forked from stanleyseow/RF24
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RF24.h
executable file
·1216 lines (1104 loc) · 40.7 KB
/
RF24.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file RF24.h
*
* Class declaration for RF24 and helper enums
*/
#ifndef __RF24_H__
#define __RF24_H__
#include <RF24_config.h>
/**
* Power Amplifier level.
*
* For use with setPALevel()
*/
typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
/**
* Data rate. How fast data moves through the air.
*
* For use with setDataRate()
*/
typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
/**
* CRC Length. How big (if any) of a CRC is included.
*
* For use with setCRCLength()
*/
typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
/**
* Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
*/
class RF24
{
private:
uint8_t ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
uint8_t csn_pin; /**< SPI Chip select */
bool p_variant; /* False for RF24L01 and true for RF24L01P */
uint8_t payload_size; /**< Fixed size of payloads */
bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */
uint8_t addr_width;
public:
/**
* @name Primary public interface
*
* These are the main methods you need to operate the chip
*/
/**@{*/
/**
* Constructor
*
* Creates a new instance of this driver. Before using, you create an instance
* and send in the unique pins that this chip is connected to.
*
* @param _cepin The pin attached to Chip Enable on the RF module
* @param _cspin The pin attached to Chip Select
*/
RF24(uint8_t _cepin, uint8_t _cspin);
/**
* Begin operation of the chip
*
* Call this in setup(), before calling any other methods.
*
* @note Optimization: The radio is partially configured in PTX mode
* when begin is called to make the transition to PTX mode simpler.
*/
void begin(void);
/**
* Start listening on the pipes opened for reading.
*
* Be sure to call openReadingPipe() first. Do not call write() while
* in this mode, without first calling stopListening(). Call
* isAvailable() to check for incoming traffic, and read() to get it.
*/
void startListening(void);
/**
* Stop listening for incoming messages
*
* Do this before calling write().
*
* @note Optimization: The radio will be taken out of PRX mode as soon
* as listening is stopped. Enables quicker and simpler engaging of
* primary transmitter (PTX) mode.
*/
void stopListening(void);
/**
* Test whether there are bytes available to be read
*
* @note Optimization: The available functino now checks the FIFO
* buffers directly for data instead of relying of interrupt flags.
*
* @note Interrupt flags will not be cleared until a payload is
* actually read from the FIFO
*
* @see txStandBy()
* @see startWrite()
* @see write()
* @see writeFast()
*
* @return True if there is a payload available, false if none is
*/
bool available(void);
/**
* Read the payload
*
* The size of data read is the fixed payload size, see getPayloadSize()
*
* @note I specifically chose 'void*' as a data type to make it easier
* for beginners to use. No casting needed.
*
* @note Optimization: No longer boolean. Use available to
* determine if packets are available. Interrupt flags are now cleared
* during reads instead of when calling available().
*
* @param buf Pointer to a buffer where the data should be written
* @param len Maximum number of bytes to read into the buffer
* @return No return value. Use available().
*/
void read( void* buf, uint8_t len );
/**
* @note Optimization: Improved performance slightly
* Write to the open writing pipe
*
* Be sure to call openWritingPipe() first to set the destination
* of where to write to.
*
* This blocks until the message is successfully acknowledged by
* the receiver or the timeout/retransmit maxima are reached. In
* the current configuration, the max delay here is 60ms.
*
* The maximum size of data written is the fixed payload size, see
* getPayloadSize(). However, you can write less, and the remainder
* will just be filled with zeroes.
*
* TX/RX/RT interrupt flags will be cleared every time write is called
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @return True if the payload was delivered successfully false if not
*/
bool write( const void* buf, uint8_t len );
/**
* New: Open a pipe for writing
*
* Only one pipe can be open at once, but you can change the pipe
* you'll write to. Call stopListening() first.
*
* Addresses are assigned via a byte array, default is 5 byte address length
*
* Usage is exactly the same as before, except for declaring the array
*
* @code
* uint8_t addresses[][6] = {"1Node","2Node"};
* openWritingPipe(addresses[0]);
* @endcode
* @see setAddressWidth
*
* @param address The address of the pipe to open. Coordinate these pipe
* addresses amongst nodes on the network.
