-
Notifications
You must be signed in to change notification settings - Fork 289
/
cuda-to-pytorch.py
executable file
·71 lines (57 loc) · 2.47 KB
/
cuda-to-pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
#
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import argparse
import sys
try:
import torch
except ImportError:
print("failed to import torch - if you wish to test PyTorch interoperability, please install it")
sys.exit(0)
from jetson_utils import cudaImage
# parse the command line
parser = argparse.ArgumentParser('Map cudaImage to PyTorch GPU tensor')
parser.add_argument("--width", type=int, default=4, help="width of the array (in pixels)")
parser.add_argument("--height", type=int, default=2, help="height of the array (in pixels)")
parser.add_argument("--format", type=str, default="rgb32f", help="format of the array (default rgb32f)")
args = parser.parse_args()
print(args)
# allocate cuda memory
cuda_img = cudaImage(width=args.width, height=args.height, format=args.format)
print(cuda_img)
# map to torch tensor using __cuda_array_interface__
tensor = torch.as_tensor(cuda_img, device='cuda')
print("\nPyTorch tensor:\n")
print(type(tensor))
print(f" -- ptr: {hex(tensor.data_ptr())}")
print(f" -- type: {tensor.dtype}")
print(f" -- shape: {tensor.shape}\n")
print(tensor)
# modify PyTorch tensor
print("\nmodifying PyTorch tensor...\n")
tensor.fill_(1)
print(tensor)
# confirm changes to cudaImg
print("\nconfirming changes to cudaImage...\n")
for y in range(cuda_img.shape[0]):
for x in range(cuda_img.shape[1]):
print(f"cuda_img[{y}, {x}] = {cuda_img[y,x]}")