand is not a bool
}

See

 MISRA C++:2008, 4-5-1 - Expressions with type bool shall not be used as operands to built-in operators other than the assignment operator =,
 the logical operators &&, ||, !, the equality operators == and !=, the unary & operator, and the conditional operator.

	CODE_SMELL
	MAJOR
	17

	Loops should not have more than one "break" or "goto" statement
	Restricting the number of exits from a loop is done in the interests of good structured programming. One break or goto
statement is acceptable in a loop since this allows, for example, for dual-outcome loops or optimal coding.
Noncompliant Code Example
With the default threshold of 1:

for (int i = 0; i < 10; i++) {
 if (...) {
 break; // Compliant
 }
 else if (...) {
 break; // Non-compliant - second jump from loop
 }
 else {
 ...
 }
}
while (...) {
 if (...) {
 break; // Compliant
 }
 if (...) {
 break; // Non-compliant - second jump from loop
 }
}

Compliant Solution

for (int i = 0; i < 10; i++) {
 if (...) {
 break; // Compliant
 }
}
while (...) {
 if (...) {
 break; // Compliant
 }
}

See

 MISRA C:2004, 14.6 - For any iteration statement there shall be at most one break statement used for loop termination.
 MISRA C++:2008, 6-6-4 - For any iteration statement there shall be no more than one break or goto statement used for loop termination.
 MISRA C:2012, 15.4 - There should be no more than one break or goto statement used to terminate any iteration statement

	CODE_SMELL
	MAJOR
	20

	#include directives in a file should only be preceded by other preprocessor directives or comments
	To aid code readability, all the #include directives in a particular code file should be grouped together near the top of the file.
The only items which may precede an #include in a file are other preprocessor directives or comments.
Additionally, an #include may appear within an extern "C" block, this can be used for instance to include a C file from a
C++ file.
Noncompliant Code Example

#include <h1.h> /* Compliant */
int32_t i;
#include <f2.h> /* Noncompliant */

Compliant Solution

#include <h1.h>
#include <f2.h>
extern "C" {
#include <f3.h>
}

int32_t i;

See

 MISRA C:2004, 19.1 - #include statements in a file should only be preceded by other preprocessor directives or comments.
 MISRA C++:2008, 16-0-1 - #include directives in a file shall only be preceded by other preprocessor directives or comments.
 MISRA C:2012, 20.1 - #include directives should only be preceded by preprocessor directives or comments

	CODE_SMELL
	MAJOR
	131

	"/*" and "//" should not be used within comments
	Defining a nested single-line comment within a multi-line comment invites errors. It may lead a developer to wrongly think that the lines located
after the single-line comment are not part of the comment.
If a comment starting sequence, /* or //, occurs within a /* comment, is it quite likely to be caused by a
missing */ comment ending sequence.
If a comment starting sequence occurs within a // comment, it is probably because a region of code has been commented-out using
//.
Noncompliant Code Example

/* some comment, end comment marker accidentally omitted
// Make sure this function is called in a thread safe context
Perform_Critical_Safety_Function(X);
...
/* this comment is non-compliant */

Exceptions
The sequence // is permitted within a // comment.
See

 CERT, MSC04-C. - Use comments consistently and in a readable fashion
 MISRA C:2004, 2.3 - The character sequence /* shall not be used within a comment.
 MISRA C++:2008, 2-7-1 - The character sequence /* shall not be used within a C-style comment.
 MISRA C:2012, 3.1 - The character sequences /* and // shall not be used within a comment

	CODE_SMELL
	MINOR
	12

	Empty statements should be removed
	Empty statements, i.e. ;, are usually introduced by mistake, for example because:

 It was meant to be replaced by an actual statement, but this was forgotten.
 There was a typo which lead the semicolon to be doubled, i.e. ;;.

Noncompliant Code Example

void doSomething() {
 ; // Noncompliant - was used as a kind of TODO marker
}

Compliant Solution

void doSomething() {
}

Exceptions
In the case of empty expanded macro and in the case of 2 consecutive semi-colons when one of the two is part of a macro-definition then the issue
is not raised.
Example:

#define A(x) x;
#define LOG(x)

void fun() {
 A(5);
 LOG(X);
}

See

 MISRA C:2004, 14.3 - Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a comment provided that
 the first character following the null statement is a white-space character.
 MISRA C++:2008, 6-2-3 - Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a comment, provided
 that the first character following the null statement is a white-space character.
 CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