*/
void openWritingPipe(const uint8_t *address);
/**
* Open a pipe for reading
*
* Up to 6 pipes can be open for reading at once. Open all the
* reading pipes, and then call startListening().
*
* @see openWritingPipe
* @see setAddressWidth
*
* @warning Pipes 1-5 should share the same address, except the first byte.
* Only the first byte in the array should be unique, e.g.
* @code
* uint8_t addresses[][6] = {"1Node","2Node"};
* openReadingPipe(1,addresses[0]);
* openReadingPipe(2,addresses[1]);
* @endcode
*
* @warning Pipe 0 is also used by the writing pipe. So if you open
* pipe 0 for reading, and then startListening(), it will overwrite the
* writing pipe. Ergo, do an openWritingPipe() again before write().
*
* @param number Which pipe# to open, 0-5.
* @param address The 24, 32 or 40 bit address of the pipe to open.
*/
void openReadingPipe(uint8_t number, const uint8_t *address);
/**
* Close a pipe after it has been previously opened.
* Can be safely called without having previously opened a pipe.
* @param pipe Which pipe # to close, 0-5.
*/
void closeReadingPipe( uint8_t pipe ) ;
/**@}*/
/**
* @name Advanced Operation
*
* Methods you can use to drive the chip in more advanced ways
*/
/**@{*/
/**
* Print a giant block of debugging information to stdout
*
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/
void printDetails(void);
/**
* Test whether there are bytes available to be read in the
* FIFO buffers. This optimized version does not rely on interrupt
* flags, but checks the actual FIFO buffers.
*
* @note Optimization: Interrupt flags are no longer cleared when available is called,
* but will be reset only when the data is read from the FIFO buffers.
*
* @param[out] pipe_num Which pipe has the payload available
* @return True if there is a payload available, false if none is
*/
bool available(uint8_t* pipe_num);
/**
* Enter low-power mode
*
* To return to normal power mode, either write() some data or
* startListening, or powerUp().
*
* @note Optimization: The radio will never enter power down unless instructed
* by the MCU via this command.
*/
void powerDown(void);
/**
* Leave low-power mode - making radio more responsive
*
* To return to low power mode, call powerDown().
*/
void powerUp(void) ;
/**
* Write for single NOACK writes. Disables acknowledgements/autoretries for a single write.
*
* @note enableDynamicAck() must be called to enable this feature
*
* Can be used with enableAckPayload() to request a response
* @see enableDynamicAck()
* @see setAutoAck()
* @see write()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @param multicast Request ACK (0), NOACK (1)
*/
bool write( const void* buf, uint8_t len, const bool multicast );
/**
* @note Optimization: New Command *
* This will not block until the 3 FIFO buffers are filled with data.
* Once the FIFOs are full, writeFast will simply wait for success or
* timeout, and return 1 or 0 respectively. From a user perspective, just
* keep trying to send the same data. The library will keep auto retrying
* the current payload using the built in functionality.
* @warning It is important to never keep the nRF24L01 in TX mode for more than 4ms at a time. If the auto
* retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
* to clear by issuing txStandBy() or ensure appropriate time between transmissions.
*
* ONLY max retry interrupt flags will be cleared when writeFast is called
*
* @code
* Example (Partial blocking):
*
* radio.writeFast(&buf,32); // Writes 1 payload to the buffers
* txStandBy(); // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail.
*
* radio.writeFast(&buf,32); // Writes 1 payload to the buffers
* txStandBy(1000); // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0.
* @endcode
*
* @see txStandBy()
* @see write()
* @see writeBlocking()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @return True if the payload was delivered successfully false if not
*/
bool writeFast( const void* buf, uint8_t len );
/**
* WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write.
*
* @note enableDynamicAck() must be called to enable this feature
* @see enableDynamicAck()
* @see setAutoAck()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @param multicast Request ACK (0) or NOACK (1)
*/
bool writeFast( const void* buf, uint8_t len, const bool multicast );
/**
* @note Optimization: New Command
* This function extends the auto-retry mechanism to any specified duration.
* It will not block until the 3 FIFO buffers are filled with data.
* If so the library will auto retry until a new payload is written
* or the user specified timeout period is reached.
* @warning It is important to never keep the nRF24L01 in TX mode for more than 4ms at a time. If the auto
* retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
* to clear by issuing txStandBy() or ensure appropriate time between transmissions.
