-
Notifications
You must be signed in to change notification settings - Fork 22
/
LISA_tools.py
346 lines (263 loc) · 9.3 KB
/
LISA_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
Tools...
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
"""
PhenomA coefficeints:
Coefficients from Table 2 in ``LISA Sensitivity'' - Neil Cornish & Travis Robson
"""
a0 = 2.9740e-1
b0 = 4.4810e-2
c0 = 9.5560e-2
a1 = 5.9411e-1
b1 = 8.9794e-2
c1 = 1.9111e-1
a2 = 5.0801e-1
b2 = 7.7515e-2
c2 = 2.2369e-2
a3 = 8.4845e-1
b3 = 1.2848e-1
c3 = 2.7299e-1
""" Constants """
C = 299792458. # m/s
YEAR = 3.15581497632e7 # sec
TSUN = 4.92549232189886339689643862e-6 # mass of sun in seconds (G=C=1)
MPC = 3.08568025e22/C # mega-Parsec in seconds
def get_Sn(constants):
# constants = np.arrays([H0, Omega_m, L, f_star, Tobs, NC])
f_star = constants[3]
L = constants[2]
NC = constants[5]
Tobs = constants[4]
transfer_data = np.genfromtxt('R.txt')
f = transfer_data[:,0]*f_star # convert to frequency
R = transfer_data[:,1]*NC # response gets improved by more data channels
Sn = get_Pn(f, f_star, L)/R + get_Sc_est(f, Tobs, NC)
return f, Sn
def get_Sc_est(f, Tobs, NC):
"""
Get an estimation of the galactic binary confusion noise are available for
Tobs = {0.5 yr, 1 yr, 2 yr, 4yr}
Enter Tobs as a year or fraction of a year
"""
# Fix the parameters of the confusion noise fit
if (Tobs == 0.5*YEAR):
est = 1
elif (Tobs == 1.0*YEAR):
est = 2
elif (Tobs == 2.0*YEAR):
est = 3
elif (Tobs == 4.0*YEAR):
est = 4
# else find the closest observation period estimation
else:
if (Tobs < .75*YEAR):
est = 1
elif (0.75*YEAR < Tobs and Tobs < 1.5*YEAR):
est = 2
elif (1.5*YEAR < Tobs and Tobs < 3.0*YEAR):
est = 3
else:
est = 4
if (est==1):
alpha = 0.133
beta = 243.
kappa = 482.
gamma = 917.
f_knee = 2.58e-3
elif (est==2):
alpha = 0.171
beta = 292.
kappa = 1020.
gamma = 1680.
f_knee = 2.15e-3
elif (est==3):
alpha = 0.165
beta = 299.
kappa = 611.
gamma = 1340.
f_knee = 1.73e-3
else:
alpha = 0.138
beta = -221.
kappa = 521.
gamma = 1680.
f_knee = 1.13e-3
A = 1.8e-44/NC
Sc = 1. + np.tanh(gamma*(f_knee - f))
Sc *= np.exp(-f**alpha + beta*f*np.sin(kappa*f))
Sc *= A*f**(-7./3.)
return Sc
def get_Pn(f, f_star, L):
"""
Get the Power Spectral Density
"""
# single-link optical metrology noise (Hz^{-1}), Equation (10)
P_oms = (1.5e-11)**2*(1. + (2.0e-3/f)**4)
# single test mass acceleration noise, Equation (11)
P_acc = (3.0e-15)**2*(1. + (0.4e-3/f)**2)*(1. + (f/(8.0e-3))**4)
# total noise in Michelson-style LISA data channel, Equation (12)
Pn = (P_oms + 2.*(1. + np.cos(f/f_star)**2)*P_acc/(2.*np.pi*f)**4)/L**2
return Pn
def get_Sn_approx(f, f_star, L, NC):
"""
Get the noise curve approximation, Equation (1) of ``LISA Sensitivity'' - Neil Cornish & Travis Robson
"""
# Sky and polarization averaged signal response of the detector, Equation (9)
Ra = 3./20./(1. + 6./10.*(f/f_star)**2)*NC
# strain spectral density, Equation (2)
Sn = get_Pn(f, f_star, L)/Ra
return Sn
def get_A(f, M, eta, Mc, Dl):
"""
PhenomA: Binary Waveform
--------------
Section 2 of ``LISA Sensitivity'' - Neil Cornish & Travis Robson
"""
f0 = (a0*eta**2 + b0*eta + c0)/(np.pi*M) # merger frequency
f1 = (a1*eta**2 + b1*eta + c1)/(np.pi*M) # ringdown frequency
f2 = (a2*eta**2 + b2*eta + c2)/(np.pi*M) # decay-width of ringdown
f3 = (a3*eta**2 + b3*eta + c3)/(np.pi*M) # cut-off frequency
A = np.sqrt(5./24.)*Mc**(5./6.)*f0**(-7./6.)/np.pi**(2./3)/Dl
if (f < f0):
A *= (f/f0)**(-7./6.)