 CERT, MSC51-J. - Do not place a semicolon immediately following an if, for, or while
 condition
 CERT, EXP15-C. - Do not place a semicolon on the same line as an if, for, or while
 statement

	CODE_SMELL
	MINOR
	10

	Do not check emptiness with a size method when a dedicated function exists
	Using size() or count() method to test for emptiness works, but using empty() or is_empty()
methods makes the code more readable and can be more performant. The time complexity of any empty()/is_empty() method
implementation should be O(1) whereas some implementations of size() or count() can be O(n).
Noncompliant Code Example

void fun(const std::vector<int> &myVector) {
 if (myVector.size() == 0) { // Noncompliant
 // do something
 }
}

Compliant Solution

void fun(const std::vector<int> &myVector) {
 if (myVector.empty()) {
 // do something
 }
}

See

 C++
 Core Guidelines - T.143 - Don’t write unintentionally nongeneric code

	CODE_SMELL
	MINOR
	19

	Overriding member functions should do more than simply call the same member in the base class
	Overriding a function just to call the overridden function from the base class without performing any other actions can be useless and
misleading.
There are cases when it is justified, because redeclaring the function allows some side effects:

 Changing the visibility of the function in the derived class
 Preventing the base class function from being hidden by an overload added in the derived class (a using declaration could have the same effect)

 To resolve ambiguities in cases of multiple inheritance
 To make an inherited function final

This rule raises an issue when an override which is not in one of the aforementioned situation only calls the overridden function, directly
forwarding its arguments.
Noncompliant Code Example

class Base {
public:
 virtual void f();
};

class Derived : public Base {
public:
 virtual void f() {
 Base::f(); // Noncompliant
 }
};

Compliant Solution

class Base {
public:
 virtual void f();
};

class Derived : public Base {
};

or

class Base {
public:
 void f();
};

class Derived : public Base {
private: // change of visibility
 virtual void f() {
 Base::f();
 }
};

or

class Base {
public:
 void f();
};

class Derived : public Base {
public:
 void f(int i);
 void f() { // Prevents hiding by f(int)
 Base::f();
 }
};

or

class Base {
public:
 virtual void f();
};

class Derived : public Base {
public:
 void f() final { // final
 Base::f();
 }
};

	CODE_SMELL
	MINOR
	3

	Nested code blocks should not be used
	Nested code blocks can be used to create a new scope: variables declared within that block cannot be accessed from the outside, and their lifetime
end at the end of the block.
While this might seem convenient, using this feature in a function often indicates that it has too many responsibilities and should be refactored
into smaller functions.
A nested code block is acceptable when it surrounds all the statements inside an alternative of a switch (a case xxx: or
a default:) because it prevents variable declarations from polluting other cases.
Noncompliant Code Example

void f(Cache &c, int data) {
 int value;
 { // Noncompliant
 std::scoped_lock l(c.getMutex());
 if (c.hasKey(data)) {
 value = c.get(data);
 } else {
 value = compute(data);
 c.set(data, value);
 }
 } // Releases the mutex

 switch(value) {
 case 1:
 { // Noncompliant, some statements are outside of the block
 int result = compute(value);
 save(result);
 }
 log();
 break;
 case 2:
 // ...
 }
}

Compliant Solution

int getValue(Cache &c, int data) {
 std::scoped_lock l(c.getMutex());
 if (c.hasKey(data)) {
 return c.get(data);
 } else {
 value = compute(data);
 c.set(data, value);
 return value;
 }
}

void f(Cache &c, int data) {
 int value = getValue(c, data);

 switch(value) {
 case 1:
 { // Compliant, limits the scope of "result"
 int result = compute(value);
 save(result);
 log();
 }
 break;
 case 2:
 // ...
 }

	CODE_SMELL
	MINOR
	6

	Unused local variables should be removed
	If a local variable is declared but not used, it is dead code and should be removed. Doing so will improve maintainability because developers will
not wonder what the variable is used for.
Noncompliant Code Example

int numberOfMinutes(int hours) {
 int seconds = 0; // Noncompliant, never used
 return hours * 60;
}

Compliant Solution

int numberOfMinutes(int hours) {
 return hours * 60;
}

Exceptions
No issue is raised on local variables having the attribute "unused" and on object declarations with non-empty arguments.
	CODE_SMELL
	MINOR
	77