*
* ONLY max retry interrupt flags will be cleared when writeBlocking is called
* @code
* Example (Full blocking):
*
* radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers
* txStandBy(1000); //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed.
* //Blocks only until user timeout or success. Data flushed on fail.
* @endcode
* @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
* @see txStandBy()
* @see write()
* @see writeFast()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @param timeout User defined timeout in milliseconds.
* @return True if the payload was loaded into the buffer successfully false if not
*/
bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout );
/**
* @note Optimization: New Command
* This function should be called as soon as transmission is finished to
* drop the radio back to STANDBY-I mode. If not issued, the radio will
* remain in STANDBY-II mode which, per the data sheet, is not a recommended
* operating mode.
*
* @note When transmitting data in rapid succession, it is still recommended by
* the manufacturer to drop the radio out of TX or STANDBY-II mode if there is
* time enough between sends for the FIFOs to empty.
*
* Relies on built-in auto retry functionality.
*
* @code
* Example (Partial blocking):
*
* radio.writeFast(&buf,32);
* radio.writeFast(&buf,32);
* radio.writeFast(&buf,32); //Fills the FIFO buffers up
* bool ok = txStandBy(); //Returns 0 if failed. 1 if success.
* //Blocks only until MAX_RT timeout or success. Data flushed on fail.
* @endcode
* @see txStandBy(unsigned long timeout)
* @return True if transmission is successful
*
*/
bool txStandBy();
/**
* @note Optimization: New Command
*
* This function allows extended blocking and auto-retries per a user defined timeout
* @code
* Fully Blocking Example:
*
* radio.writeFast(&buf,32);
* radio.writeFast(&buf,32);
* radio.writeFast(&buf,32); //Fills the FIFO buffers up
* bool ok = txStandBy(1000); //Returns 0 if failed after 1 second of retries. 1 if success.
* //Blocks only until user defined timeout or success. Data flushed on fail.
* @endcode
* @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
* @param timeout Number of milliseconds to retry failed payloads
* @return True if transmission is successful
*
*/
bool txStandBy(uint32_t timeout);
/**
* Write an ack payload for the specified pipe
*
* The next time a message is received on @p pipe, the data in @p buf will
* be sent back in the acknowledgement.
*
* @warning According to the data sheet, only three of these can be pending
* at any time as there are only 3 FIFO buffers.
*
* @param pipe Which pipe# (typically 1-5) will get this response.
* @param buf Pointer to data that is sent
* @param len Length of the data to send, up to 32 bytes max. Not affected
* by the static payload set by setPayloadSize().
*/
void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
/**
* Enable dynamic ACKs (single write multicasting) for chosen messages
*
* @note To enable full multicasting or per-pipe multicast, use setAutoAck()
*
* @warning This MUST be called prior to attempting single write NOACK calls
* @code
* radio.enableDynamicAck();
* radio.write(&data,32,1); // Sends a payload with no acknowledgement requested
* radio.write(&data,32,0); // Sends a payload using auto-retry/autoACK
* @endcode
*/
void enableDynamicAck();
/**
* Determine if an ack payload was received in the most recent call to
* write().
*
* Call read() to retrieve the ack payload.
*
* @note Optimization: Calling this function NO LONGER clears the interrupt
* flag. The new functionality checks the RX FIFO buffer for an ACK payload
* instead of relying on interrupt flags.Reading the payload will clear the flags.
*
* @return True if an ack payload is available.
*/
bool isAckPayloadAvailable(void);
/**
* Call this when you get an interrupt to find out why
*
* Tells you what caused the interrupt, and clears the state of
* interrupts.
*
* @param[out] tx_ok The send was successful (TX_DS)
* @param[out] tx_fail The send failed, too many retries (MAX_RT)
* @param[out] rx_ready There is a message waiting to be read (RX_DS)
*/
void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
/**
* Non-blocking write to the open writing pipe used for buffered writes
*
* @note Optimization: This function now leaves the CE pin high, so the radio
* will remain in TX or STANDBY-II Mode until a txStandBy() command is issued.
* This allows the chip to be used to its full potential in TX mode.
* @warning It is important to never keep the nRF24L01 in TX mode for more than 4ms at a time. If the auto
* retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
* to clear by issuing txStandBy() or ensure appropriate time between transmissions.