elif (f0 <= f and f < f1):
A *= (f/f0)**(-2./3.)
elif (f1 <= f and f < f3):
w = 0.5*np.pi*f2*(f0/f1)**(2./3.)
A *= w*f2/((f - f1)**2 + 0.25*f2**2)/(2.*np.pi)
else:
A *= 0.
return A
def get_Dl(z, Omega_m, H0):
""" calculate luminosity distance in geometrized units """
# see http://arxiv.org/pdf/1111.6396v1.pdf
x0 = (1. - Omega_m)/Omega_m
xZ = x0/(1. + z)**3
Phi0 = (1. + 1.320*x0 + 0.4415*x0**2 + 0.02656*x0**3)
Phi0 /= (1. + 1.392*x0 + 0.5121*x0**2 + 0.03944*x0**3)
PhiZ = (1. + 1.320*xZ + 0.4415*xZ**2 + 0.02656*xZ**3)
PhiZ /= (1. + 1.392*xZ + 0.5121*xZ**2 + 0.03944*xZ**3)
return 2.*C/H0*(1.0e-3*MPC)*(1. + z)/np.sqrt(Omega_m)*(Phi0 - PhiZ/np.sqrt(1. + z))
# return 2./H0*(1.0e-3*MPC)*(1. + z)/np.sqrt(Omega_m)*(Phi0 - PhiZ/np.sqrt(1. + z))
def get_z(z, Dl, Omega_m, H0):
""" calculate redishift uisng root finder """
return get_Dl(z, Omega_m, H0) - Dl
def get_h_char_track(f, f_start, f_end, M, eta, M_chirp, Dl, constants):
# constants = np.arrays([H0, Omega_m, L, f_star, Tobs, NC])
f_star = constants[3]
L = constants[2]
NC = constants[5]
Tobs = constants[4]
A_arr = np.zeros(len(f))
h_c_arr = np.zeros(len(f))
arg_start = np.where(f<=f_start)[0][-1]
if (f_end > 1.): # i.e. off the graph
arg_end = np.len(f)-1
else:
arg_end = np.where(f>=f_end)[0][0]
for i in range(arg_start, arg_end):
A_arr[i] = get_A(f[i], M, eta, M_chirp, Dl)
h_c_arr[i] = f[i]*A_arr[i]*np.sqrt(16./5.)
SNR = 0.
f, Sn = get_Sn(constants)
for i in range(arg_start, arg_end):
freq = 0.5*(f[i] + f[i-1])
Sn_est = 0.5*(1./Sn[i] + 1./Sn[i-1])
SNR += 16./5.*freq*get_A(freq, M, eta, M_chirp, Dl)**2*Sn_est*(np.log(f[i]) - np.log(f[i-1]))
SNR = np.sqrt(SNR)
return h_c_arr, SNR
def get_h_char_point(f_start, f_end, M, eta, M_chirp, Dl, constants):
# constants = np.arrays([H0, Omega_m, L, f_star, Tobs, NC])
f_star = constants[3]
L = constants[2]
NC = constants[5]
Tobs = constants[4]
h_c = np.sqrt(16./5.*(f_end-f_start)*f_start)*get_A(f_start, M, eta, M_chirp, Dl)
Sn_est = get_Sn_approx(f_start, f_star, L, NC) + get_Sc_est(f_start, Tobs, NC)
SNR = 8.*np.sqrt(Tobs/5.)*M_chirp**(5./3.)*(np.pi*f_start)**(2./3.)/Dl/np.sqrt(Sn_est)
return h_c, SNR
"""
Calculate the Characteristic strain of the source
Inputs:
m1 - component mass 1, SOURCE FRAME!
m2 - component mass 2, SOURCE FRAME!
