
BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA

FACULTY OF MATHEMATICS AND COMPUTER

SCIENCE

SPECIALIZATION COMPUTER SCIENCE

DIPLOMA THESIS

Secure Federated Learning of
Conditional Generative Adversarial

Networks

Supervisor

Asist. Drd. Mursa Bogdan-Eduard-Mădălin
Prof. Dr. Andreica Anca

Author
Pauliuc Eduard-Timotei

2023

UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA

FACULTATEA DE MATEMATICǍ ŞI INFORMATICǍ

SPECIALIZAREA INFORMATICĂ

LUCRARE DE LICENŢĂ

Antrenarea federată privată a ret,elelor
generative adversare condit,ionate

Conducător s, tiint,ific

Asist. Drd. Mursa Bogdan-Eduard-Mădălin
Prof. Dr. Andreica Anca

Absolvent
Pauliuc Eduard-Timotei

2023

ABSTRACT

Generative Adversarial Neural Networks (GANs) are part of state-of-the-art gen-
erative solutions across multiple disciplines such as medicine, finance, art and many
others. In the current Artificial Intelligence Boom, as it is called, more and more in-
dustries seek ways to integrate these models into their workflows. The significant
problem that became clear in the last decade is the increased amount of private user
information exposed in data breaches, as many approaches to training better and
better models require vast quantity of data. In order to make progress with respect
to the models obtained while preserving the privacy of the data, new approaches
have been published and used, of which an example is Federated Learning (FL).
Cross-Silo FL enables the training of an AI model across multiple clients, without
exposing their data to the other parties. This work explores the feasibility of em-
ploying FL in the training of a state-of-the-art generative model, Pix2Pix, which
is widely used in complex image-to-image translation tasks. The NVIDIA FLARE
training framework is extended in order to create an application that can train GAN
networks, with included metrics computation and visualisation features. This work
presents how the set up process should be conducted and the steps to train a model.
The resulting application is further used to train a Pix2Pix model implementation
in a collaborative scenario with multiple clients and analyze its performance, com-
pared to other training methods that use the same model and data, but jeopardize
the private data. The metrics presented are the Fréchet Inception Distance and vi-
sual comparison of the generated images, which are used to conclude whether large
generative models can be trained in a real scenario using Federated Learning.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Structure . 2
1.4 Original contributions . 2
1.5 Scientific Presentations . 3

2 Artificial Neural Networks 4
2.1 Beginnings . 4
2.2 Convolutional Neural Networks . 6

3 Conditional Generative Adversarial Networks 8
3.1 History of GANs . 8
3.2 Conditional GANs . 9

3.2.1 Pix2Pix . 9
3.2.2 Evaluation Metrics . 12

4 Private Federated Learning 14
4.1 Distributed Learning . 14

4.1.1 Federated Learning and Federated Averaging 14
4.1.2 NVIDIA FLARE . 16

4.2 Privacy Attacks and Solutions . 18

5 Related Work and State-Of-The-Art solutions 20

6 Experiments 22
6.1 Objective . 22
6.2 Evaluation Metrics . 23
6.3 Methods . 24

6.3.1 Centralized scenario . 24
6.3.2 Simulated federated training 27
6.3.3 Distributed federated learning with Differential Privacy . . . 29

ii

CONTENTS

6.4 Comparing the experiments . 34

7 Conclusions 39

Bibliography 41

iii

Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence is a trending subject, as it is becoming increasingly useful to
our society. More and more of humanity’s problems are solved using a diverse range
on AI models. However, most of these models are trained with large volumes of
data, which seems to become an invaluable resource of the future. Data is collected
from most of our interactions with technology, which rises interest in the question
of data privacy. Data breaches have become recurrent news, regulations such as the
General Data Protection Regulation (GDPR) have been imposed by governments
and it seems that data privacy will be as important in the future as AI technologies.

Numerous AI applications, particularly those involving large models, rely on
multi-party collaborations to enhance the accuracy of their predictive models. This
is evident across various domains, whether it’s a network of hospitals training a
neural network using CT scans, banks developing financial prediction models, or
educational institutions tracking student progress based on numerous parameters.
However, a common challenge emerges in these instances: the critical data cannot
be shared outside their respective institutions. This is where innovative approaches
like federated learning come into play, providing effective solutions by addressing
these constraints.

1.2 Objectives

The objective of this thesis is to answer whether Federated Learning is a practical
solution to the scenario of multiple clients willing to collaborate in order to train a
stat-of-the-art conditional generative adversarial network on sensitive data, with-
out compromising its privacy. The focus points are finding the most adequate ar-
chitecture for a distributed scenario, observing performance differences (in terms of

1

CHAPTER 1. INTRODUCTION

resulting model quality, communication costs and set-up overhead) and analysing
the privacy of the data during and after the training process.

1.3 Structure

This thesis is organized into six chapters, each focusing on different aspects of the
study. After the introduction, the next chapter provides an introduction into Arti-
ficial Neural Networks, exploring the history of this research field. Chapter three
introduces Conditional Generative Adversarial Networks (cGANs) and the Pix2Pix
model, setting the stage for understanding the experimental model used in this
work. Chapter four offers an introduction to private federated learning, laying the
groundwork for understanding the advantages and complexities of a multi-party
training collaboration. In the fifth chapter, related work in the field is discussed,
providing context and comparison for this study. Chapter six details the experi-
ments conducted and their results. The original contribution of this chapter is the
application created for these experiments. This application is customizable to train
any GAN model using the NVFlare framework – a development not available in any
public implementations at the time of this work. Finally, the last chapter draws con-
clusions from the study, synthesizing the findings from the experimental applica-
tion of federated learning on Pix2Pix, and examining its implications for real-world
multi-party collaborations. Multiple solutions and methods will be investigated and
their results will be compared. In the conclusion, future work and open problems
are mentioned.

1.4 Original contributions

While this research is not the first to explore Federated Learning outcomes, it stands
out by focusing on practical implementations. There is a wealth of existing re-
search on various algorithms and strategies, but many models trained with Feder-
ated Learning remain in the experimental phase and have not analyzed real-world
usage.

The model used for evaluation in this work, Pix2Pix, a large Conditional Genera-
tive Adversarial Network, is known for its useful medical applications. However, it
has not yet been trained in a federated scenario, in order to analyze the performance
loss and to determine whether it is suitable for a multi-party training collaboration.
This thesis aims to find whether current frameworks and cloud technologies provide
the infrastructure required to train a large conditional GAN models in a federated
method without major impact on model performance or training complexity.

2

CHAPTER 1. INTRODUCTION

An additional original contribution was the extension of the Federated Learn-
ing framework employed. At the time of this work, no public implementations
for training Generative Adversarial Network (GAN) models within this framework
were identified. The application created for the experiments in this work can be
customised to train any GAN model using the NVFlare framework.

1.5 Scientific Presentations

Part of the results presented in this thesis are published in a paper, alongside my
colleague Octavian Trifan, where we present a holistic view of Privacy-Preserving
GANs. My contribution is the private training part of the model life cycle, with Fed-
erated Learning, while Trifan presents the possibility of using Fully Homomorphic
Encryption in order to obtain private inference, which is useful when the data to be
used as input or the generated output contain sensitive information which should
not be exposed. These input and output objects can be encrypted, the user having
solely access to the information. We presented this paper at the Computer Science
Students’ Scientific Communications Session 2023, organized by Babes, -Bolyai Uni-
versity and Technical University of Cluj-Napoca.

