This repository has been archived by the owner on Dec 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo.py
276 lines (229 loc) · 10.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2021 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dwave.system import LeapHybridSampler
from dimod import BinaryQuadraticModel
import numpy as np
import matplotlib
try:
import matplotlib.pyplot as plt
except ImportError:
matplotlib.use("agg")
import matplotlib.pyplot as plt
from matplotlib import animation
def build_bqm(num_pumps, time, power, costs, flow, demand, v_init, v_min, v_max, c3_gamma):
"""Build bqm that models our problem scenario.
Args:
num_pumps (int): Number of pumps available
time (list): List of time slots
power (list of floats): power[i] = power required for pump i
costs (list of floats): costs[i] = unit power cost at time i
flow (list of floats): flow[i] = flow output for pump i
demand (list of floats): demand[i] = flow demand at time i
v_init (float): Initial reservoir water level
v_min (float): Minimum allowed reservoir water level
v_max (float): Maximum allowed reservoir water level
c3_gamma (float): Lagrange multiplier for constraint 3
Returns:
bqm (BinaryQuadraticModel): QUBO model for the input scenario
x (list of strings): List of variable names in BQM
"""
print("\nBuilding binary quadratic model...")
# Build a variable for each pump
x = [['P' + str(p) + '_' + str(t) for t in time] for p in range(num_pumps)]
# Initialize BQM
bqm = BinaryQuadraticModel('BINARY')
# Objective
gamma = 10000 # Lagrange parameter: tune for performance in different scenarios
for p in range(num_pumps):
for t in range(len(time)):
bqm.add_variable(x[p][t], gamma*power[p]*costs[t]/1000)
# Constraint 1: Every pump runs at least once per day
for p in range(num_pumps):
c1 = [(x[p][t], 1) for t in range(len(time))]
bqm.add_linear_inequality_constraint(c1,
lb = 1,
ub = len(time),
lagrange_multiplier = 1,
label = 'c1_pump_'+str(p))
# Constraint 2: At most num_pumps-1 pumps per time slot
for t in range(len(time)):
c2 = [(x[p][t], 1) for p in range(num_pumps)]
bqm.add_linear_inequality_constraint(c2,
constant = -num_pumps + 1,
lagrange_multiplier = 1,
label = 'c2_time_'+str(time[t]))
# Constraint 3: Water doesn't go below v_min or above v_max
## Note: Multiplication by 100 is to clear fractional coefficients in inequality
for t in range(len(time)):
c3 = [(x[p][k], int(flow[p]*100)) for p in range(num_pumps) for k in range(t+1)]
const = v_init - sum(demand[0:t+1])
bqm.add_linear_inequality_constraint(c3,
constant = int(const*100),
lb = v_min * 100,
ub = v_max * 100,
lagrange_multiplier = c3_gamma,
label = 'c3_time_'+str(time[t]))
return bqm, x
def process_sample(sample, x, pumps, time, power, flow, costs, demand, v_init, verbose=True):
"""Process sample returned when submitting BQM to solver.
Args:
sample (SampleSet): Sample to process
x (list of strings): List of variable names in BQM
pumps (list of ints): List of pumps available
time (list): List of time slots
power (list of floats): power[i] = power required for pump i
flow (list of floats): flow[i] = flow output for pump i
costs (list of floats): costs[i] = unit power cost at time i
demand (list of floats): demand[i] = flow demand at time i
v_init (float): Initial reservoir water level
verbose (bool): Trigger to display command-line output
Returns:
pump_flow_schedule (list of floats):
pump_flow_schedule[i] = amount of input flow from pumps at time i
reservoir (list of floats): reservoir[i] = reservoir level at time i
"""
print("\nProcessing sampleset returned...")
# Initialize variables
total_flow = 0
total_cost = 0
num_pumps = len(pumps)
# Print out time slots header
if verbose:
timeslots = "\n\t" + "\t".join(str(t) for t in time)
print(timeslots)
# Generate printout for each pump's usage
for p in range(num_pumps):
printout = str(pumps[p])
for t in range(len(time)):
printout += "\t" + str(sample[x[p][t]])
total_flow += sample[x[p][t]] * flow[p]
total_cost += sample[x[p][t]] * costs[t] * power[p] / 1000
if verbose:
print(printout)
# Generate printout for general water levels
printout = "Level:\t"
reservoir = [v_init]
pump_flow_schedule = []
for t in range(len(time)):
hourly_flow = reservoir[-1]
for p in range(num_pumps):
hourly_flow += sample[x[p][t]] * flow[p]
reservoir.append(hourly_flow-demand[t])
pump_flow_schedule.append(hourly_flow - reservoir[-2])
printout += str(int(reservoir[-1])) + "\t"
if verbose:
print("\n" + printout)
# Print out total flow and cost information
print("\nTotal flow:\t", total_flow)
print("Total cost:\t", total_cost, "\n")
return pump_flow_schedule, reservoir
def visualize(sample, x, v_min, v_max, v_init, num_pumps, costs, power, pump_flow_schedule, reservoir, time):
"""Visualize solution as mp4 animation saved to file reservoir.mp4.
