08/11/2016 The Trello Tech Stack - Fog Creek Blog

E Fog Creek

Articles and interviews on
Business, Design, Programming, Support and other Resources

The Trello Tech Stack

By Brett Kiefer on Fog Creek Product Trello

Trello started as an HTML mockup that Justin and Bobby, the Trello design team, put
together in a week. [was floored by how cool it looked and felt. Since Daniel and I joined the
project to prototype and build Trello, the challenge for the team has been to keep the snappy

feeling of the initial mockups while creating a solid server and a maintainable client.

T
E Trellis Protatype

E Ideas = Design + Mew List
Standard Unit Hem Case lssus Number 222 Ul Elements
i ©ms L
pay

Database Szhems | AP
aa w L

e Dtnll Viaw

a wE
L Ml

Mg Unicorma

ZOTEIIV LT

Honami Code
a 1

The Initial Trello Mockup

That led us toward a single-page app that would generate its UI on the client and accept data
updates from a push channel. This is pretty far from any of the work we've done before at

Fog Creek, so from a technical perspective Trello has been an adventure.

Initially, we were wondering how interesting and far-out the stack could be before
management got nervous, but our concerns were addressed in an early meeting with Joel,

when he said “Use things that are going to work great in two years.”

So we did. We have consistently opted for promising (and often troublesome) new
technologies that would deliver an awesome experience over more mature alternatives.

WeTe about a year in, and it's been a lot of fun.

CoffeeScript

https://www.fogcreek.com/blog/the-trello-tech-stack/ 1/11

https://www.fogcreek.com/blog
https://www.fogcreek.com/blog
https://www.fogcreek.com/blog/category/business/
https://www.fogcreek.com/blog/category/design/
https://www.fogcreek.com/blog/category/programming/
https://www.fogcreek.com/blog/category/support/
https://www.fogcreek.com/blog/resources-for-software-development-teams/
https://www.fogcreek.com/blog/the-trello-tech-stack/
https://www.fogcreek.com/blog/category/fog-creek/
https://www.fogcreek.com/blog/category/product/
https://www.fogcreek.com/blog/category/trello/
http://trello.com/
https://trello.com/justin
https://trello.com/bobbygrace
https://trello.com/daniel
http://trello.com/brett
https://www.fogcreek.com/blog/wp-content/uploads/2012/01/trello-v0.png
http://joelonsoftware.com/

08/11/2016 The Trello Tech Stack - Fog Creek Blog
Trello started out as a pure JavaScript project on both client and server, and stayed that way
until May, when we experimentally ported a couple of files to CoffeeScript to see how we
liked it. We loved it, and soon converted the rest of the code over and started coding

CoffeeScript exclusively.

CoffeeScript is a language that compiles to readable JavaScript. It existed when we started
Trello, but I was worried about the added complexity of having to debug compiled code
rather than directly debug the source. When we tried, it, though, the conversion was so clean
that mapping the target code to the source when debugging in Chrome required little mental
effort, and the gains in code brevity and readability from CoffeeScript were obvious and

compelling.

JavaScript is a really cool language. Well-written CoffeeScript smooths out and shortens
JavaScript, while maintaining the same semantics, and does not introduce a substantial

debugging indirection problem.

The Client

e Backbone js (client-side MVC)
« HTMLs pushState

e Mustache (templating language)

The Trello servers serve virtually no HTML. In fact, they don't serve much client-side code at
all. A Trello page is a thin (2k) shell that pulls down the Trello client-side app in the form of a
single minified and compressed JS file (including our third-party libraries and our compiled
CoffeeScript and Mustache templates) and a CSS file (compiled from our LESS source and
including inlined images). All of that comes in under 250k, and we serve it from Amazon’s
CloudFront CDN, so we get very low-latency loads in most locations. In reasonably high-
bandwidth cases, we have the app up and running in the browser window in about half a
second. After that, we have the benefit of caching, so subsequent visits to Trello can skip that

part.

In parallel, we kick off an AJAX data load for the first page’'s data content and try to establish

a WebSocket connection to the server.