3

Chapter 2

Artificial Neural Networks

2.1 Beginnings

Artificial Neural Networks are based on collections of connected nodes called neu-
rons, which take their inspiration from the human brain. A basic example of this
type of model is a linear network, characterized by having only one layer of output
nodes. The inputs are directly fed to the output nodes, multiplying their value by a
series of weights. This method has the name of Linear Regression and it was used
by Adrian-Marie Legendre (1805) and Johann Carl Friedrich Gauss (1795). In 1920,
physicists Ernst Ising and Wilhelm Lenz introduced the first non-learning recurrent
neural network, which had feedback connections, making the network more similar
to the human brain, as it is an essential mechanism for implementing the behaviour
of memory in processing [Sch22].

In the quest to mirror human cognition, it was understood that a complex com-
putational representation of the human brain’s intricate network of neurons had
to be developed. Researchers and scientists hypothesized that modeling the bil-
lions of interconnections between neural cells, each with its capacity for process-
ing and transmitting information, would provide a promising approach to crafting
intelligent systems, as discussed at the first conferences on AI [con53][Bru17]. In
1958, psychologist Frank Rosenblatt published the first artificial neural network,
the multi-layer perceptron [Ros58], but he did not have a complete deep learning
algorithm yet.

Deep Neural Networks

A simple neural network consists of only three layers: an input layer, a hidden layer,
and an output layer. Each layer contains a number of nodes or ”neurons,” and each
neuron in one layer is connected to every neuron in the next layer. Deep Neural Net-
works (DNNs), on the other hand, as shown in Figure 2.2, are a significant extension

4

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Figure 2.1: A comparison between a human neuron (a) and an artificial neuron (b).
For an artificial neuron, its activation function is a linear combination of all its inputs
followed by a nonlinear transformation. Deep neural networks (d) correspond to a
network of biological synapses (c) [MHA20].

of these simple networks. The term ”deep” refers to the presence of multiple hidden
layers in the network, rather than just one. This allows the network to model more
complex, higher-level features in the data. The advantage of deep neural networks
lies in their ability to automatically learn and represent features from raw data, a
process known as feature learning or representation learning [SML+21]. These Deep
Networks represent human neurons synapses, as seen in Figure 2.1.

Figure 2.2: A visual comparison between Simple and Deep Neural Networks, which
can have a variable number of hidden layers [dee18].

The first successful deep learning is attributed to Alexey Ivakhnenko and Valentin
Lapa, which introduced the first algorithm to train deep multi-layer perceptrons in
1965 [ILE65]. However, the first to introduce the term of ”deep learning” was Dec-
ther, in 1986 [Dec86].

5

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Backpropagation

Improvements to the previous models were published by Shun’ichi Amari in 1967,
when he successfully used Stochastic Gradient Descent (SGD) to train deep net-
works. Neural networks increased in popularity with the advancements in compu-
tational power and the introduction of backpropagation by Seppo Linnainmaa, the
algorithm that is widely used today to train neural networks [Sch22].

2.2 Convolutional Neural Networks

In 1979, Kunihiko Fukushima introduced the convolutional neural network (CNN),
consisting of convolutional and down-sampling layers, naming it ”neocognitron”
[Fuk80]. He used the ReLU (rectified linear unit) activation function (Figure 2.3),
also introduced by him in 1969 [Fuk69], which is the most popular and widely-used
activation function in CNNs, with significant applications in computer vision.

(a) Pooling (b) ReLU

Figure 2.3: (a) Max-Pooling and Average Pooling, the two most used Down-
sampling methods used in CNNs. (b) The ReLU activation function.

The architecture of a CNN can be seen in Figure 2.4. Pooling, exemplified in Fig-
ure 2.3, is usually done with Max-pooling or Average Pooling. These are important
as they reduce the resolution for the feature map, required for classification, named
Down-sampling [Fuk79].

Convolutional Neural Networks have been widely used in medical imaging, au-
dio processing and pattern recognition. The technological breakthroughs in Graphi-
cal Processing Units (GPUs) development also provided the computational resources
required to create more powerful models [Sch22]. The most cited and popular CNN
is ResNet, short for Residual Neural Network, which addresses the challenge of
training very deep neural networks by introducing residual connections. These con-
nections allow the network to skip certain layers and pass the information directly
to subsequent layers, thereby creating shortcuts. Using these connections, ResNet
facilitates the training of extremely deep neural networks with hundreds or even

6

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Figure 2.4: A Convolutional Neural Network model. In the feature extraction sec-
tion, multiple Convolutional Layers extract the features. Each layer consists of a
kernel applied to the input, followed by pooling and the ReLU activation function.
This is followed by classification layers which output a probabilistic distribution
into labels [cnn].

thousands of layers. This architecture has shown exceptional performance in image
classification, object detection, and other computer vision tasks, becoming a corner-
stone in the development of deep learning models [HZRS15].

7

Chapter 3

Conditional Generative Adversarial
Networks

3.1 History of GANs

The first formal introduction of the GAN training loop is accredited to Ian Good-
fellow [GPAM+14] using two Deep Neural Networks [Sch15], a Generator and a
Discriminator that train in a min-max game. The Generator is trained to generate
samples from the data distribution and the Discriminator predicts if a sample was
generated by the Generator or belongs to the training data. The architecture of this
network can be seen in Figure 3.1.

Figure 3.1: Architecture of a GAN

Goodfellow explains that the Generator can be thought of as counterfeiters try-
ing to create fake samples, while the Discriminator acts as the police attempting to
detect these fakes. The competition between the networks drives both models to

8

CHAPTER 3. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

improve their methods until the generated samples become indistinguishable from
the real data. The models are typically defined by multi-layer perceptrons and can
be trained using backpropagation. The GAN framework does not require Markov
chains, with sequences of possible events, or unrolled approximate inference net-
works during training or sample generation, which have been used in the other
popular generative models.

The proposed GAN model has two functions, G, the generator, and D, the dis-
criminator. The Generator take as input a random noise vector z and learns a map-
ping G : z → y, where y is an output image. The discriminator takes as input an
image and outputs a scalar value, where D(x) signifies the probability of x being a
real image, not generated by G.

D is trained to correctly classify both the training samples and instances gener-
ated by G. In parallel, G is trained to minimize the value of log(1−D(G(z))), which
encourages G to produce samples that D is more likely to classify as real.

3.2 Conditional GANs

In his paper, Goodfellow, when presenting future work capabilities, includes the
possibility of creating a conditional generative, by providing an additional input c
to both the Generator and Discriminator models, where G : {c, z} → y and D :

{c, x} → p, where p is a probability scalar. In an unregulated generative model, the
modes of generated data aren’t specifically controlled. Yet, when extra information
is used to condition the model, as demonstrated by Mehdi Mirza in 2014 [MO14],
the data generation process can be guided.

The objective of the classical conditional GAN, where G tries to minimise the
objective and the adversarial D tries to maximize it is formulated as

min
G

max
D

LcGAN(G,D) = Ec,x[logD(c, x)] + Ec,z[log(1−D(c,G(c, z)))] (3.1)

Goodfellow specifies that during training it is better, showing improved starting
gradients, to train G to maximize logD(c,G(c, z)). This optimization is used in most
implementations of conditional GANs.

3.2.1 Pix2Pix

Mirza employed input text labels to condition the network, which can be beneficial
for certain applications. However, in some situations, conditioning the GAN with
an image input might be preferred. Addressing this, Phillip Isola and his team pro-

9

CHAPTER 3. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

posed a solution for image-to-image translation challenges with the Pix2Pix model
[IZZE18]. This model utilizes a U-Net style generator and a Markovian discrimina-
tor (the difference to a normal discriminator can be seen in Figure 3.2), which was
termed PatchGAN in their paper.