*
* @see write()
* @see writeFast()
* @see startWrite()
* @see writeBlocking()
*
* For single noAck writes see:
* @see enableDynamicAck()
* @see setAutoAck()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @param multicast Request ACK (0) or NOACK (1)
* @return True if the payload was delivered successfully false if not
*/
void startFastWrite( const void* buf, uint8_t len, const bool multicast );
/**
* Non-blocking write to the open writing pipe
*
* Just like write(), but it returns immediately. To find out what happened
* to the send, catch the IRQ and then call whatHappened().
*
* @note Optimization: This function again behaves as it did previously for backwards-compatibility.
* with user code. The library uses startFastWrite() internally.
* This is mainly used for single-payload transactions.
*
* @see write()
* @see writeFast()
* @see startFastWrite()
* @see whatHappened()
*
* For single noAck writes see:
* @see enableDynamicAck()
* @see setAutoAck()
*
* @param buf Pointer to the data to be sent
* @param len Number of bytes to be sent
* @param multicast Request ACK (0) or NOACK (1)
*
*/
void startWrite( const void* buf, uint8_t len, const bool multicast );
/**
* Optimization: New Command
*
* This function is mainly used internally to take advantage of the auto payload
* re-use functionality of the chip, but can be beneficial to users as well.
*
* The function will instruct the radio to re-use the data in the FIFO buffers,
* and instructs the radio to re-send once the timeout limit has been reached.
* Used by writeFast and writeBlocking to initiate retries when a TX failure
* occurs. Retries are automatically initiated except with the standard write().
* This way, data is not flushed from the buffer until switching between modes.
*
* @note This is to be used AFTER auto-retry fails if wanting to resend
* using the built-in payload reuse features.
* After issuing reUseTX(), it will keep reending the same payload forever or until
* a payload is written to the FIFO, or a flush_tx command is given.
*/
void reUseTX();
/**
* Empty the transmit buffer
*
* @return Current value of status register
*/
uint8_t flush_tx(void);
/**
* Test whether there was a carrier on the line for the
* previous listening period.
*
* Useful to check for interference on the current channel.
*
* @return true if was carrier, false if not
*/
bool testCarrier(void);
/**
* Test whether a signal (carrier or otherwise) greater than
* or equal to -64dBm is present on the channel. Valid only
* on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
*
* Useful to check for interference on the current channel and
* channel hopping strategies.
*
* @return true if signal => -64dBm, false if not
*/
bool testRPD(void) ;
/**
* Test whether this is a real radio, or a mock shim for
* debugging. Setting either pin to 0xff is the way to
* indicate that this is not a real radio.
*
* @return true if this is a legitimate radio
*/
bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; }
/**
* The radio will generate interrupt signals when a transmission is complete,
* a transmission fails, or a payload is received. This allows users to mask
* those interrupts to prevent them from generating a signal on the interrupt
* pin.
*
* @code
* Mask all interrupts except the receive interrupt:
*
* radio.maskIRQ(1,1,0);
* @endcode
*
* @param tx_ok Mask transmission complete interrupts
* @param tx_fail Mask transmit failure interrupts
* @param rx_ready Mask payload received interrupts
*/
void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready);
/**
* Set the address width from 3 to 5 bytes (24, 32 or 40 bit)
*
* @param a_width The address width to use: 3,4 or 5
*/
void setAddressWidth(uint8_t a_width);
/**@}*/
/**@}*/
/**
* @name Optional Configurators
*
* Methods you can use to get or set the configuration of the chip.
* None are required. Calling begin() sets up a reasonable set of
* defaults.
*/
/**@{*/
/**
* Set the number and delay of retries upon failed submit
*
* @param delay How long to wait between each retry, in multiples of 250us,
* max is 15. 0 means 250us, 15 means 4000us.
* @param count How many retries before giving up, max 15
*/
void setRetries(uint8_t delay, uint8_t count);
/**
* Set RF communication channel
*
* @param channel Which RF channel to communicate on, 0-127
*/
void setChannel(uint8_t channel);
/**
* Set Static Payload Size
*
* This implementation uses a pre-stablished fixed payload size for all
* transmissions. If this method is never called, the driver will always
* transmit the maximum payload size (32 bytes), no matter how much
* was sent to write().