	Init-declarator-lists and member-declarator-lists should consist of single init-declarators and member-declarators respectively
	Where multiple declarators appear in the same declaration the type of an identifier may not meet developer expectations.
Noncompliant Code Example

int i1; int j1; // Compliant, but not preferred
int i2, *j2; // Noncompliant
int *i3,
 &j3 = i2; // Noncompliant

Compliant Solution

int i1;
int j1;
int i2;
int *j2;
int *i3;
int &j3 = i2;

See

 MISRA C++:2008, 8-0-1 - An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-declarator
 respectively
 CERT, DCL52-J. - Do not declare more than one variable per declaration
 CERT, DCL04-C. - Do not declare more than one variable per declaration
 C++ Core
 Guidelines - ES.10 - Declare one name (only) per declaration

	CODE_SMELL
	MINOR
	764

	Redundant casts should not be used
	Unnecessary casting expressions make the code harder to read and understand.
Noncompliant Code Example

int example(int i) {
 int result = static_cast<int>(i + 42); // Noncompliant
 return (int) result; // Noncompliant
}

Compliant Solution

int example(int i) {
 int result = i + 42;
 return result;
}

Exceptions
In some rare cases, redundant cast might be justifiable. For example, when casting from platform dependant type; your cast might be redundant on
one platform but not on the others.
	CODE_SMELL
	MINOR
	71

	Members should be initialized in the order they are declared
	Class members are initialized in the order in which they are declared in the class, not the order in which they appear in the class initializer
list. To avoid errors caused by order-dependent initialization, the order of members in the initialization list should match the order in which
members are declared in a class.
The initialization order, as described here, is:

 If the constructor is for the most-derived class, virtual bases are initialized in the order in which they appear in depth-first left-to-right
 traversal of the base class declarations (left-to-right refers to the appearance in base-specifier lists)
 Then, direct bases are initialized in left-to-right order as they appear in this class’s base-specifier list
 Then, non-static data members are initialized in order of declaration in the class definition.

Noncompliant Code Example

#include <iostream>

struct A {
 A(int num) {
 std::cout << "A(num = " << num << ")" << std::endl;
 }
};

struct B {
 int b;
};

class C : public A, B {
public:
 int x;
 int y;

 C(int i) : B{i}, A{b}, y(i), x(y + 1) { } // Noncompliant
};

int main() {
 C c(1); // Undefined behavior, might print "A(num = 0)"
 std::cout << c.x << " " << c.y << std::endl; // might print "1 1"
}

Compliant Solution

#include <iostream>

struct A {
 A(int num) {
 std::cout << "A(num = " << num << ")" << std::endl;
 }
};

struct B {
 int b;
};

class C : public A, B {
public:
 int x;
 int y;

 C(int i) : A{i}, B{i}, x(i + 1), y(i) { }
};

int main() {
 C c(1); // prints "A(num = 1)"
 std::cout << c.x << " " << c.y << std::endl; // prints "2 1"
}

See

 CERT, OOP53-CPP. - Write constructor member initializers in the canonical order

 C++ Core Guidelines C.47 - Define and initialize member variables in the order of member declaration

	CODE_SMELL
	MINOR
	1

	Empty "case" clauses that fall through to the "default" should be omitted
	Empty case clauses that fall through to the default are useless. Whether or not such a case is present, the
default clause will be invoked. Such cases simply clutter the code, and should be removed.
Noncompliant Code Example

switch(ch)
{
 case 'a' :
 handleA();
 break;
 case 'b' :
 handleB();
 break;
 case 'c' : // Noncompliant
 default:
 handleTheRest();
 break;
}

Compliant Solution

switch(ch)
{
 case 'a' :
 handleA();
 break;
 case 'b' :
 handleB();
 break;
 default:
 handleTheRest();
 break;
}

	CODE_SMELL
	MINOR
	1

	"override" or "final" should be used instead of "virtual"
	In a base class, virtual indicates that a function can be overridden. In a derived class, it indicates an override. But given the
specifier’s dual meaning, it would be both clearer and more sound to use derived class-specific specifiers instead: override or
final.

 final indicates a function override that cannot itself be overridden. The compiler will issue a warning if the
 signature does not match the signature of a base-class virtual function.
 override indicates that a function is intended to override a base-class function. The compiler will issue a warning if this is not
 the case. It is redundant in combination with final.