Figure 3.2: The difference between the traditional discriminator, which outputs a
scalar value, as described by Goodfellow [GPAM+14] and a Markovian Discrimina-
tor, which outputs a matrix of probabilities, one for each local region [ZWL+20].

In addition to the classical cGAN objective (Equation 3.3), Isola also used a more
classical loss function, L1, defined as:

LL1(G) = Ec,x,y[∥y −G(c, z))∥1] (3.2)

This traditional L1 loss has been proven [IZZE18] to produce less blurry results.
The ultimate goal of the Pix2Pix model, with λ determining the influence of the L1
norm, can be expressed as follows:

min
G

max
D

LcGAN(G,D) + λLL1(G) (3.3)

The authors have found that the best performing model architecture (as seen in
Figure 3.3), is with discriminator patch size of 70x70.

Use cases

In the original Pix2Pix paper, multiple use cases are shown (Figure 3.5). The model
is able to perform image segmentation, reverse image segmentation, coloring from
grayscale photos and real image generation from sketches, without changes to the
architecture or the objectives.

The practical utility of the Pix2Pix model has been demonstrated across vari-
ous fields of research, particularly within the medical field, where it is one of the

10

CHAPTER 3. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

Figure 3.3: The architecture of the Pix2Pix model. The example sizes are for an input
image of 256px by 256px. The generator takes as input an image and generates
an output image conditioned by this input. The discriminator takes as input two
images, the condition image and a generated or real image and outputs a prediction
map, with a prediction for each patch.

Figure 3.4: Pix2Pix use cases, using the same objectives and models architecture,
trained with different data [IZZE18].

11

CHAPTER 3. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

most used architectures for image-to-image translations. For instance, the appli-
cation of Pix2Pix GAN in denoising low dose myocardial perfusion SPECT (Sin-
gle Photon Emission Computed Tomography) images has proven to surpass con-
ventional methods of post-reconstruction filtering and convolutional auto-encoder
techniques, as evidenced in [SDL+21] (Figure 3.5). In another research, the Pix2pix
model was successfully employed to produce Magnetic Resonance Imaging (MRI)
images, as documented in [AA22].

Figure 3.5: The generator receives as input low dose SPECT images, which contain
noise, and is trained to transform these into images that resemble the corresponding
full dose SPECT images [SDL+21].

3.2.2 Evaluation Metrics

Finding a good evaluation metric for generative networks is a difficult task, which
has been addressed in literature many times. One of the metrics that is widely
used is the Fréchet inception distance (FID) [HRU+18]. It uses the Fréchet distance,
named after Maurice Fréchet [Fré57].

The first step is to extract the feature vectors of the images using the pretrained
Inception-v3 model. These feature vectors effectively represent a compressed form
of the images that still retains their main characteristics. After fitting the distribu-
tions with these feature vector, the following are obtained: N (µ,Σ) for the real data
and N ′(µ′,Σ′) for the generated data. The FID score is computed with:

FID(N (µ,Σ),N ′(µ′,Σ′)) = ∥µ− µ′∥22 + Tr(Σ + Σ′ − 2(Σ
1
2 · Σ′ · Σ

1
2)

1
2) (3.4)

The FID metric delivers promising results in terms of its ability to distinguish
between different outcomes, resilience, and computational speed. It appears to be
a robust measure, despite its reliance on only the first two moments of the distri-

12

CHAPTER 3. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

Figure 3.6: The FID metric can detect various types of disturbance when comparing
a set of images generated by a generative model to a set of real images [HRU+18].

butions. FID has been demonstrated to align well with human assessments and is
more resistant to noise compared to the Inception Score (IS). Notably, FID is capable
of identifying when a model is generating only a single image per category, a phe-
nomenon known as intra-class mode dropping. While such a model might achieve
a high IS, its FID would likely be poor. Another advantage over the IS metric is that
the FID score decreases when various types of distortions are introduced to images
(Figure 3.6). IS and some other metrics evaluate the diversity and quality of gener-
ated samples, but FID is distinct in its ability to measure the difference between the
distributions of generated and real images.

13

Chapter 4

Private Federated Learning

4.1 Distributed Learning

The need for a distributed approach

One of the problems when using generative networks is that they require large train-
ing data sets. For example, the work that generates MRI images [AA22] trained
on 2000 patient scans. In a application that increases image resolutions [LTH+17],
350000 images from ImageNet database have been used.

In many practical cases, entities do not possess enough data to train high quality
GANs, especially in complex use cases. Collaboration between multiple entities
that collect similar data can result in a better model than any entity would be able
to create with its own data. However, centralising all the data in a single location
is not a secure solution, since the data has to leave the premises of the participants,
making it susceptible to attacks, during transportation or directly to the centralised
location. Such attacks could result in data leaks, which have risen in popularity
in recent years. The number of healthcare data breaches (Figure 4.1) is even more
alarming, as it can expose sensitive patient data.

Data anonymization prior to centralization could be considered as a potential so-
lution. However, studies, such as the one referenced [RHM19], have demonstrated
that an overwhelming 99.98% of Americans can be correctly re-identified in any data
set by utilizing only 15 demographic attributes. This suggests that data anonymiza-
tion alone is insufficient to address privacy worries.

4.1.1 Federated Learning and Federated Averaging

It is clear that there’s a demand for a technique that allows multiple parties to co-
operatively train a shared model without requiring data to leave contributor sites.
This issue was tackled by H. Brendan McMahan, Eider Moore, and their colleagues

14

CHAPTER 4. PRIVATE FEDERATED LEARNING

Figure 4.1: Number of medical data breaches by year [bre23].

at Google in 2016 [MMR+23]. In their research, they explored a method that lever-
ages user mobile devices to train models for tasks like image classification and lan-
guage modeling. This involved utilizing user photos and their text inputs, all while
avoiding the centralization of this sensitive data.

The concept of distributing the training process to clients was not new. The pre-
viously used method were the Federated Stochastic Gradient Descent (FedSGD) al-
gorithm or Asynchronous SGD algorithms [DCM+12]. In the FedSGD method, the
server sends the current model parameters to all participating clients. Each client
then computes the gradient of the model parameters using their local data and sends
this gradient back to the server. The server then updates the model parameters by
applying these gradients, generally by taking a weighted average, proportionally to
the number of samples a client has.

The problem with this approach was the increased number of communication
rounds, as for each learning step the server and clients communicate the model
and gradients. The paper from Google introduced the FedAvg algorithm, which
aims to overcome the downsides of FedSGD. In FedAvg, clients do not send the
gradient after one step of local SGD. Instead, each client computes multiple steps of
local SGD (i.e., performs local updates), and then sends these locally updated model
parameters to the server. The pseudocode for this algorithm can be seen in Figure
4.2.

The server averages these models, again often using a weighted average where
the weights are proportional to the number of local samples. Because each client
performs multiple steps of SGD, the number of rounds of communication between
server and clients is greatly reduced compared to FedSGD, leading to efficiency

15

CHAPTER 4. PRIVATE FEDERATED LEARNING

gains.
Another topic in the context of federated learning is data distribution. Indepen-

dent and Identically Distributed (IID) refers to a data scenario where all samples
in a dataset are generated from the same distribution and are independent of each
other. However, this assumption may not always hold true in a federated learning
environment where data is distributed across numerous devices or servers, leading
to non-IID data. Factors such as varied user behaviors and uneven data collection
can result in different data distributions across devices. This introduces challenges
as models trained on one client’s data may not generalize well to others. Federated
Averaging (FedAvg) addresses this issue by allowing each client to perform multi-
ple rounds of local updates before sending the model parameters to the server for
averaging. In FedAvg, because each client updates its model with multiple steps of
SGD, the model can better fit the local data, which can be especially beneficial in the
non-IID setting.

