forked from soumith/imagenet-multiGPU.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.lua
79 lines (72 loc) · 2.71 KB
/
data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
local ffi = require 'ffi'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
-- This script contains the logic to create K threads for parallel data-loading.
-- For the data-loading details, look at donkey.lua
-------------------------------------------------------------------------------
do -- start K datathreads (donkeys)
if opt.nDonkeys > 0 then
local options = opt -- make an upvalue to serialize over to donkey threads
donkeys = Threads(
opt.nDonkeys,
function()
require 'torch'
end,
function(idx)
opt = options -- pass to all donkeys via upvalue
tid = idx
local seed = opt.manualSeed + idx
torch.manualSeed(seed)
print(string.format('Starting donkey with id: %d seed: %d', tid, seed))
paths.dofile('donkey.lua')
end
);
else -- single threaded data loading. useful for debugging
paths.dofile('donkey.lua')
donkeys = {}
function donkeys:addjob(f1, f2) f2(f1()) end
function donkeys:synchronize() end
end
end
nClasses = nil
classes = nil
donkeys:addjob(function() return trainLoader.classes end, function(c) classes = c end)
donkeys:synchronize()
nClasses = #classes
assert(nClasses, "Failed to get nClasses")
assert(nClasses == opt.nClasses,
"nClasses is reported different in the data loader, and in the commandline options")
print('nClasses: ', nClasses)
torch.save(paths.concat(opt.save, 'classes.t7'), classes)
-- creating and saving <classes> and <revClasses>
local revClasses = {}
for i, c in ipairs(classes) do revClasses[c] = i end
torch.save(paths.concat(opt.save, 'aux.t7'), {
['classes'] = classes,
['revClasses'] = revClasses,
})
-- convert classes to plain text
local classes_td = {[1] = 'classes,targets\n'}
for _,cat in pairs(classes) do
table.insert(classes_td, cat ..',1\n')
end
local file = io.open(paths.concat(opt.save, 'categories.txt'), 'w')
file:write(table.concat(classes_td)):close()
-- rename dataset statistics
local stat = torch.load(paths.concat(opt.cache, 'meanstdCache.t7'))
stat.mean = torch.Tensor(stat.mean or {0,0,0})
stat.std = torch.Tensor(stat.std or {1,1,1})
torch.save(paths.concat(opt.save, 'stat.t7'), stat)
nTest = 0
donkeys:addjob(function() return testLoader:size() end, function(c) nTest = c end)
donkeys:synchronize()
assert(nTest > 0, "Failed to get nTest")
print('nTest: ', nTest)