Noncompliant Code Example

class Counter {
protected:
 int c = 0;
public:
 virtual void count() {
 c++;
 }
};

class FastCounter: public Counter {
public:
 virtual void count() { // Noncompliant
 c += 2;
 }
};

Compliant Solution

class Counter {
protected:
 int c = 0;
public:
 virtual void count() {
 c++;
 }
};

class FastCounter: public Counter {
public:
 void count() override {
 c += 2;
 }
};

or

class Counter {
protected:
 int c = 0;
public:
 virtual void count() {
 c++;
 }
};

class FastCounter: public Counter {
public:
 void count() final {
 c += 2;
 }
};

See

 S1016
 C++ Core Guidelines C.128 - Virtual functions should specify exactly one of virtual, override, or final

	CODE_SMELL
	MINOR
	148

	The "register" storage class specifier should not be used
	According to ISO/IEC 14882 (third edition 2011-09-01) : C++11

 The register specifier shall be applied only to names of variables declared in a block or to function parameters. It specifies that the named
 variable has automatic storage duration. A variable declared without a storage-class-specifier at block scope or declared as a function parameter
 has automatic storage duration by default.
 A register specifier is a hint to the implementation that the variable so declared will be heavily used.[Note: The hint can be ignored and in
 most implementations it will be ignored if the address of the variable is taken. This use is deprecated - end note]

In upcoming versions of C/C++ we can expect this deprecated specifier to not be supported anymore.
	CODE_SMELL
	MINOR
	1

	Access specifiers should not be redundant
	Redundant access specifiers should be removed because they needlessly clutter the code.
Noncompliant Code Example

struct S {
 public: // Noncompliant; does not affect any declaration
 private:
 void method();
 private: // Noncompliant; does not change accessibility level
 int member;
 private: // Noncompliant; does not affect any declaration
};
class C {
 int member;
 private: // Noncompliant; does not change accessibility level
 void method();
};

Compliant Solution

struct S {
 private:
 void method();
 int member;
};
class C {
 int member;
 void method();
};

Exceptions
An access specifier at the very beginning of a class or struct that matches the default access level is ignored even when
it doesn’t change any accessibility levels.

class C {
 private: // redundant but accepted
 // ...
};
struct S {
 public: // redundant but accepted
 // ...
};

Such a specifier is redundant, but ignored to allow classes and structs to be described uniformly.

class C {
 public:
 void call();

 protected:
 int delete();

 private:
 int code;
};
struct S {
 public: // redundant but accepted
 int sum();

 protected:
 int min();

 private:
 int count;
};

	CODE_SMELL
	MINOR
	4

	Scoped enumerations should be used
	There are two kinds of enumeration:

 The unscoped enum inherited from C
 The scoped enumeration enum class or enum struct added in C++ 11

Unscoped enumerations have two major drawbacks that are fixed by scoped enumerations:

 enum elements are visible from their enclosing scope, instead of requiring the scope resolution operator (ex: Red
 instead of Color::Red)
 enum elements convert implicitly to int, so that heterogeneous comparisons such as Red == Big don’t
 result in compile errors.

This rule raises an issue when an unscoped enumeration is used.
Noncompliant Code Example

enum Color { // Noncompliant; replace this "enum" with "enum class".
 Red = 0xff0000,
 Green = 0x00ff00,
 Blue = 0x0000ff
};

enum ProductType { // Noncompliant; replace this "enum" with "enum class".
 Small = 1,
 Big = 2
};

void printColor(int color);
void printInt(int value);

void report() {
 printColor(Red); // correct
 printColor(Big); // clearly buggy
 printInt(Red); // conversion is implicit
}

Compliant Solution

enum class Color { // declared using "enum class"
 Red = 0xff0000,
 Green = 0x00ff00,
 Blue = 0x0000ff
};

enum class ProductType { // declared using "enum class"
 Small = 1,
 Big = 2
};

void printColor(Color color); // requires "Color" instead of "int"
void printInt(int value);

void report() {
 printColor(Color::Red); // correct
 // printColor(ProductType::Big); => Compilation error, no known conversion from 'ProductType' to 'Color'
 printInt(static_cast<int>(Color::Red)); // conversion never occurs implicitly and must be explicit
}

Exceptions
When the enum is a private member of a class, its use is encapsulated by the class and the drawbacks of unscoped enums can be avoided. Therefore,
no issue will be raised in that case.
See

 C++ Core
 Guidelines Enum.3 - Prefer class enums over “plain” enums

	CODE_SMELL
	MINOR
	11

	Functions which do not return should be declared as "noreturn"
	The attribute noreturn indicates that a function does not return. This information clarifies the behavior of the function and it
allows the compiler to do optimizations.
It can also help the compiler (and static analyzer tools, i.e. us) provide better error messages:

