-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgol.c
400 lines (372 loc) · 11.1 KB
/
gol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include<stdio.h>
#include <stdlib.h>
#include"gol.h"
void read_in_file(FILE * infile, struct universe * u) {
// reading the file and initialising values
char c;
( * u).alive = 0;
( * u).rows = 0;
( * u).cols = 0;
( * u).max_cols = 0;
( * u).alive_total = 0;
( * u).n_of_gens = 1;
// malloc for rows
( * u).array = malloc(sizeof(char * ));
if (( * u).array == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
// malloc for columns
( * u).array[0] = malloc(sizeof(char * ) * 512);
if (( * u).array[0] == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
// reading the input file character by character
while ((c = fgetc(infile)) && c != EOF) {
if (c == '*') {
( * u).alive++;
} else if (c == '.' || c == '\n') {
} else {
fprintf(stderr, "Invalid character in the input.\n");
exit(1);
}
if (( * u).rows == 0) {
if (c != '\n') {
( * u).array[( * u).rows][( * u).cols] = c;
( * u).cols++;
if (( * u).cols > 512) {
fprintf(stderr, "Too many columns.\n");
exit(1);
}
} else {
( * u).max_cols = ( * u).cols;
( * u).rows++;
( * u).array = realloc(( * u).array, (sizeof(char * )) * ( * u).rows);
if (( * u).array == NULL) {
fprintf(stderr, "Realloc Error.\n");
exit(1);
}
// malloc for the second row
( * u).array[1] = malloc((sizeof(char * )) * ( * u).max_cols);
if (( * u).array[1] == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
( * u).cols = 0;
}
} else {
if (c != '\n') {
( * u).array[( * u).rows][( * u).cols] = c;
( * u).cols++;
} else {
if (( * u).cols != ( * u).max_cols) {
fprintf(stderr, "The grid is not a rectangle.\n");
exit(1);
}
( * u).rows++;
// expanding row by row
( * u).array = realloc(( * u).array, sizeof(char * ) * ( * u).rows * ( * u).max_cols);
if (( * u).array == NULL) {
fprintf(stderr, "Realloc Error.\n");
exit(1);
}
// malloc for n-th row
( * u).array[( * u).rows] = malloc((sizeof(char * )) * ( * u).max_cols);
if (( * u).array[( * u).rows] == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
( * u).cols = 0;
}
}
}
( * u).alive_total += ( * u).alive;
}
void write_out_file(FILE * outfile, struct universe * u) {
for (int counter = 0; counter < ( * u).rows; counter++) {
for (int counter1 = 0; counter1 <= ( * u).max_cols; counter1++) {
if (counter1 != ( * u).max_cols) {
fprintf(outfile, "%c", ( * u).array[counter][counter1]);
} else {
fprintf(outfile, "\n");
}
}
}
// freeing memory
for (int i = 0; i < ( * u).rows; i++)
free(( * u).array[i]);
free(( * u).array);
}
int is_alive(struct universe * u, int column, int row) {
if (( * u).array[row][column] == '*') {
return 1;
} else {
return 0;
}
}
int will_be_alive(struct universe * u, int column, int row) {
// counting alive neighbors
int n_alive = 0;
// top
if (row - 1 >= 0) {
if (( * u).array[row - 1][column] == '*') {
n_alive++;
}
}
// top right
if (row - 1 >= 0 && column + 1 < ( * u).max_cols) {
if (( * u).array[row - 1][column + 1] == '*') {
n_alive++;
}
}
// right
if (column + 1 < ( * u).max_cols) {
if (( * u).array[row][column + 1] == '*') {
n_alive++;
}
}
// bottom right
if (row + 1 < ( * u).rows && column + 1 < ( * u).max_cols) {
if (( * u).array[row + 1][column + 1] == '*') {
n_alive++;
}
}
// bottom
if (row + 1 < ( * u).rows) {
if (( * u).array[row + 1][column] == '*') {
n_alive++;
}
}
// bottom left
if (row + 1 < ( * u).rows && column - 1 >= 0) {
if (( * u).array[row + 1][column - 1] == '*') {
n_alive++;
}
}
// left
if (column - 1 >= 0) {
if (( * u).array[row][column - 1] == '*') {
n_alive++;
}
}
// top left
if (row - 1 >= 0 && column - 1 >= 0) {
if (( * u).array[row - 1][column - 1] == '*') {
n_alive++;
}
}
// Convay's rule
if (is_alive(u, column, row) == 1) {
if (n_alive == 2 || n_alive == 3) {
return 1;
} else {
return 0;
}
} else {
if (n_alive == 3) {
return 1;
} else {
return 0;
}
}
}
int will_be_alive_torus(struct universe * u, int column, int row) {
// counting alive neighbors with the topology of a torus
int n_alive = 0;
// top
if (row - 1 >= 0) {
if (( * u).array[row - 1][column] == '*') {
n_alive++;
}
} else {
if (( * u).array[( * u).rows - 1][column] == '*') {