BACKBONE.JS

When the data request returns, Backbone.js gets busy. The idea with Backbone is that we
render each Model that comes down from the server with a View, and then Backbone

provides an easy way to:

https://www.fogcreek.com/blog/the-trello-tech-stack/ 2/11

http://coffeescript.org/
http://documentcloud.github.com/backbone/
http://dev.w3.org/html5/html4-differences/#apis
http://mustache.github.com/
http://aws.amazon.com/cloudfront/
http://en.wikipedia.org/wiki/WebSocket

08/11/2016 The Trello Tech Stack - Fog Creek Blog
1. Watch for DOM events within the HTML generated by the View and tie those to
methods on the corresponding Model, which re-syncs with the server

2. Watch the model for changes, and re-render the model's HTML block to reflect them

Neat! Using that general approach, we get a fairly regular, comprehensible, and maintainable
client. We custom-built a client-side Model cache to handle updates and simplify client-side

Model reuse.

PUSHSTATE

Now that we have the entire client app loaded in the browser window, we don't want to
waste any time with page transitions. We use HTML5 pushState for moving between pages;
that way we can give proper and consistent links in the location bar, and just load data and

hand off to the appropriate Backbone-based controller on transition.

MUSTACHE

We use Mustache, a logic-less templating language, to represent our models as HTML. While
‘harnessing the full power of [[NSERT YOUR FAVORITE LANGUAGE HERE] in your
templates’ sounds like a good idea, it seems that in practice it requires a lot of developer
discipline to maintain comprehensible code. We've been very happy with the ‘less is more’
approach of Mustache, which allows us to re-use template code without encouraging us to

mingle it with our client logic and make a mess of things.

Pushing and Polling

Realtime updates are not a new thing, but they're an important part of making a

collaborative tool, so we have spent some time on that layer of Trello.

SOCKET.IO AND WEBSOCKETS

Where we have browser support (recent Chrome, Firefox, and Safari), we make a WebSocket
connection so that the server can push changes made by other people down to browsers
listening on the appropriate channels. We use a modified version* of the Socket.io client and
server libraries that allows us to keep many thousands of open WebSockets on each of our
servers at very little cost in terms of CPU or memory usage. So when anything happens to a
board youre watching, that action is published to our server processes and propagated to

your watching browser with very minimal latency, usually well under a second.

https://www.fogcreek.com/blog/the-trello-tech-stack/ 3/11

http://socket.io/

08/11/2016 The Trello Tech Stack - Fog Creek Blog

AJAX POLLING

It ain't fancy, but it works.

When the client browser doesn’t support [EACKRONE.0S

WebSockets (I'm lookin’ at you, Internet Explorer),

we just make tiny AJAX requests for updates every

couple of seconds while a user is active, and back MODELS

off to polling every ten seconds when the user goes 5

idle. Because our server setup allows us to serve P\F_C, '
HTTPS requests with very little overhead and keep NEE-C’D&P&T? l ASAX PoL_

TCP connections open, we can afford to provide a

N,]
THE INTERNET
decent experience over plain polling when . e e oy

D ey) Ty

necessary. :
(NODE 0% sl

We tried Comet, via the downlevel transports for VYETYS T =

Socket.io, and all of them were (at the time) shaky NONGODLE -~ | PR

in one way or another. Also, Comet and !
WebSockets seemed to be a risky basis for a major MONGO DY
feature of the app, and we wanted to be able to fall

back on the most simple and well-established

Early Architecture Drawing
technologies if we hit a problem.
We hit a problem right after launch. Our WebSocket server implementation started behaving
very strangely under the sudden and heavy real-world usage of launching at TechCrunch
disrupt, and we were glad to be able to revert to plain polling and tune server performance
by adjusting the active and idle polling intervals. It allowed us to degrade gracefully as we
increased from 300 to 50,000 users in under a week. We're back on WebSockets now, but

having a working short-polling system still seems like a very prudent fallback.

The Server

node.js
HAProxy
Redis
MongoDB

NODE.JS

https://www.fogcreek.com/blog/the-trello-tech-stack/ 4/11

https://www.fogcreek.com/blog/wp-content/uploads/2012/01/trello-freehand.jpg
http://techcrunch.com/2011/09/13/joel-spolskys-trello-is-a-simple-workflow-and-list-manager-for-groups/

08/11/2016 The Trello Tech Stack - Fog Creek Blog
The server side of Trello is built in Node.js. We knew we wanted instant propagation of
updates, which meant that we needed to be able to hold a lot of open connections, so an
event-driven, non-blocking server seemed like a good choice. Node also turned out to be an
amazing prototyping tool for a single-page app. The prototype version of the Trello server
was really just a library of functions that operated on arrays of Models in the memory of a
single Node.js process, and the client simply invoked those functions through a very thin
wrapper over a WebSocket. This was a very fast way for us to get started trying things out
with Trello and making sure that the design was headed in the right direction. We used the
prototype version to manage the development of Trello and other internal projects at Fog
Creek.