__attribute__((noreturn)) void f();

int g(int b) {
 if (b == 5) {
 f();
 printf("Hello world\n"); // This is dead code, the compiler/static analyzer can now detect it
 // There is no returned value, but it is fine, the compiler/static analyzer knows not to warn about it
 } else {
 return 3;
 }
}

This rule detects when the attribute noreturn can be added to a function.
Noncompliant Code Example

void g() { // Noncompliant
 abort();
}

Compliant Solution

__attribute__((noreturn)) void g() { // or [[noreturn]] for C++
 abort(); // Compliant
}

	CODE_SMELL
	MINOR
	17

	Pointer and reference local variables should be "const" if the corresponding object is not modified
	This rule leads to greater precision in the definition of local variables by making the developer intention about modifying the variable explicit.
The const qualification shall be applied to the object pointed to, not to the pointer, since it is the object itself that is being
protected.
Noncompliant Code Example

std::string& getString();
void myfunc()
{
 std::string& s = getString(); // Noncompliant
 if (s.size()) {
 std::cout << s;
 }
}

Compliant Solution

std::string& getString();
void myfunc () {
 const std::string& x = getString();
 if (s.size()) {
 std::cout << s;
 }
}

See

 MISRA C:2012, 8.13 - A pointer should point to a const-qualified type whenever possible

	CODE_SMELL
	MINOR
	82

	"using" should be preferred for type aliasing
	Since C++11, type aliases can be declared via using or typedef. using should be preferred as more readable
because you see the new name/alias first.
In addition, using can be templated, which makes it applicable to more situations than typedef.
Noncompliant Code Example

typedef void (*FunctionPointerType)(int);

Compliant Solution

using FunctionPointerType = void (*)(int);

See

 C++
 Core Guidelines - T.43 - Prefer using over typedef for defining aliases

	CODE_SMELL
	MINOR
	20

	STL algorithms and range-based for loops should be preferred to traditional for loops
	for-loops are a very powerful and versatile tool that can be used for many purposes. This flexibility comes with drawbacks:

 It is very easy to make a small mistake when writing them,
 They are relatively verbose to write,
 They do not express the intent of the code, the reader has to look at loop details to understand what the loop does.

There are algorithms that encapsulate a for-loop and give it some meaning (std::all_of, std::count_if,
std::remove_if…). These algorithms are well tested, efficient, and explicit and therefore should be your first choice.
This rule detects loops that go through all consecutive elements of a sequence (eg: containers, objects with begin() and end() member functions),
and deal only with the current element without side-effects on the rest of the sequence.
This rule suggests using one of the supported STL algorithm patterns corresponding to your C++ standard when a loop matches it.
Currently, this rule supports:

 std::all_of (since C++11) and std::ranges::all_of (since C++20): returns true if all elements in the
 given range are matching the given predicate, false otherwise
 std::none_of (since C++11) and std::ranges::none_of (since C++20): returns true if no elements in the
 given range are matching the given predicate, false otherwise
 std::any_of (since C++11) and std::ranges::any_of (since C++20): returns true if at least one element in
 the given range is matching the given predicate, false otherwise

This rule suggests two options below when the loop doesn’t match any of the supported STL algorithm patterns and you just want to iterate over all
elements of a sequence:

 Range-based for-loops, which were introduced in C++11 and will run through all elements of a sequence
 std::for_each, an algorithm that performs the same operation between two iterators (allowing more flexibility, for instance by
 using reverse_iterators, or with a variant that can loop in parallel on several elements at a time).

Noncompliant Code Example

#include <vector>
#include <iostream>

using namespace std;

bool asDesired(const int v);

bool areAllDesired(std::vector<int> values) {
 for (int val : values) { // Noncompliant, replace it by a call to std::all_of
 if (!asDesired(val)) {
 return false;
 }
 }
 return true;
}

int f(vector<int> &v) {

 for (auto it = v.begin(); it != v.end(); ++it) { // Noncompliant
 if (*it > 0) {
 cout << "Positive number : " << *it << endl;
 } else {
 cout << "Negative number : " << *it << endl;
 }
 }

 auto sum = 0;
 for (auto it = v.begin(); it != v.end(); ++it) { // Noncompliant
 sum += *it;
 }
 return sum;
}