Figure 4.2: The pseudocode for the Fe-
dAvg algorithm. C is the fraction of
clients to be used in a training round.
nk is the number of data points a client
k holds [MMR+23].

4.1.2 NVIDIA FLARE

Federated Learning has been implemented in a number of frameworks such as
NVIDIA FLARE, Flower, Fed ML, TensorFlow FL, Open FL and PySyft. NVIDIA
FLARE (NVIDIA Federated Learning Application Runtime Environment) [RCW+23]
stands out as an open-source, extensible SDK for Federated Learning that is not lim-
ited by any specific domain. It provides a platform for researchers and data scien-
tists to transform their current Machine Learning workflows to conform to a fed-
erated model. Additionally, it empowers platform developers to construct a safe,
privacy-focused solution for collaborative efforts across multiple distributed par-
ties. This positions it as a favorable candidate for executing a federated learning

16

CHAPTER 4. PRIVATE FEDERATED LEARNING

approach with Pix2Pix.
The framework provides implementations for the most used Federated Learn-

ing algorithms. The main features categories are: training workflows, evaluation
workflows, privacy preserving algorithms and learning algorithms.

Training workflows define the training process, guiding the server and client
communication. Two highlighted workflows are Scatter and Gather (SAG) and
Cyclic. The SAG workflow is the most used FL training method, adopting a hub
and spoke model. Here, a central Controller dispatches tasks to client Workers, who
then send back shareable outcomes, such as model weights in Deep Learning. The
Controller then aggregates these results, according to the used learning algorithm.

Evaluation workflows allow measuring metrics such as accuracy in a distributed
approach. For example, cross-site model validation is a process that facilitates the
evaluation of individual client models as well as the server’s global model against
each client’s dataset. Instead of sharing data, a collection of models is shared to
every client site for performing local validation. The server then accumulates the
outcomes of these local validations, forming a matrix that compares model perfor-
mance with each client’s dataset.

Privacy-preserving algorithms are incorporated as filters (Figure 4.3), which are
applied during data transmission between participants. For example, differential
privacy measures include the ability to exclude specific variables (ExcludeVars),
truncate weights by percentile (PercentilePrivacy), and implement sparse vector
techniques (SVTPrivacy). Moreover, NVIDIA FLARE supports homomorphic en-
cryption, offering encryption and decryption filters that clients can use to encrypt
shareable data prior to transferring it to a peer. Although the server does not possess
a decryption key, it can still perform operations on the encrypted data, aggregate it,
and return the encrypted aggregated data to clients. The clients can subsequently
decrypt this data using their local keys, enabling continued local training. These
filters can be configured in the client and server configuration files.

Lastly, learning algorithms implement the common Federated Learning algo-
rithms, such as FedAvg, FedProx [LSZ+20] and FedOpt [RCZ+21]. The FedAvg al-
gorithm is integrated in the Scatter and Gather workflow, as shown in Figure 4.4.
In this approach, the server sends to each client the task to train the global model.
After training the model locally, the clients send the updated model or weights dif-
ference to the server, which aggregates the responses and then saves the model with
a Model Persistor.

17

CHAPTER 4. PRIVATE FEDERATED LEARNING

Figure 4.3: Filters can be used to transform the communication object before send-
ing or after receiving it. Some privacy algorithms only modify the outgoing data
(such as adding noise), while other require preprocessing (such as decryption in ho-
momorphic encryption) [pro23].

Figure 4.4: A simplified diagram of the FedAvg training round [pro23].

4.2 Privacy Attacks and Solutions

Attacks on Federated Learning systems have been extensively studied in literature
[KMA+21]. These can be split into two main categories, Privacy Attacks, which aim
to obtain information from the training data set, and Adversarial Attacks on Model
Performance, which can lead to training failures or performance loss. Both these
types of attacks have been widely studied and solutions have been proposed.

Attacks on Model Performance usually rely on adversaries poisoning the model

18

CHAPTER 4. PRIVATE FEDERATED LEARNING

updates. In their research, Peva Blalnchard et al. [BEMGS17] have shown that dis-
tributed SGD is vulnerable to Byzantine attacks, where a participant failure can lead
to the failure of the entire system. This has been acknowledged in many FL frame-
works, which support resuming training after a client or server have failed. For ex-
ample, the NVFLARE framework [RCW+23] allows having fail-over servers, which
can take over the training process if the active server crashes.

One of the most acknowledged attacks on data privacy is the Model Inversion
Attack [FJR15], which predicts the data the model was trained on. In a paper pub-
lished by researchers at Apple and Stanford University [BDF+19], the authors have
proposed some guidelines that protect users from attacks that infer information
from the model updates sent after training. They propose two prevention approaches,
which are exemplified in the case where the model trains on predicting next text
message words:

(i) The participant submits the model update only if a specified amount of infor-
mation has been collected (in their example, sufficiently many messages have
been sent).

(ii) The data that the model has locally trained on should be sufficiently diverse.
In the text messages example, this requires the sent messages to be distinct.

The authors have shown that following these practices highly improves the pri-
vacy of the data when submitting the model updates.

Another widely used solution is Differential Privacy [WLD+19], which has been
mentioned above, as a part of the filters provided in the NVFLARE framework. In
this approach, noise is added on the client side before submitting the model updates
for aggregation. In their paper, Kang Wei et al. have shown that increasing the noise
in the model updates increases privacy protection, but also lowers the performance
of the model, concluding that a balance between these two factors is required.

19

Chapter 5

Related Work and State-Of-The-Art
solutions

Chenyou Fan and Ping Liu have shown that GANs can be trained in federated sce-
narios and produce qualitative models [FL20]. They have found that synchroniza-
tion of both Generator and Discriminator produces the best results (Figure 5.1). They
have used a DCGAN architecture model, with the input being a class label (a digit
for MNIST or category label for CIFAR-10). In their paper, they recommend syn-
chronizing both G and D models when the communication costs are not an issue,
and synchronizing only G otherwise.

Figure 5.1: Comparison between different synchronization choices, with generated
hand-written digits. The federated learning participants could choose to keep G or
D models locally, without synchronizing them, but results show worse results for
these options [FL20].

Recently, Yuezhou Wu et al. [WKL+22] have shown that conditional GANs
trained federately are vulnerable to Deep Leakage from Gradients attacks [ZLH19],
and proposed FedCG, a novel FL algorithm that aims to increase user privacy. Their
proposed architecture uses, in addition to the generator and discriminator model, a
feature extractor E and a classifier C. In the communication rounds, only G and C

are uploaded to the server, while the D and E models are kept locally, for privacy
concerns. Their proposed method provides a private FL algorithm, with negligi-

20

CHAPTER 5. RELATED WORK AND STATE-OF-THE-ART SOLUTIONS

ble performance losses. The generator used to benchmark the algorithm is also a
version of the DCGAN, which is a less complex model compared to the Pix2Pix
generator.

The developers of the NVFlare framework have studied the possibilities of Gra-
dient Inversion Attacks on FL systems [HYM+23a]. They provide ways in which
the amount of information leaked in such attacks can be visualised and measured.
They have found that increasing the amount of local iteration a client performs and
a more diverse dataset decrease the amount of information that can be extracted in
such an attack. This motivated the choice of increased number of local iterations per
training round in our experiments.

Researchers at Apple have looked into ways to use FL concepts and apply them
at scale. One of their publications [GSvD+20] shows how they managed to train a
Speaker Identification model, using the FedAvg algorithm with different types of
Differential Privacy implementations. Another application was to personalize their
models for each client, in a distributed approach, inspired from FL [PSM+21]. They
used a new method to personalize the models used in the News recommendation
app and in their Automated Speech Recognition functionalities, namely Federated
Evaluation and Tuning.