By the time we had finished the prototype, we were good and comfortable in Node and
excited about its capabilities and performance, so we stuck with it and made our Pinocchio

proto-Trello a real boy; we gave it:

e areal DB and Schema (node-mongodb-native and Mongoose)
e basic web tech like routes and cookies (Express and Connect)
e multiple server processes with zero-downtime restarts (Cluster)

e inter-process pubsub and structured data sharing via Redis (node_redis)

Node is great, and getting better all of the time as its active developer community churns out
new and useful libraries. The huge amount of continuation passing that you have to do is an
issue at first, and it takes a couple of weeks to get used to it. We use a really excellent async
library (and the increased code brevity of CoffeeScript) to keep our code under control. There
are more sophisticated approaches that add features to JavaScript to automate
continuations, but were more comfortable with just using an async library whose behavior

we understand thoroughly.

HAPROXY

We use HAProxy to load balance between our webservers. It balances TCP between the
machines round robin and leaves everything else to Node.js, leaving the connections open
with a reasonably long time to live to support WebSockets and re-use of a TCP connection
for AJAX polling.

REDIS

Trello uses Redis for ephemeral data that needs to be shared between server processes but

not persisted to disk. Things like the activity level of a session or a temporary OpenID key

https://www.fogcreek.com/blog/the-trello-tech-stack/ 5/11

http://nodejs.org/
https://github.com/christkv/node-mongodb-native
https://github.com/LearnBoost/mongoose
http://expressjs.com/
http://www.senchalabs.org/connect/
http://learnboost.github.com/cluster/
https://github.com/mranney/node_redis
https://github.com/caolan/async
http://haproxy.1wt.eu/
http://redis.io/

08/11/2016 The Trello Tech Stack - Fog Creek Blog

are stored in Redis, and the application is built to recover gracefully if any of these (or all of
them) are lost. We run with allkeys-Iru enabled and about five times as much space as its
actual working set needs, so Redis automatically discards data that hasn't been accessed

lately, and reconstructs it when necessary.

Our most interesting use of Redis is in our short-polling fallback for sending changes to
Models down to browser clients. When an object is changed on the server, we send a JSON
message down all of the appropriate WebSockets to notify those clients, and store the same
message in a fixed-length list for the affected model, noting how many messages have been
added to that list over all time. Then, when a client that is on AJAX polling pings the server
to see if any changes have been made to an object since its last poll, we can get the entire
server-side response down to a permissions check and a check of a single Redis value in most
situations. Redis is so crazy-fast that it can handle thousands of these checks per second

without making a substantial dent into a single CPU.

Redis is also our pub/sub server, and we use it to propagate object change messages from the
server process making the initiating request to all of the other server processes. Once you

have a Redis server in place, you start using it for all sorts of things.

MONGODB

MongoDB fills our more traditional database needs. We knew we wanted Trello to be
blisteringly fast. One of the coolest and most performance-obsessed teams we know is our
next-door neighbor and sister company StackExchange. Talking to their dev lead David at
lunch one day, I learned that even though they use SQL Server for data storage, they actually
primarily store a lot of their data in a denormalized format for performance, and normalize

only when they need to.

In MongoDB, we give up relational

DB features (e.g. arbitrary joins) for
very fast writes, generally faster
reads, and better denormalization
support — we can store a card’s

datain a single document in the

database and still have the ability to
guery into (and index) subfields of

the document. As we've grown

quickly, having a database that can

take a fair amount of abuse in

https://www.fogcreek.com/blog/the-trello-tech-stack/ 6/11

https://www.fogcreek.com/blog/wp-content/uploads/2012/01/trello-today.png
http://antirez.com/post/redis-as-LRU-cache.html
http://www.mongodb.org/

08/11/2016 The Trello Tech Stack - Fog Creek Blog
terms of read and write capacity Trello Today
has been a very good thing. Also,
MongoDB is really easy to replicate, back up, and restore (the Foursquare debacle

notwithstanding).