Compliant Solution

#include <vector>
#include <iostream>
#include <algorithm>

using namespace std;

bool asDesired(const int v);

bool areAllDesired2(std::vector<int> values) {
 return std::all_of(std::begin(values), std::end(values), asDesired);
}

bool areAllDesiredCpp20(std::vector<int> values) {
 return std::ranges::all_of(values, asDesired);
}

void displayNumber(int i) {
 if (i > 0) {
 cout << "Positive number : " << i << endl;
 } else {
 cout << "Negative number : " << i << endl;
 }
}

void f(vector<int> &v) {

 std::for_each(v.begin(), v.end(), displayNumber);
 // Or since C++20:
 std::ranges::for_each(v, displayNumber);

 auto sum = 0;
 for (auto elt : v) {
 sum += elt;
 }
 return sum;
 // An even better way to write this would be:
 // return std::accumulate(v.begin(), v.end(), 0);
}

See

 C++ Core Guidelines ES.71 - Prefer a range-for-statement to a for-statement when there is a choice
 C++ Core Guidelines P.3 - Express
 intent

	CODE_SMELL
	MINOR
	72

	Return type of functions shouldn't be const qualified value
	There is no reason to add a const qualifier to the return type of a function that returns by value.
At best, it will be superfluous. At worst, it will be a performance bug: it can prevent move operation (when copy elision doesn’t take place). When
an object is const-qualified the copy constructor/assignment will be a better match than the move constructor/assignment.
One might think about adding this qualifier in order to forbid the call of unintended functions on the returned object. A common example is to
avoid unintended assignments:

X x1, x2, x3;
if (x1 + x2 = x3) { // Compiler will complain since const object cannot be assigned. Should be "x1 + x2 == x3"
...
}

C++11 introduced reference qualifiers for member functions. This feature provides a better approach to forbid calling unintended functions:

struct X {
X& operator=(const X& other) &;
};
...
X x1, x2, x3;
if (x1 + x2 = x3) { // Compiler will complain since assignment cannot be called on r-value. Should be "x1 + x2 == x3"
...
}

Noncompliant Code Example

class A {...};
const A f(); // Noncompliant

Compliant Solution

class A {...};
A f();

See

 C++
 Core Guidelines F.20 - Flag returning a const value.

	CODE_SMELL
	MINOR
	55

	Loop variables should be declared in the minimal possible scope
	When a loop variable is not used outside of a loop, it should be declared inside the loop declaration:

 It improves readability, the scope of the variable is clearly defined
 It reduces the number of mistakes, the variable can’t be accidentally misused outside of the loop
 Resources are not retained longer than necessary

Noncompliant Code Example

using namespace std;

void f() {
 int i = 0; // Noncompliant: i is not used outside of the loop
 for (i = 0; i < 10; ++i) {
 cout << i << endl;
 }
}

Compliant Solution

using namespace std;

void f() {
 for (int i = 0; i < 10; ++i) {
 cout << i << endl;
 }
}

See

 C++ Core
 Guidelines ES.5 - Keep scopes small

	CODE_SMELL
	MINOR
	352

	"auto" should be used to store a result of functions that conventionally return an iterator or a range
	auto is a type placeholder that may be used in variable declarations to instruct the compiler to infer the type from the
initializer.
The use of auto reduces unnecessary boilerplate in situations where the type of the variable is apparent from the context (see rule
S5827). In other situations, though, whether auto increases or decreases readability is a matter of personal taste.
In the case of variables initialized from a function that conventionally returns an iterator (e.g. begin, end,
std::find), it is clear that the type of the variable is some iterator. Spelling the exact type of the iterator in such a situation does
not improve the clarity of the code, especially considering the usual verbosity of such types. The same can be told for functions returning
ranges.
This rule raises an issue on the declaration of a variable that is initialized with the return value of a function that conventionally returns an
iterator when the variable is declared with an explicit type equal to the function’s return type. The detected functions are:

 begin and end functions and their const and reverse variants
 standard algorithms that return iterators or ranges

Noncompliant Code Example

std::vector<int>::iterator someFunction(std::vector<int>& v);

void f() {
 std::vector<int> v;
 const std::vector<int>& cv = v;
 std::vector<int>::iterator it1 = v.begin(); // Noncompliant
 std::vector<int>::const_iterator it2 = v.begin(); // Compliant, the type is different
 std::vector<int>::const_iterator it3 = v.cbegin(); // Noncompliant
 std::vector<int>::const_iterator it4 = cv.cbegin(); // Noncompliant
 std::vector<int>::const_iterator it5 = std::begin(cv); // Noncompliant

 std::vector<int>::iterator it6 = std::find(v.begin(), v.end(), 10); // Noncompliant
 std::vector<int>::iterator it7 = someFunction(10); // Compliant, the function is not a well known function returning an iterator

 std::map<int, std::string> m;
 if (std::map<int, std::string>::iterator it = m.find(20); it != m.end()) { // Noncompliant
 // do something
 }
}