Args:
sample (SampleSet): Sample to process
x (list of strings): List of variable names in BQM
v_min (float): Minimum allowed reservoir water level
v_max (float): Maximum allowed reservoir water level
v_init (float): Initial reservoir water level
num_pumps (int): Number of pumps available
costs (list of floats): costs[i] = unit power cost at time i
power (list of floats): power[i] = power required for pump i
pump_flow_schedule (list of floats):
pump_flow_schedule[i] = amount of input flow from pumps at time i
reservoir (list of floats): reservoir[i] = reservoir level at time i
Returns:
None.
"""
print("\nBuilding visualization...")
# Initialize plot
fig, ax = plt.subplots()
# Set up plot parameters (static)
ax.set_xlim(0, 1)
ax.set_ylim(0, v_min/2+v_max)
ax.xaxis.set_visible(False)
ax.set_yticks([v_min, v_max])
ax.set_yticklabels(('','Max'))
ax.set_title("Reservoir Water Level")
# Plot max/min water capacity lines (static)
ax.plot(list(range(0, 5)), [v_max]*(5), color='#222222', label="Max capacity", linewidth=1.0)
ax.plot(list(range(0, 5)), [v_min]*(5), color='#FFA143', label="Min capacity", linewidth=1.5)
# Plot water as a blue bar graph (dynamic)
barcollection = plt.bar(0.5, v_init, width=1.0, color='#2a7de1', align='center')
# Blue line across top of the water (dynamic)
water_line, = ax.plot([], [], 'b-')
x_ax_vals = np.linspace(0, 1, 200)
# Put list of pumps on plot (static)
pumps_used = []
for i in range(num_pumps):
pumps_used.append(plt.figtext(0.03, 0.11+0.035*i, "Pump "+str(i+1), fontdict=None, color='#DDDDDD', fontsize='small'))
# Put timeslot on plot (dynamic)
time_label = ax.text(0.75, 1600, '')
# Put cost for timeslot on plot (dynamic)
cost_label = plt.figtext(0.45, 0.03, '', fontdict=None, color='k')
def animate(i):
# Compute minutes/hour for smooth animation over time
m = i % (60/smoothing_factor)
t = int( (i-m) / (60/smoothing_factor) )
# Compute flow/demand per minute for smooth animation over time
pump_min_flow = m * smoothing_factor * pump_flow_schedule[t] / 60
demand_min = m * smoothing_factor * demand[t] / 60
# Adjust water level for the given min/hour
delta = reservoir[t] + pump_min_flow - demand_min
y = [delta] * (len(x_ax_vals))
for i, b in enumerate(barcollection):
b.set_height(delta)
water_line.set_data(x_ax_vals, y)
# Adjust time/cost/pumps used text on plot for the given hour
time_label.set_text('Time: '+str(time[t]))
cost = 0
for p in range(num_pumps):
if sample[x[p][t]] == 1:
pumps_used[p].set_color('#008c82')
cost += sample[x[p][t]] * costs[t] * power[p] / 1000
else:
pumps_used[p].set_color('#DDDDDD')
cost_label.set_text("Hourly Cost: "+str(cost))
return water_line,
# Build movie visualization
smoothing_factor = 4 # Granularity factor for animation
anim = animation.FuncAnimation(fig, animate, repeat=False, frames=int(24*(60/smoothing_factor)), interval=2, blit=True)
mywriter = animation.HTMLWriter(fps=30)
anim.save('reservoir.html',writer=mywriter)
print("\nAnimation saved as reservoir.html.")
if __name__ == '__main__':
# Set up scenario
num_pumps = 7
pumps = ['P'+str(p+1) for p in range(num_pumps)]
time = list(range(1, 25))
power = [15, 37, 33, 33, 22, 33, 22]
costs = [169]*7 + [283]*6 + [169]*3 + [336]*5 + [169]*3
flow = [75, 133, 157, 176, 59, 69, 120]
demand = [44.62, 31.27, 26.22, 27.51, 31.50, 46.18, 69.47, 100.36, 131.85,
148.51, 149.89, 142.21, 132.09, 129.29, 124.06, 114.68, 109.33,
115.76, 126.95, 131.48, 138.86, 131.91, 111.53, 70.43]
v_init = 550
v_min = 523.5
v_max = 1500
c3_gamma = 0.00052
# Build BQM
bqm, x = build_bqm(num_pumps, time, power, costs, flow, demand, v_init, v_min, v_max, c3_gamma)
# Run on hybrid sampler
print("\nRunning hybrid solver...")
sampler = LeapHybridSampler()
sampleset = sampler.sample(bqm)
sample = sampleset.first.sample
# Process-lowest energy solution
pump_flow_schedule, reservoir = process_sample(sample, x, pumps, time, power, flow, costs, demand, v_init)
# Visualize result
visualize(sample, x, v_min, v_max, v_init, num_pumps, costs, power, pump_flow_schedule, reservoir, time)