In the field of Federated Learning, other training algorithms have been proposed
in the past years, which aim to achieve better results in some scenarios than the
popular FedAvg. One of these is FedSM (Federated Super Model) [XLG+23], which
addresses one weakness of FedAvg in particular in cross-silo scenario, the difficulty
in generalizing the global model when the data is non-IID. Each client at the end
of an iteration obtains a personalized model, but the averaged aggregation is not
always the most suitable. FedSM proved to be more efficient in these scenarios.

21

Chapter 6

Experiments

6.1 Objective

The aim of the experimental part of this work is to determine whether federated
learning is a practical solution for entities aiming to collaboratively develop high-
quality generative models, all while safeguarding their data against potential pri-
vacy breaches.

Implementation ease and participant set-up complexity is one of the points ana-
lyzed. This assesses the simplicity and efficiency of incorporating federated learning
into the existing infrastructure of the participant entities. It explores the process of
participant configuration and the resources required to facilitate such a collaborative
framework.

Another crucial factor in federated learning is the communication overhead, as
potential communication burden can arise from the transmission of model updates
across the nodes. The research will examine the volume of data transmitted and its
impact on overall system performance.

Given the privacy-preserving premise of federated learning, the study will scru-
tinize the effectiveness of this approach in protecting the sensitive data of the par-
ticipating entities from potential privacy attacks.

The final and arguably most critical point of analysis is the quality of the gener-
ative models produced via this federated learning approach. The research aims to
determine whether this collaborative method can produce models that are on par
with, or perhaps superior to, those generated via traditional, non-distributed learn-
ing techniques.

The use case chosen for this experiment is one of the use cases presented in the
Pix2Pix paper [IZZE18], where the model is trained to generate aerial photo from a
map image.

The data set was provided by the authors of the paper. It consists of 2196 pairs of

22

CHAPTER 6. EXPERIMENTS

images (examples can be seen in Figure 6.1) from Google Maps, each having dimen-
sions of 600 pixels by 600 pixels, as both aerial photo and map format. The images
are of the region of New York City, split into train and test about the median latitude
of the sampling region, with no training pixels appearing in the test set.

This particular use case does not use sensitive data, but it was chosen so that
it can be compared with the original results when trained with the same hyper-
parameters.

The scenario considered in this work is of three entities with the same amount of
images. The data is split randomly into three batches, the data therefore is indepen-
dent and identically distributed (IID). Non-IID scenarios should also be analyzed in
future work.

Figure 6.1: Examples of map (left) and aerial (right) images

6.2 Evaluation Metrics

As mentioned in the theoretical chapters, evaluating the performance of GAN archi-
tectures can be a difficult task [SGZ+16]. One of the more recent metrics proposed is
the Fréchet inception distance, which was used the analyze the performance of the
generator model. The used python implementation of this metric is developed and
maintained by Maximilian Seitzer and it is available on GitHub [Sei20].

23

CHAPTER 6. EXPERIMENTS

6.3 Methods

The initial phase of the experiments involves the preparation of the model and the
corresponding data loaders. The generator and discriminator models are both im-
plemented in PyTorch, following the architecture described in previous theoretical
chapters. The specifics of the implementation follow parts of the code from both the
original authors’ GitHub repository [ZPIE17] and Aladdin Persson’s implementa-
tion [Per].

The dataset class in this implementation is primarily responsible for the prepro-
cessing of training images. Within its constructor, the class can be tailored to include
or exclude the application of random color jitter to the images. This stochastic color
perturbation alters the image characteristics such as brightness, contrast, and satu-
ration. When loading the images, the model also applies random horizontal mirror-
ing to the images. The color jitter and the random mirroring augment the data and
potentially enhance model robustness.

Moreover, the constructor provides an option to specify the half of the image
(left or right) to be used as the input. This is necessary as the input and ground
truth images are conjoined within the same image file. Therefore, the class facili-
tates a customizable setup for preprocessing, which can be aligned according to the
demands of the specific experiment or the nature of the images under study. For the
experiments in this work, the color jitter is used only when training the model, and
the input image is the right half of the files.

The implemented generator takes as input a colored (RGB) image as numpy ar-
ray with size 256 px by 256 px and outputs generated image of the analogous size.
In contrast, the discriminator intakes a pair of images, each of the same size as the
generator output, one representing the input image and the other being either the
ground truth of the input image or the generated image. The output of the dis-
criminator is a tensor with 30x30 values between 0 and 1. This tensor represents a
patch-wise classification matrix, each value indicates the discriminator’s prediction
of whether the corresponding image patch of the second input image is a real image
(closer to 1) or a synthetic image generated by the generator model (closer to 0).

6.3.1 Centralized scenario

The first naive solution when multiple parties wish to collaborate on a shared model
is to gather all the data in one central site and train the model on the whole set of
images. Clearly, this approach compromises all the data, or at least some part of it,
if the central entity is one of the participating parties. However, this method was
chosen to be tested in order to analyze the performance and compare it with further,

24

CHAPTER 6. EXPERIMENTS

more secure methods.
The model was trained for 200 epochs, with batch size of 1 and with random

horizontal flipping and color jitter, as mentioned in the original paper. Each epoch
trains the model over the whole data set of 1096 training images. The training was
performed with 0.0002 learning rate, and Adam optimizer parameters β1 = 0.5 and
β2 = 0.999. These hyper-parameters will also be used in the further scenarios. The
expected results of this training was to obtain qualitative generated images, as the
ones presented in the original paper.

The model was trained in Google Colab, running on a T4 GPU with 16 GB of
VRAM. The training took 3.8 hours for the 200 epochs. The results generated on
evaluation images at epochs 100 and 200 can be see in Figure 6.2. The output images
at epoch 200 have more details than the 100 epochs output image. Sometimes, the
generator produces chaotic output, such as the third example at epoch 100. These
occur less with more training epochs, as the loss for such images is very high. The
results obtained match the results in the original paper, so these will be used in the
further comparisons.

Figure 6.2: Central training evaluation images

The generator and discriminator metrics of this training can be seen in Figures

25

CHAPTER 6. EXPERIMENTS

6.3 and 6.4. These are the average losses per epoch. Dreal is Binary Cross Entropy
between the discriminator result tensor for the real image as input and an all-ones
matrix. Dfake is Binary Cross Entropy between the resulting tensor when the input
is the generated image and a zero matrix. Dtotal is the average of these two losses.

For the generator losses, Gdisc is the Binary Cross Entropy between the Discrim-
inator result on generated image and all-ones matrix. GL1 is the L1 loss (mean ab-
solute error) between the generated image and the real output. Gtotal is the sum of
these other two losses.

In time, the total generator loss decreases. However, this is not a performance
metric, as will be seen in future examples. As mentioned in the original paper, the
GL1 loss is multiplied by a factor of λ = 100, making it a considerable bigger factor
in the total generator loss. However, this decreases in time, as the Gdisc increases,
the discriminator getting better at detecting the fake images.

As can be seen in the figures, the discriminator loss has high variance throughout
the training process, as the model learns to detect fake images.

Figure 6.3: Discriminator Loss Values

Local site training

One of the objectives of this work is to determine whether federated learning is
worth implementing in a cross-silo scenario. To answer this, a comparison has to
be made between the results a participant obtains when training the model with its
own data, and the model obtained from federated learning.

Therefore, a training run is required on the data of a single client. The experiment
has the same settings as the previous centralized one, only with a third of the data,
and it was run using the data of North Europe Site. The results of this run will be
shown in the comparison chapter.