*
* @todo Implement variable-sized payloads feature
*
* @param size The number of bytes in the payload
*/
void setPayloadSize(uint8_t size);
/**
* Get Static Payload Size
*
* @see setPayloadSize()
*
* @return The number of bytes in the payload
*/
uint8_t getPayloadSize(void);
/**
* Get Dynamic Payload Size
*
* For dynamic payloads, this pulls the size of the payload off
* the chip
*
* @note Optimization: Corrupt packets are now detected and flushed per the
* manufacturer.
*
* @return Payload length of last-received dynamic payload
*/
uint8_t getDynamicPayloadSize(void);
/**
* Enable custom payloads on the acknowledge packets
*
* Ack payloads are a handy way to return data back to senders without
* manually changing the radio modes on both units.
*
* @see examples/pingpair_pl/pingpair_pl.pde
*/
void enableAckPayload(void);
/**
* Enable dynamically-sized payloads
*
* This way you don't always have to send large packets just to send them
* once in a while. This enables dynamic payloads on ALL pipes.
*
* @see examples/pingpair_pl/pingpair_dyn.pde
*/
void enableDynamicPayloads(void);
/**
* Determine whether the hardware is an nRF24L01+ or not.
*
* @return true if the hardware is nRF24L01+ (or compatible) and false
* if its not.
*/
bool isPVariant(void) ;
/**
* Enable or disable auto-acknowlede packets
*
* This is enabled by default, so it's only needed if you want to turn
* it off for some reason.
*
* @param enable Whether to enable (true) or disable (false) auto-acks
*/
void setAutoAck(bool enable);
/**
* Enable or disable auto-acknowlede packets on a per pipeline basis.
*
* AA is enabled by default, so it's only needed if you want to turn
* it off/on for some reason on a per pipeline basis.
*
* @param pipe Which pipeline to modify
* @param enable Whether to enable (true) or disable (false) auto-acks
*/
void setAutoAck( uint8_t pipe, bool enable ) ;
/**
* Set Power Amplifier (PA) level to one of four levels:
* RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX
*
* The power levels correspond to the following output levels respectively:
* NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm
*
* SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm.
*
* @param level Desired PA level.
*/
void setPALevel ( uint8_t level );
/**
* Fetches the current PA level.
*
* NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm
* SI24R1: -6dBm, 0dBm, 3dBm, 7dBm
*
* @return Returns values 0 to 3 representing the PA Level.
*/
uint8_t getPALevel( void );
/**
* Set the transmission data rate
*
* @warning setting RF24_250KBPS will fail for non-plus units
*
* @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
* @return true if the change was successful
*/
bool setDataRate(rf24_datarate_e speed);
/**
* Fetches the transmission data rate
*
* @return Returns the hardware's currently configured datarate. The value
* is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
* rf24_datarate_e enum.
*/
rf24_datarate_e getDataRate( void ) ;
/**
* Set the CRC length
*
* @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
*/
void setCRCLength(rf24_crclength_e length);
/**
* Get the CRC length
*
* @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
*/
rf24_crclength_e getCRCLength(void);
/**
* Disable CRC validation
*
*/
void disableCRC( void ) ;
/**
* Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h
* If a failure has been detected, it usually indicates a hardware issue. By default the library
* will cease operation when a failure is detected.
* This should allow advanced users to detect and resolve intermittent hardware issues.
*
* In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings
* applied after a failure occurs, if wanting to re-enable the device immediately.
*
* Usage: (Failure handling must be enabled per above)
* @code
* if(radio.failureDetected){
* radio.begin(); // Attempt to re-configure the radio with defaults
* radio.failureDetected = 0; // Reset the detection value
* radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses
* radio.openReadingPipe(1,addresses[0]);
* report_failure(); // Blink leds, send a message, etc. to indicate failure
* }
* @endcode
*/
#if defined (FAILURE_HANDLING)
bool failureDetected;
#endif
/**@}*/
/**
* @name Deprecated
*
* Methods provided for backwards compabibility.
*/
/**@{*/
/**
* Open a pipe for reading
* @note For compatibility with old code only, see new function
*
* @warning Pipes 1-5 should share the first 32 bits.
* Only the least significant byte should be unique, e.g.