Compliant Solution

/* ... */

void f() {
 std::vector<int> v;
 const std::vector<int>& cv = v;
 auto it1 = v.begin();
 std::vector<int>::const_iterator it2 = v.begin();
 auto it3 = v.cbegin();
 auto it4 = cv.cbegin();
 auto it5 = std::begin(cv);

 auto it6 = std::find(v.begin(), v.end(), 10);
 std::vector<int>::iterator it7 = someFunction(10);

 std::map<int, std::string> m;
 if (auto it = m.find(20); it != m.end()) {
 // do something
 }
}

See

 S5827 - use auto to avoid repetition of types

	CODE_SMELL
	MINOR
	44

	The three expressions of a "for" statement should only be concerned with loop control
	for loops are very flexible in C and C++. Because of that, they can carry a complexity that can make the code error-prone, difficult
to understand, and hard to maintain.
Many for loops can be written in a way that clearly separates the iteration process from the content of the iteration. This rule makes sure that
all the code relevant to the iteration is placed in the for-loop header. The compliant code is then easier to reason about.
A for loop is composed of 4 sub-parts:

for([initialization]; [condition]; [update])
 [body]

We classify the variables used to control them in three categories:

 A loop-counter is a variable modified in the update. It should not be modified in the body.
 A loop-constant is an auxiliary variable declared in the initialization. It’s very often used to precompute some data about the end
 condition or the stride.
 A pseudo-counter shares some properties with a loop counter, but its update conditions are more complex. It will therefore only be
 updated in the body, and cannot be used in the update. Using a pseudo-counter makes the loop more complex to reason about, and therefore is not
 permitted. They are very often declared in the initialization, for instance, to limit their scope, but in some cases reuse existing variables.

Additionally, the loop condition should refer to at least one loop-counter, and should not modify anything.
This rule is only checking for loops with a condition and an update.
Noncompliant Code Example

for(int h = 0, int i = 0 ; h < 10 ; i += 1) { // Noncompliant, the loop-counter is not used in the condition
}

for(int i = 0 ; i++ < 10 ; i += 1) { // Noncompliant, loop-counter i is updated in the condition
}

for(int i = 0 , int h = 0; i+(++h) < 10 ; i += 1) { // Noncompliant, pseudo-counter h is updated in the condition
}

for(int i = 0 ; i < 10 ; i += 1) { // Noncompliant, loop-counter i is updated in the body
 if (i%2) { ++i;}
}

for(int i = 0 , j = 0 ; i < 10 ; i += j) { // Noncompliant, pseudo-counter j is is used in the update
 j = i + 1;
}

for(int i = 0 , j = 0 ; i < 10 + j ; i += 1) { // Noncompliant, pseudo-counter j is is used in the condition
 j = i + 1;
}

See

 MISRA C:2004, 13.5 - The three expressions of a for statement shall be concerned only with loop control.
 MISRA C++:2008, 6-5-5 - A loop-control-variable other than the loop-counter shall not be modified within condition
 or expression.
 MISRA C:2012, 14.2 - A for loop shall be well-formed

	CODE_SMELL
	MINOR
	21

	Pointer and reference parameters should be "const" if the corresponding object is not modified
	This rule leads to greater precision in the definition of the function interface. The const qualification shall be applied to the
object pointed to, not to the pointer, since it is the object itself that is being protected.
Noncompliant Code Example

void myfunc (int * param1, // object is modified
 const int * param2,
 int * param3, // Noncompliant
 int * param4) // Noncompliant
{
 *param1 = *param2 + *param3 + *param4;
}

int main (int argc,
 const char * * argv) // Noncompliant
{
 return argc;
}

Compliant Solution

void myfunc (int * param1, // object is modified
 const int * param2,
 const int * param3,
 const int * param4)
{
 *param1 = *param2 + *param3 + *param4;
}

int main (int argc,
 const char * const * argv)
{
 return argc;
}

See

 MISRA C:2004, 16.7 - A pointer parameter in a function prototype should be declared as pointer to const if the pointer is not used to modify
 the addressed object.
 MISRA C++:2008, 7-1-2 - A pointer or reference parameter in a function shall be declared as pointer to const or reference to const if the
 corresponding object is not modified.
 MISRA C:2012, 8.13 - A pointer should point to a const-qualified type whenever possible