26

CHAPTER 6. EXPERIMENTS

Figure 6.4: Generator Loss Values

6.3.2 Simulated federated training

The centralized scenario provided good results, but the privacy of the data was com-
promised, as the entities shared their data, making it vulnerable to attacks during
data transfer or a potential central site data breach.

In order to collaborate in the model training while keeping the data private, a
federated solution is preferred. In this scenario, each client trains the global model
locally and then shares the new model to the central server, which gathers the new
models from the clients and averages them, obtaining a new model. This is a train-
ing round.

The NVFlare framework is used to implement the federated learning scenarios.
In the first experiment, the Proof of Concept (POC) mode of the framework is used.
This performs federated learning locally, without TLS (Transport Layer Security)
certificates. The server and clients run on separate processes. This mode is recom-
mended for simulating a real-world scenario, making it a favorable choice for this
experiment.

Four processes are launched simultaneously. A server and three participating
clients, each using a third of the data. The training was performed for 20 rounds,
each of 10 local epochs, for a total of 200 training epochs over the whole data set.
In this implementation, after training locally, clients send the model weights to the
server, which will prove to be a difficult case for adding differential privacy solu-
tions in the following experiment.

The training was performed on a Google Colab instance as well, with the same
GPU as the centralized scenario. The total training time was 3.3 hours, faster than
the previous scenario. There is communication overhead of about 20 seconds be-
tween rounds, but the improvements due to parallelism outweigh the communica-
tion overhead, making the whole training process faster.

27

CHAPTER 6. EXPERIMENTS

In Figure 6.5, the generator loss for one of the clients can be seen. At each new
round, the model the model seems to get worse after the aggregation, but the round-
average loss decreases over time.

Figure 6.5: Federated Generator Loss Values

Some evaluation images can be seen in Figure 6.6. The model seems to learn to
generate higher detail images, but in some cases the model does not learn how to
generate some images, as can be seen in the second image.

28

CHAPTER 6. EXPERIMENTS

Figure 6.6: Federated training evaluation images

6.3.3 Distributed federated learning with Differential Privacy

In the simulated federated learning environment, the generator successfully learns
to generate detailed images resembling the ground truth. Consequently, the fol-
lowing step is to implement an actual distributed scenario. This step is crucial as
it permits the analysis of aspects such as communication security and the infras-
tructure architecture needed for federated learning. Moreover, as discussed in the
theoretical chapters, Differential Privacy is needed for increased security. In this
implementation, Gaussian noise will be added to the model updates.

The first two scenarios were run on Google Colab. However, running multiple
GPU instances in Colab required a premium subscription at the time this work was
done. Also, in order to create a scenario closer to reality, another approach was
needed.

The solution was to use the Azure Machine Learning platform [Cha15], creat-
ing a separate Virtual Machine (VM) for each previous process, the server and the
clients. The server was created on a VM without GPU, as the server does not use
the GPU for the aggregation operation. The server was created in the North Europe
region.

The clients were created in separate Azure ML workspaces, each in a different
region. The first client was created in North Europe region, which we will refer
to as North Europe Site. The second client was created in the West Europe region,

29

CHAPTER 6. EXPERIMENTS

with the name West Europe Site. Lastly, the third client was created in East US and
will be referred to as US Site. This system is displayed in Figure 6.7. Each compute
instances is configred to use a NVIDIA Tesla M60 GPU.

Figure 6.7: System architecture

Server setup

In order to communicate with the clients, the server must open port 8002. Moreover,
the server actions are initiated through the admin console, which can be run from
a separate machine and use port 8003 of the server, which also has to be opened.
For this experiment, the admin console is used from the server VM. The sequence of
actions of the training process can be seen in Figure 6.8.

The project.yml file contains the provisioning details which the NVFlare frame-
work will use in order to create the startup kits for each users: server, admin and
clients. It specifies the server address and the ports used, the role of each participant
and other customizable features.

Executing the command nvflare provision will create a workspace with
five startup kits. One for the server, one for the admin and one for each client.
The directories contain TLS credentials, start scripts and other configuration. The
requirements.txt file should also be added to these startup kits, in order for the
clients to install the required packages.

Running the start.sh script from the server kit will start the NVFlare server.
Running the fl_admin.sh script from the admin kit in another terminal window
will provide access to the admin console, from which jobs will be triggered.

30

CHAPTER 6. EXPERIMENTS

Figure 6.8: Overview sequence diagram for running a training job in the NVFlare
framework. The admin starts the server process and the admin console, from which
he submits jobs that are further coordinated by the server. Each participant starts a
client process which automatically connects to the server and listens for instructions.
Finally, the admin can shut down all the participating processes from its console.

Client setup

The startup kit for each client needs to be manually distributed via a secure method,
such as email or Secure File Transfer Protocol. After receiving the kits, the clients
need to install the required python packages, with

> pip install -r requirements.txt

executed in the startup kit directory. Each client has their data for training and
validation located at path ∼/localfiles/data.

31

CHAPTER 6. EXPERIMENTS

After preparing the client site, the federated client is started using the start.sh
script from the startup kit. This will automatically connect to the server and will
wait for a job to be submitted.

Running the experiment

The admin uploads the job directory to its transfer directory. The server will start
the training process when running the command

> submit_job job_name

The job status is logged in the server window, and the local training status is
logged into each client terminal. Each client also sends the generator and discrim-
inator loss to the server as a TensorBoard event. These metrics can be observed
during or after training with following command:

> tensorboard --bind_all --log_dir=path_to_tb_events

The tb_events directory can be found in the job directory in the server startup
kit (workspace\job_name\prod_00\server_name\job_id\tb_events). A
screenshot with the TensorBoard interface can be seen in Figure 6.9.

Figure 6.9: TensorBoard interface with model losses

Differential Privacy

In the NVFlare framework, differential privacy can be implemented through Filters,
which can be used for both the data received by the participants as well as the data
sent as response.

32

CHAPTER 6. EXPERIMENTS

The used Gaussian Noise filter follows the implementation described in [HYM+23b].
It finds the 95th percentile of the data values to be filtered, multiplies this value by
the sigma0 parameter, set to 0.1 in the client configuration file and defines the Gaus-
sian distribution with zero mean for the sigma value of this computed value. Sam-
ples from this Gaussian distribution are used to add a specific amount of noise to
each model update, in the following code line:

weights [var name] += np . random . normal (0 . 0 , noise sigma , np .
shape (weights [var name]))

The problem with this approach was that it does not apply noise considering
the weight updates, but rather the largest weight of the model, which proved to be
too much noise. The result was that the generator loss, shown in Figure 6.10, was
spiking too much after aggregation, without a decrease over time. The evaluation
images were also not improving after a few rounds.

Figure 6.10: Generator loss when adding too much noise

At this point, it is evident that it would be a much better approach to modify the
code to send back to the server only the weight differences, compared to the model
at the beginning of the round. This way, if a client does an increased amount of
changes to the model, more noise is added to the update message.

Results

One additional problem regarding the Differential Privacy filter was detected af-
ter a training round. Evaluating the generator at round 5 produced output tensors
only with NaN (Not a Number) value. At rounds 10, 15 and the 20, the output im-
age looks as expected. After some analysis, the conclusion was that the Gaussian
filter added noise also to the Batch Normalisation variables. One of these is the
running_var value, to which square root is applied when computing the normal-
isation. When adding noise, the filter added too much noise to this variable and it
resulted in a negative value, producing the seen NaN results. The solution was to
only add noise to the weight and bias variables of the models.

33

CHAPTER 6. EXPERIMENTS

The successful training took 3.1 hours to finish. An example of evaluation image
can be seen in Figure 6.11. The generated image at after round 10 is more blurry and
less detailed in the model with Differential Privacy, but the final result seems to be
of similar quality. The differences over the whole data set will be analyzed in the
following subsection of this chapter.