n_alive++;
}
}
// right
if (column + 1 < ( * u).max_cols) {
if (( * u).array[row][column + 1] == '*') {
n_alive++;
}
} else {
if (( * u).array[row][0] == '*') {
n_alive++;
}
}
// bottom
if (row + 1 < ( * u).rows) {
if (( * u).array[row + 1][column] == '*') {
n_alive++;
}
} else {
if (( * u).array[0][column] == '*') {
n_alive++;
}
}
// left
if (column - 1 >= 0) {
if (( * u).array[row][column - 1] == '*') {
n_alive++;
}
} else {
if (( * u).array[row][( * u).max_cols - 1] == '*') {
n_alive++;
}
}
// top right
if (row - 1 >= 0 && column + 1 < ( * u).max_cols) {
if (( * u).array[row - 1][column + 1] == '*') {
n_alive++;
}
} else {
if (row - 1 < 0 && column + 1 < ( * u).max_cols) {
//row oob
if (( * u).array[( * u).rows - 1][column + 1] == '*') {
n_alive++;
}
} else if (row - 1 >= 0 && column + 1 >= ( * u).max_cols) {
//col oob
if (( * u).array[row - 1][0] == '*') {
n_alive++;
}
} else {
//row col oob
if (( * u).array[( * u).rows - 1][0] == '*') {
n_alive++;
}
}
}
// top left
if (row - 1 >= 0 && column - 1 >= 0) {
if (( * u).array[row - 1][column - 1] == '*') {
n_alive++;
}
} else {
if (row - 1 < 0 && column - 1 >= 0) {
//row oob
if (( * u).array[( * u).rows - 1][column - 1] == '*') {
n_alive++;
}
} else if (row - 1 >= 0 && column - 1 < 0) {
//col oob
if (( * u).array[row - 1][( * u).max_cols - 1] == '*') {
n_alive++;
}
} else {
//row col oob
if (( * u).array[( * u).rows - 1][( * u).max_cols - 1] == '*') {
n_alive++;
}
}
}
// bottom right
if (row + 1 < ( * u).rows && column + 1 < ( * u).max_cols) {
if (( * u).array[row + 1][column + 1] == '*') {
n_alive++;
}
} else {
if (row + 1 >= ( * u).rows && column + 1 < ( * u).max_cols) {
//row oob
if (( * u).array[0][column + 1] == '*') {
n_alive++;
}
} else if (row + 1 < ( * u).rows && column + 1 >= ( * u).max_cols) {
//col oob
if (( * u).array[row + 1][0] == '*') {
n_alive++;
}
} else {
//row col oob
if (( * u).array[0][0] == '*') {
n_alive++;
}
}
}
// bottom left
if (row + 1 < ( * u).rows && column - 1 >= 0) {
if (( * u).array[row + 1][column - 1] == '*') {
n_alive++;
}
} else {
if (row + 1 >= ( * u).rows && column - 1 >= 0) {
//row oob
if (( * u).array[0][column - 1] == '*') {
n_alive++;
}
} else if (row + 1 < ( * u).rows && column - 1 < 0) {
//col oob
if (( * u).array[row + 1][( * u).max_cols - 1] == '*') {
n_alive++;
}
} else {
//row col oob
if (( * u).array[0][( * u).max_cols - 1] == '*') {
n_alive++;
}
}
}
// Convay's rule
if (is_alive(u, column, row) == 1) {
if (n_alive == 2 || n_alive == 3) {
return 1;
} else {
return 0;
}
} else {
if (n_alive == 3) {
return 1;
} else {
return 0;
}
}
}
void evolve(struct universe * u, int( * rule)(struct universe * u, int column, int row)) {
// making a temporary grid with the same size as the original one. We need a this grid
// for evolving so that the already evolved cells do not affect the not yet evolved ones
( * u).alive = 0;
( * u).temp = malloc(sizeof(char * ) * ( * u).rows);
if (( * u).temp == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
for (int i = 0; i < ( * u).rows; i++) {
( * u).temp[i] = malloc(sizeof(char) * ( * u).max_cols);
if (( * u).temp[i] == NULL) {
fprintf(stderr, "Malloc Error.\n");
exit(1);
}
}
// evolving the temporary grid
for (int i = 0; i < ( * u).rows; i++) {
for (int j = 0; j < ( * u).max_cols; j++) {
if (( * rule)(u, j, i) == 1) {
( * u).temp[i][j] = '*';
( * u).alive += 1;
} else {
( * u).temp[i][j] = '.';
}
}
}
// copying the evolved grid to the original one
for (int i = 0; i < ( * u).rows; i++) {
for (int j = 0; j < ( * u).max_cols; j++) {
( * u).array[i][j] = ( * u).temp[i][j];
}
}
// for statistics
( * u).alive_total += ( * u).alive;
( * u).n_of_gens += 1;
// freeing memory
for (int i = 0; i < ( * u).rows; i++)
free(( * u).temp[i]);
free(( * u).temp);
}
void print_statistics(struct universe * u) {
// calculating and printing stats
float total_cells = ( * u).rows * ( * u).max_cols;
float current = (( * u).alive / total_cells) * 100;
float average = ((( * u).alive_total / ( * u).n_of_gens) / total_cells) * 100;
printf("%0.3f%% of cells currently alive\n", current);
printf("%0.3f%% of cells alive on average\n", average);
}