* @code
* openReadingPipe(1,0xF0F0F0F0AA);
* openReadingPipe(2,0xF0F0F0F066);
* @endcode
*
* @warning Pipe 0 is also used by the writing pipe. So if you open
* pipe 0 for reading, and then startListening(), it will overwrite the
* writing pipe. Ergo, do an openWritingPipe() again before write().
*
* @param number Which pipe# to open, 0-5.
* @param address The 40-bit address of the pipe to open.
*/
void openReadingPipe(uint8_t number, uint64_t address);
/**
* Open a pipe for writing
* @note For compatibility with old code only, see new function
* Addresses are 40-bit hex values, e.g.:
*
* @code
* openWritingPipe(0xF0F0F0F0F0);
* @endcode
*
* @param address The 40-bit address of the pipe to open.
*/
void openWritingPipe(uint64_t address);
private:
/**
* @name Low-level internal interface.
*
* Protected methods that address the chip directly. Regular users cannot
* ever call these. They are documented for completeness and for developers who
* may want to extend this class.
*/
/**@{*/
/**
* Set chip select pin
*
* Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
* and best of all, we make use of the radio's FIFO buffers. A lower speed
* means we're less likely to effectively leverage our FIFOs and pay a higher
* AVR runtime cost as toll.
*
* @param mode HIGH to take this unit off the SPI bus, LOW to put it on
*/
void csn(bool mode);
/**
* Set chip enable
*
* @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet
* for a much more detailed description of this pin.
*/
void ce(bool level);
/**
* Read a chunk of data in from a register
*
* @param reg Which register. Use constants from nRF24L01.h
* @param buf Where to put the data
* @param len How many bytes of data to transfer
* @return Current value of status register
*/
uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
/**
* Read single byte from a register
*
* @param reg Which register. Use constants from nRF24L01.h
* @return Current value of register @p reg
*/
uint8_t read_register(uint8_t reg);
/**
* Write a chunk of data to a register
*
* @param reg Which register. Use constants from nRF24L01.h
* @param buf Where to get the data
* @param len How many bytes of data to transfer
* @return Current value of status register
*/
uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
/**
* Write a single byte to a register
*
* @param reg Which register. Use constants from nRF24L01.h
* @param value The new value to write
* @return Current value of status register
*/
uint8_t write_register(uint8_t reg, uint8_t value);
/**
* Write the transmit payload
*
* The size of data written is the fixed payload size, see getPayloadSize()
*
* @param buf Where to get the data
* @param len Number of bytes to be sent
* @return Current value of status register
*/
uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType);
/**
* Read the receive payload
*
* The size of data read is the fixed payload size, see getPayloadSize()
*
* @param buf Where to put the data
* @param len Maximum number of bytes to read
* @return Current value of status register
*/
uint8_t read_payload(void* buf, uint8_t len);
/**
* Empty the receive buffer
*
* @return Current value of status register
*/
uint8_t flush_rx(void);
/**
* Retrieve the current status of the chip
*
* @return Current value of status register
*/
uint8_t get_status(void);
/**
* Decode and print the given status to stdout
*
* @param status Status value to print
*
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/
void print_status(uint8_t status);
/**
* Decode and print the given 'observe_tx' value to stdout
*
* @param value The observe_tx value to print
*
* @warning Does nothing if stdout is not defined. See fdevopen in stdio.h
*/
void print_observe_tx(uint8_t value);
/**
* Print the name and value of an 8-bit register to stdout
*
* Optionally it can print some quantity of successive
* registers on the same line. This is useful for printing a group
* of related registers on one line.
*
* @param name Name of the register
* @param reg Which register. Use constants from nRF24L01.h
* @param qty How many successive registers to print
*/
void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
/**
* Print the name and value of a 40-bit address register to stdout
*
* Optionally it can print some quantity of successive
* registers on the same line. This is useful for printing a group
* of related registers on one line.
*
* @param name Name of the register
* @param reg Which register. Use constants from nRF24L01.h
* @param qty How many successive registers to print
*/
void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
/**
* Turn on or off the special features of the chip
*
* The chip has certain 'features' which are only available when the 'features'
* are enabled. See the datasheet for details.
*/
void toggle_features(void);
/**
* Built in spi transfer function to simplify repeating code repeating code
*/
uint8_t spiTrans(uint8_t cmd);