One of the extra costs of this method is the communication between clients in
different regions. For the US site, receiving the models of total size of 436 MB from
the server took approximately 22 seconds and sending the weights difference after
training took 17 seconds. This is only double the time that the site in the same region
as the coordinator server took for communication, 11 seconds for download and 7
for upload. This proves that Federated Learning with FedAvg algorithm can be used
in a real world scenario where the participants might be located in different parts of
the globe, due to the reduced communication costs.

Figure 6.11: Evaluation image during training for both the DP and non-DP models

6.4 Comparing the experiments

Generator loss

As described in Chapter 3.2.2, the generator or discriminator loss are not objective
metrics that can be used to analyze the performance of the model. However, it is
worth comparing the model loss in the different settings we have described. Figure
6.12 shows the losses of these runs.

34

CHAPTER 6. EXPERIMENTS

The local site training has the lowest loss, but, as will be seen further, it produces
the worst results. This can be due to model overfitting, due to the limited data set.

The model loss when adding differential privacy to federated learning closely
follows the federated learning loss. This shows that the added noise does not cum-
ber the generator in reaching its subjective goal. However, the generator takes a
longer number of epochs to reach the same loss as the centralized model.

Figure 6.12: Generator Loss Values Comparison

FID scores

As of the chosen metrics for this work is the FID score, the generator state was saved
at epochs 50, 100, 150 and 200. In the case of federated learning runs, these corre-
spond to round 5, 10, 15 and 20, respectively. These models were used to generate
outputs for each of the evaluation images. These generated collections of images
were then used to compute the FID scores seen in 6.13, comparing to the ground
truth of the evaluation data.

A problem of the computed FID scores is that models were evaluated over the
whole data set, but such metric is not possible in a real world scenario, as the evalu-
ation images are private and stored at the participating sites. It is worth comparing
the FID scores only over the images the sites hold. In order to obtain these results,
the final model of each training model was used to inference over the whole set of
evaluation images of each site, storing the generated images locally at each site. The
FID score was then computed for each of these generated sets.

The results are shown in Table 6.1. The FID scores are worse by a value of ap-
proximately 10 compared to the previous FID evaluation. However, the propor-
tionality between the different training methods used is the same, compared to the

35

CHAPTER 6. EXPERIMENTS

Figure 6.13: FID scores over the whole data set

centralised evaluation, which proves that analyzing the performance of the models
locally and then communicating only the obtained FID score is a possible method to
decide when the training should be stopped. These FID scores can be displayed in
the TensorBoard instance, where the administrator can then conclude whether the
training process can be finished.

Site Centralized FL + DP Local
North EU 204.01 229.49 268.49
West EU 202.99 233.44 272.72
US 207.09 230.64 274.81

Table 6.1: FID scores over the local data after 200 epochs

Visual evaluation

The other metric used to analyze the models is visual evaluation, as the goal is to
produce images indistinguishable from reality by humans. Some of the generated
images at the last model state are seen in Figure 6.14. The locally trained models are
the farthest from the ground truth, as the model produces detailed but fuzzy images.
The images trained in the Federated Learning setting with Differential Privacy are
close in quality to the ones generated by the centralized model, albeit less detailed.

These visual results support the results of the FID scores comparison. Federated
training produces better results than training locally, but there is a loss in quality
compared to the centralized model.

In Figure 6.15, some failures of the federated model can be seen. In the second
example, the model struggles to produce details when little input information is

36

CHAPTER 6. EXPERIMENTS

Figure 6.14: Visual comparison of the different training methods

given, even in the centralised model. However, in the first and the last examples,
the generator produces images with artifacts. These outputs are sometimes also
produced by both the federated model without differential privacy and the central
model. In the central model, the generator stops outputting such images after the
first half of the training process. In the Federated Learning model, the number of
these images decrease as the generator trains more, but in these experiments, 20
rounds of 10 local epochs were not enough to prevent failures such as these.

37

CHAPTER 6. EXPERIMENTS

Figure 6.15: Generated images failure examples

38

Chapter 7

Conclusions

Motivated to integrate privacy-preserving methods into high-performing genera-
tive models, in an era characterized by increasing data breaches, the aim of this
work is to provide insight into how these models can be efficiently trained while
minimizing the exposure of private user information. Moreover, the performance
loss of training a large generative model with Federated Learning is an open ques-
tion in this research field, as most related work trained less complex architectures.

In order to answer these questions, this thesis explored the application of Feder-
ated Learning methods to the training of the Pix2Pix model, a state-of-the-art Con-
ditional Generative Adversarial Network, which has been used in many useful ap-
plications, especially in medicine, a field in which data privacy is highly important.
The chosen framework to train this model is NVIDIA FLARE, an open-source per-
formant FL framework. As no public implementation offered the functionality of
training a GAN model in this framework, this marks a significant contribution to
the field. The application created for this thesis can be adapted to train any GAN
architecture.

The proposed experiments start with training in a centralised scenario, in which
the participants aggregate their data in a central site, where the model is trained.
This was used as an upper bound performance benchmark and also a lower bound
for data privacy, as the data leaves the participants machines. The second scenario
analyzed was local training, in which a client trains the model locally, without col-
laboration, in order to find whether it is justified to propose collaboration for such
a model. Lastly, two FL experiments were created. The first approach was to use
simulated FL, training locally on multiple processes, in order to test the FL imple-
mentation. The next step was to create a distributed secure environment, with the
clients and coordinator server as virtual machines in Azure. In this last experiment,
Differential Privacy was also added to the FL training process, to enhance data pri-
vacy. This last experiment can be easily adjusted to be used in a real scenario.

Through the experiments, it was found that training Pix2Pix with Federated

39

CHAPTER 7. CONCLUSIONS

Learning is indeed feasible and justified. The results show that training the model
with FL provides better results than training only with the local data a client holds.
The performance of the resulting model is still lower than the centralized approach,
but the theoretical and practical results show that the client data is not exposed dur-
ing this training process. Moreover, the communication overhead observed after the
experiment was transferred to cloud proved to be negligible, due to the efficiency of
the FedAvg algorithm.

Nonetheless, certain challenges surfaced during this study, such as the intricacies
of coordinating multi-party collaborations, especially deciding at which moment the
training should be finished, before the model diverges from the objective. Moreover,
this study analyzed a scenario with IID data, but further research should also inves-
tigate the results of training a conditional GAN in FL with non-IID data distribution
among participants, as is the case in many real world applications.

In conclusion, this research bridges the gap between high-performing genera-
tive models and privacy-preserving federated learning methods. It opens the door
to further collaborative efforts among institutions or researchers, even when sensi-
tive data is involved. This method empowers various entities to contribute to the
training of state-of-the-art models while preserving data privacy. The results of this
thesis shows that the technology in this area has advanced to the point where it is
possibly to create such training scenarios, and provides guidelines on how to de-
velop and utilise such a solution.

40

Bibliography

[AA22] Abeer Aljohani and Nawaf Alharbe. Generating synthetic images for
healthcare with novel deep pix2pix gan. Electronics, 11(21), 2022.

[BDF+19] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor,
and Ryan Rogers. Protection against reconstruction and its applica-
tions in private federated learning, 2019.

[BEMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gra-
dient descent. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[bre23] Healthcare data breaches by year. https://www.hipaajournal.

com/healthcare-data-breach-statistics, 2023. Image
source; accessed 15-April-2023.

[Bru17] H. Bruderer. The birthplace of artificial intelligence? Communications
of the ACM, BLOG@CACM, Nov 2017.