Initial condition options (Specify one!)
--------------------------
T_merger - time to merger for source
f_start - start frequency for source
Distance options (Specify one!)
--------------------------
D_lum - Luminosity distance
z - redshift
"""
def calculate_plot_source(m1, m2, constants, Dl=None, z=None, T_merger=None, f_start=None):
"""
Determine the appropriate way to plot the source, calculate its characteristic strain
and print the correpsonding SNR.
"""
# constants = np.arrays([H0, Omega_m, L, f_star, Tobs, NC])
Omega_m = constants[1]
H0 = constants[0]
Tobs = constants[4]
NC = constants[5]
L = constants[2]
f_star = constants[3]
f, Sn = get_Sn(constants)
""" Sort out the luminosity distance and redshift of the source """
if (Dl==None): # Z was specified, then we must calculate Dl
Dl = get_Dl(z, Omega_m, H0)
elif(z==None):
z = optimize.root(get_z, 1., args=(Dl, Omega_m, H0)).x[0]
""" Calculate relevant mass parameters """
m1 *= (1. + z) # redshift the source frame masses
m2 *= (1. + z)
M = m1 + m2 # total mass
M_chirp = (m1*m2)**(3./5.)/M**(1./5.) # chirp mass
eta = (m1*m2)/M**2 # symmetric mass ratio
""" Calculate PhenomA cut-off frequency """
f3 = (a3*eta**2 + b3*eta + c3)/(np.pi*M)
if (f_start==None): # T_merger was specified
f_start = (5.*M_chirp/T_merger)**(3./8.)/(8.*np.pi*M_chirp)
else: # f_start was specified, calculate time to merger for circular binary
T_merger = 5.*M_chirp/(8.*np.pi*f_start*M_chirp)**(8./3.)
""" Determine the ending frequency of this source """
if (T_merger > Tobs):
f_end = (5.*M_chirp/(np.abs(Tobs-T_merger)))**(3./8.)/(8.*np.pi*M_chirp)
elif (T_merger <= Tobs):
f_end = f3
""" Plot the results """
plt.figure(figsize=(8,6))
plt.rcParams['text.usetex'] = True
plt.ion()
plt.rc('text', usetex=True)
plt.rc('font', family='calibri')
plt.xlabel(r'$f ~[Hz]$', fontsize=20, labelpad=10)
plt.ylabel(r'Characteristic Strain$', fontsize=20, labelpad=10)
plt.tick_params(axis='both', which='major', labelsize=20)
# How much log bandwidth does the source span
d_log_f = np.log(f_end/f_start)
if (d_log_f > 0.5): # plot a track
h_c_arr, SNR = get_h_char_track(f, f_start, f_end, M, eta, M_chirp, Dl, constants)
plt.loglog(f, h_c_arr)
title = 'Track SNR: ' + str(SNR)
plt.title(title, fontsize=20)
out_file = 'char_signal_strain.dat'
np.savetxt(out_file,(np.vstack((f, h_c_arr)).T), delimiter=' ')
else: # track is too short, plot a point
h_c, SNR = get_h_char_point(f_start, f_end, M, eta, M_chirp, Dl, constants)
plt.loglog(f_start, h_c, 'r.')
title = 'Point SNR: ' + str(SNR)
plt.title(title, fontsize=20)
out_file = 'char_signal_strain.dat'
np.savetxt(out_file,(np.vstack((f_start, h_c)).T), delimiter=' ')
plt.loglog(f, np.sqrt(f*Sn)) # plot the characteristic strain of noise
#%config InlineBackend.figure_format = 'retina'
plt.xlim(1.0e-5, 1.0e0)
plt.ylim(1.0e-22, 1.0e-15)
plt.tight_layout()
plt.tick_params(labelsize=20)
plt.show()
return None