	CODE_SMELL
	MINOR
	185

[bookmark: _Toc481744304]

[bookmark: _Toc97156273]Security Hotspots
[bookmark: _Toc97156274]Security hotspots count by category and priority
	Category / Priority
	LOW
	MEDIUM
	HIGH

	LDAP Injection
	0
	0
	0

	Object Injection
	0
	0
	0

	Server-Side Request Forgery (SSRF)
	0
	0
	0

	XML External Entity (XXE)
	0
	0
	0

	Insecure Configuration
	0
	0
	0

	XPath Injection
	0
	0
	0

	Authentication
	0
	0
	0

	Weak Cryptography
	0
	0
	0

	Denial of Service (DoS)
	0
	0
	0

	Log Injection
	0
	0
	0

	Cross-Site Request Forgery (CSRF)
	0
	0
	0

	Open Redirect
	0
	0
	0

	Permission
	0
	2
	0

	SQL Injection
	0
	0
	0

	Encryption of Sensitive Data
	0
	0
	0

	Traceability
	0
	0
	0

	Buffer Overflow
	0
	0
	21

	File Manipulation
	0
	0
	0

	Code Injection (RCE)
	0
	0
	0

	Cross-Site Scripting (XSS)
	0
	0
	0

	Command Injection
	0
	0
	0

	Path Traversal Injection
	0
	0
	0

	HTTP Response Splitting
	0
	0
	0

	Others
	18
	0
	0

[bookmark: _Toc97156275]Security hotspots List
	Category
	Name
	Priority
	Severity
	Count

	Others
	Using publicly writable directories is security-sensitive
	LOW
	CRITICAL
	18

	Permission
	Setting loose POSIX file permissions is security-sensitive
	MEDIUM
	MAJOR
	2

	Buffer Overflow
	Using "strcpy" or "wcscpy" is security-sensitive
	HIGH
	MAJOR
	7

	Buffer Overflow
	Using "strlen" or "wcslen" is security-sensitive
	HIGH
	MAJOR
	13

	Buffer Overflow
	Using "strncpy" or "wcsncpy" is security-sensitive
	HIGH
	MAJOR
	1

Evolution of number of issues

Valeur des Y	44828.13638888889	44835.13649305556	44842.13653935185	44849.13650462963	44856.136516203704	44863.13648148148	44870.13652777778	44877.136516203704	44884.13658564815	44891.13658564815	44898.13655092593	44905.13657407407	44909.136666666665	44910.13659722222	44911.136516203704	44912.13650462963	44913.13657407407	44914.136400462965	44915.136608796296	44916.13653935185	44917.13648148148	44918.13659722222	44919.136516203704	44920.13662037037	44921.13658564815	44922.13670138889	44923.13670138889	44924.13652777778	44925.136666666665	44926.13668981481	44927.136666666665	44928.13655092593	44929.13648148148	44930.13674768519	44931.136354166665	44932.13670138889	44933.13650462963	44934.136516203704	44935.136655092596	44936.136875	44937.13649305556	26431	26407	26317	26317	26398	26528	26606	26602	26782	26782	26783	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26794	26796	

Evolution of technical debt ratio (%)

Valeur des Y	44828.13638888889	44835.13649305556	44842.13653935185	44849.13650462963	44856.136516203704	44863.13648148148	44870.13652777778	44877.136516203704	44884.13658564815	44891.13658564815	44898.13655092593	44905.13657407407	44909.136666666665	44910.13659722222	44911.136516203704	44912.13650462963	44913.13657407407	44914.136400462965	44915.136608796296	44916.13653935185	44917.13648148148	44918.13659722222	44919.136516203704	44920.13662037037	44921.13658564815	44922.13670138889	44923.13670138889	44924.13652777778	44925.136666666665	44926.13668981481	44927.136666666665	44928.13655092593	44929.13648148148	44930.13674768519	44931.136354166665	44932.13670138889	44933.13650462963	44934.136516203704	44935.136655092596	44936.136875	44937.13649305556	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	

Number of issues by severity
Nombre	BLOCKER	CRITICAL	MAJOR	MINOR	INFO	73	8526	12400	5794	3	Number of issues by type
Nombre	BUG	VULNERABILITY	CODE_SMELL	99	0	26697	
image1.png

image2.png

image3.png

