-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheiganalysis.m
156 lines (124 loc) · 4.82 KB
/
eiganalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function eiganalysis(datafile,bt,ct)
s0 = (.1 + 5i)*2*pi*1e9; % expansion point for the basic 1 point shift-invert Arnoldi for MOR
s0string = '(.1 + 5i)*2*\pi*1e9';
N = 100; % ROM size
projection_method = 'explicit';
% projection_method = 'implicit';
ROI = [9 10];
FRdomain = 10.^ROI*1i;
eigtol = 1e-12; % any eigs with magnitude smaller than this are considered zero.
model_name = sprintf('%ss_{%d%d}',datafile,bt,ct);
[A E C B] = realization(datafile,bt,ct);
[AE R] = make_SI_op(A,E,B,s0);
result = band_Arnoldi(N,R,AE);
V = result.V;
H = result.H;
rho = result.rho;
if strcmp(projection_method,'explicit')
if ~isreal(V)
V = make_basis_real(V);
end
n = size(V,2);
A = V'*A*V; E = V'*E*V; b = V'*B; c = V'*C; % Replace realization with size n ROM realization
[AT ET Q Z V W] = qz(A,E); % note that we have renamed V
clear Q Z
mu = ordeig(AT,ET);
%% compute residues/weights
f = sum(abs(W'*b),1);
g = sum(abs(V'*c),1);
residue = conj(f) .* g;
% This scaling is necessary for W'*En*V = I, which is an assumption for the residue
% computation.
vec_scaling = diag(W'*E*V);
lambda = 1./(mu-s0);
inf_pole = abs(lambda) < eigtol; % Anything this far away from s0 is infinite.
mu(inf_pole) = []; % We discard infinite Ritz values for the plot
residue(inf_pole) = [];
lambda(inf_pole) = [];
vec_scaling(inf_pole) = [];
mass = abs(residue) ./ abs(vec_scaling) ./ (d2S(mu,FRdomain)+1); %abs(real(mu)); % Aguirre's DPI. %
else
[W D] = eig(H);
n = length(W);
lambda = diag(D);
inf_pole = abs(lambda) < eigtol; % Anything this far away from the origin is infinite.
lambda(inf_pole) = [];
W(:,inf_pole) = [];
mu = s0 + 1 ./ lambda;
f = sum(abs(C'*V*W),1)';
g = sum(abs(W\rho),2);
delta = abs(s0-mu) ./ d2S(mu,FRdomain);
mass = delta .* f .* g;
end
[slambda idx] = sort(lambda,'descend'); % lambda sorted by magnitude
slamu = mu(idx); % mu sorted by magnitude of lambda
order_of_lambda = log10(abs(slambda));
%% plot eigenvalues lambda of (A-s0E)\E
h_lambda = figure;
scatter(real(slambda),imag(slambda),32,order_of_lambda,'*');
tit = 'Ritz \lambda of (A-s_0E)^{-1}E';
title(sprintf('%s: %s, n=%d, %s, s_0 = %s',model_name,tit,n,projection_method,s0string));
%% plot lambda order of magnitude with dot size
h_eigmag = figure;
scatter(1:length(slambda), order_of_lambda, 32,order_of_lambda,'*');
colorbar;
tit = 'log_{10}|\lambda|';
title(sprintf('%s: %s, n=%d, %s, s_0 = %s',model_name,tit,n,projection_method,s0string));
% plot eigenvalues mu of (A,E), with s0 and indicate which will be the first to converge
% i.e. those associated with large lambda
h_mu = figure;
hold on
scatter(real(slamu),imag(slamu),32,order_of_lambda,'*'); % all finite Ritz-values
scatter(real(s0),imag(s0),256,'r','x'); % expansion point (shift) s0
circle(real(s0),imag(s0),abs(slamu(1)-s0),'g-.');
circle(real(s0),imag(s0),abs(slamu(10)-s0),'g-.');
hold off
h = line([0 0],2*pi*10.^ROI,'lineWidth',1,'Color','r','LineStyle','-'); % segment on i-axis
uistack(h,'bottom');
a = max(abs([real(mu); imag(mu)]));
xlim([-a a]); ylim([-a a]);
putaxis
tit = 'Ritz \mu of (A,E)';
title(sprintf('%s: %s, n=%d with s_0 = %s',model_name,tit,n,s0string));
ax = axis(gca);
if size(B,2) == 1 && size(C,2) == 1; % is this a SISO model?
%% plot wt magnitudes with dot size
h_polewt = figure;
wt_order = log10(abs(mass));
[swt_order idx] = sort(wt_order,'descend');
ds = dotsize(swt_order);
scatter(1:length(mass), swt_order, ds,ds,'*');
colorbar;
title(sprintf('%s pole weight, n=%d, %s',model_name,n,projection_method));
%% ********** plot poles of the transfer function sized by wt ******************
figure;
hold on;
line([0 0],2*pi*ROI,'lineWidth',1,'Color','r','LineStyle','-'); % segment on i-axis
scatter(real(mu(idx)),imag(mu(idx)),ds,ds,'*'); % poles by size according to relative order
scatter(real(s0),imag(s0),96,'r','p','MarkerFaceColor','r'); % expansion point s0
circle(real(s0),imag(s0), abs(slamu(1)-s0),'g-.');
circle(real(s0),imag(s0), abs(slamu(10)-s0),'b-.');
circle(real(s0),-imag(s0),abs(slamu(1)-s0),'g-.');
circle(real(s0),-imag(s0),abs(slamu(10)-s0),'b-.');
plot(0,2*pi*ROI(1),'k+', 0, 2*pi*ROI(2),'k+'); % delimiting makers for segment
tit = 'Ritz-poles \mu of C^T(A-sE)^{-1}B';
title(sprintf('%s: %s, %s, n=%d, s_0 = %s',model_name,tit,projection_method,n,s0string));
hold off
h = line([0 0],2*pi*10.^ROI,'lineWidth',1,'Color','r','LineStyle','-'); % segment on i-axis
uistack(h,'bottom');
axis(gca,ax);
putaxis
end
function ds = dotsize(orders)
% dot size indicates order of magnitude
sizes = [2 8 16 32 64 128];
% sizes = [1 8 16 21 32 48 64 80 110 128];
d = length(sizes);
orders = round(orders);
maxq = max(orders);
% minq = min(orders);
adjusted_orders = orders-maxq+d;
adjusted_orders(adjusted_orders<1) = 1;
ds = sizes(adjusted_orders);
end
end % main function