Another neat side benefit of using a loose document store is how easy it is to run different
versions of the Trello code against the same database without fooling around with DB
schema migrations. This has a lot of benefits when we push a new version of Trello; there is
seldom (if ever) a need to stop access to the app while we do a DB update or backfill.

This is also really cool for development: when you're using hg (or git-) bisect and a relational
test DB to search for the source of a bug, the additional step of up- or downgrading a test db

(or creating a new one with the properties you need) can really slow things down.

So we like it?

We like our tech stack. As Joel observes, we've bled all over it, but I've never seen a team
make an interesting app without tool- and component-related bloodshed, and not everyone
can say that they really like what they've ended up with. As is true of most applications, no
component or implementation detail is necessary to its nature; however, we think that this
excellent set of open-source projects has sped up our development, left us with a solid and
maintainable code base that were eager to move forward with, and made Trello a more
responsive and beautiful app. Thanks to everyone who has contributed to them; it's a great

time to be a programmer.
Sound neat? Try Trello! It's free.
Just can't get enough tech stack talk? Here's a Prezi I made for a recent talk on Trello.

* The Socket.io server currently has some problems with scaling up to more than 10K
simultaneous client connections when using multiple processes and the Redis store, and the
client has some issues that can cause it to open multiple connections to the same server, or
not know that its connection has been severed. There are some issues with submitting our
fixes (hacks!) back to the project — in many cases they only work with WebSockets (the only
Socket.io transport we use). We are working to get those changes which are fit for general

consumption ready to submit back to the project.

https://www.fogcreek.com/blog/the-trello-tech-stack/ 7/11

http://groups.google.com/group/mongodb-user/browse_thread/thread/528a94f287e9d77e
http://joelonsoftware.com/items/2012/01/06.html
http://trello.com/
http://prezi.com/skunatcrkp5m/trello-architecture/

08/11/2016 The Trello Tech Stack - Fog Creek Blog

More on Fog Creek:

Make Better Software Magazine
From Creek Week To Final Product: A Tale of Two Projects
From Idea to Product with Creek Weeks
Announcing HyperDev - The Developer Playground for Building Full-stack Web Apps, Fast

Iteration Planner Improvements

2 years of Fog Creek 4

[\
\.; Read the best from 16 {‘,
% N

Business ' Design ' Programming ' Support ' Resources ' Everything

Make Better Software Magazine
Expert advice about development, hiring and leadership

Download for Free —

Y

Keep up with the latest

you@email.com

Search the Blog

https://www.fogcreek.com/blog/the-trello-tech-stack/ 8/11

https://www.fogcreek.com/blog/get-your-free-copy-of-make-better-software-magazine/
https://www.fogcreek.com/blog/from-creek-week-to-final-product-a-tale-of-two-projects/
https://www.fogcreek.com/blog/how-we-embed-a-culture-of-innovation-with-creek-weeks/
https://www.fogcreek.com/blog/announcing-hyperdev-the-developer-playground-for-building-fullstack-web-apps-fast/
https://www.fogcreek.com/blog/iteration-planner-improvements/
https://www.fogcreek.com/blog/tag/best-of/
https://www.fogcreek.com/blog/tag/best-of/
https://www.fogcreek.com/blog/tag/best-of/
https://www.fogcreek.com/blog/category/business/
https://www.fogcreek.com/blog/category/design/
https://www.fogcreek.com/blog/category/programming/
https://www.fogcreek.com/blog/category/support/
https://www.fogcreek.com/blog/resources-for-software-development-teams/
https://www.fogcreek.com/blog/category/everything/
https://www.fogcreek.com/blog/make-better-software-magazine/
https://twitter.com/fogcreek/
https://feeds.feedburner.com/FogCreekBlog
https://www.fogcreek.com/

08/11/2016 The Trello Tech Stack - Fog Creek Blog
© 2016 Fog Creek Software, Inc.

https://www.fogcreek.com/blog/the-trello-tech-stack/ 9/11

https://www.fogcreek.com/

08/11/2016 The Trello Tech Stack - Fog Creek Blog

https://www.fogcreek.com/blog/the-trello-tech-stack/ 10/11

08/11/2016 The Trello Tech Stack - Fog Creek Blog

https://www.fogcreek.com/blog/the-trello-tech-stack/ 11/11