[Cha15] David Chappell. Introducing azure machine learning. A guide for tech-
nical professionals, sponsored by microsoft corporation, 2015.

[cnn] Convolution neural network: Deep learn-
ing. https://developersbreach.com/

convolution-neural-network-deep-learning/. Image
source; accessed 10-June-2023.

[con53] Les machines a calculer et la pensee humaine. In Colloques interna-
tionaux du Centre National de la Recherche Scientifique, number 37, Paris,
1953.

[DCM+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker,

41

https://www.hipaajournal.com/healthcare-data-breach-statistics
https://www.hipaajournal.com/healthcare-data-breach-statistics
https://developersbreach.com/convolution-neural-network-deep-learning/
https://developersbreach.com/convolution-neural-network-deep-learning/

BIBLIOGRAPHY

Ke Yang, Quoc Le, and Andrew Ng. Large scale distributed deep
networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[Dec86] Rina Dechter. Learning while searching in constraint-satisfaction-
problems. pages 178–185, 01 1986.

[dee18] Deep learning in digital pathology. https:

//www.global-engage.com/life-science/

deep-learning-in-digital-pathology/, 2018. Image source;
accessed 10-June-2023.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inver-
sion attacks that exploit confidence information and basic countermea-
sures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, page 1322–1333, New York, NY,
USA, 2015. Association for Computing Machinery.

[FL20] Chenyou Fan and Ping Liu. Federated generative adversarial learning,
2020.

[Fré57] M. Fréchet. Sur la distance de deux lois de probabilité. C. R. Acad. Sci.
Paris, 244:689–692, 1957.

[Fuk69] K. Fukushima. Visual feature extraction by a multilayered network
of analog threshold elements. IEEE Transactions on Systems Science and
Cybernetics, 5(4):322–333, 1969.

[Fuk79] K. Fukushima. Neural network model for a mechanism of pattern
recognition unaffected by shift in position—neocognitron. Trans. IECE,
J62-A(10):658–665, 1979. The first deep convolutional neural network
architecture, with alternating convolutional layers and downsampling
layers.

[Fuk80] Kunihiko Fukushima. Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaffected by shift
in position. Biological Cybernetics, 36:193–202, 1980.

[GPAM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

42

https://www.global-engage.com/life-science/deep-learning-in-digital-pathology/
https://www.global-engage.com/life-science/deep-learning-in-digital-pathology/
https://www.global-engage.com/life-science/deep-learning-in-digital-pathology/

BIBLIOGRAPHY

[GSvD+20] Filip Granqvist, Matt Seigel, Rogier van Dalen, Áine Cahill, Stephen
Shum, and Matthias Paulik. Improving on-device speaker verification
using federated learning with privacy, 2020.

[HRU+18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium, 2018.

[HYM+23a] Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko,
Wenqi Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz,
Daguang Xu, and Holger R. Roth. Do gradient inversion attacks make
federated learning unsafe? IEEE Transactions on Medical Imaging, 2023.

[HYM+23b] Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko,
Wenqi Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz,
Daguang Xu, and Holger R. Roth. Do gradient inversion attacks make
federated learning unsafe? IEEE Transactions on Medical Imaging, pages
1–1, 2023.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition, 2015.

[ILE65] A.G. Ivakhnenko, V.G. Lapa, and PURDUE UNIV LAFAYETTE IND
SCHOOL OF ELECTRICAL ENGINEERING. Cybernetic Predicting De-
vices. JPRS 37, 803. Joint Publications Research Service [available from
the Clearinghouse for Federal Scientific and Technical Information],
1965.

[IZZE18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-
to-image translation with conditional adversarial networks, 2018.

[KMA+21] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben
Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar
Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang

43

BIBLIOGRAPHY

Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Flo-
rian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu,
Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open
problems in federated learning, 2021.

[LSZ+20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Tal-
walkar, and Virginia Smith. Federated optimization in heterogeneous
networks, 2020.

[LTH+17] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single im-
age super-resolution using a generative adversarial network, 2017.

[MHA20] Zhenzhu Meng, Yating Hu, and Christophe Ancey. Using a data driven
approach to predict waves generated by gravity driven mass flows.
Water, 12, 02 2020.

[MMR+23] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. Communication-efficient learning of deep
networks from decentralized data, 2023.

[MO14] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets, 2014.

[Per] Aladdin Persson. Pix2Pix. https://github.com/

aladdinpersson/Machine-Learning-Collection/tree/

master/ML/Pytorch/GANs/Pix2Pix. accessed 5-February-2023.

[pro23] One round in fedavg. https://nvflare.readthedocs.io/en/

2.3.0/programming_guide, 2023. Image source; accessed 20-May-
2023.

[PSM+21] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris
Kluivers, Rogier van Dalen, Chi Wai Lau, Luke Carlson, Filip
Granqvist, Chris Vandevelde, Sudeep Agarwal, Julien Freudiger, An-
drew Byde, Abhishek Bhowmick, Gaurav Kapoor, Si Beaumont, Áine
Cahill, Dominic Hughes, Omid Javidbakht, Fei Dong, Rehan Rishi, and
Stanley Hung. Federated evaluation and tuning for on-device person-
alization: System design applications, 2021.

[RCW+23] Holger R. Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-
Ting Hsieh, Kristopher Kersten, Ahmed Harouni, Can Zhao, Kevin Lu,

44

https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://nvflare.readthedocs.io/en/2.3.0/programming_guide
https://nvflare.readthedocs.io/en/2.3.0/programming_guide

BIBLIOGRAPHY

Zhihong Zhang, Wenqi Li, Andriy Myronenko, Dong Yang, Sean Yang,
Nicola Rieke, Abood Quraini, Chester Chen, Daguang Xu, Nic Ma, Pre-
rna Dogra, Mona Flores, and Andrew Feng. Nvidia flare: Federated
learning from simulation to real-world, 2023.

[RCZ+21] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Konečný, Sanjiv Kumar, and H. Brendan McMahan.
Adaptive federated optimization, 2021.

[RHM19] Luc Rocher, Julien Hendrickx, and Yves-Alexandre Montjoye. Estimat-
ing the success of re-identifications in incomplete datasets using gen-
erative models. Nature Communications, 10, 07 2019.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review, 65
6:386–408, 1958.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

[Sch22] Juergen Schmidhuber. Annotated history of modern ai and deep learn-
ing, 2022.

[SDL+21] Jingzhang Sun, Yu Du, Chien-Ying Li, wu Hsin, Bang-Hung Yang, and
Greta Mok. Pix2pix generative adversarial network for low dose my-
ocardial perfusion spect denoising. Quantitative Imaging in Medicine and
Surgery, 12, 01 2021.

[Sei20] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://

github.com/mseitzer/pytorch-fid, August 2020. Version 0.3.0.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, Xi Chen, and Xi Chen. Improved techniques for training gans.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[SML+21] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christo-
pher J Anders, and Klaus-Robert Müller. Explaining deep neural net-
works and beyond: A review of methods and applications. Proceedings
of the IEEE, 109(3):247–278, 2021.

45

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

BIBLIOGRAPHY

[WKL+22] Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He, Lixin Fan, Rong
Pan, and Qiang Yang. FedCG: Leverage conditional GAN for pro-
tecting privacy and maintaining competitive performance in federated
learning. In Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial In-
telligence Organization, jul 2022.

[WLD+19] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farokhi
Farhad, Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. Federated learn-
ing with differential privacy: Algorithms and performance analysis,
2019.

[XLG+23] An Xu, Wenqi Li, Pengfei Guo, Dong Yang, Holger Roth, Ali
Hatamizadeh, Can Zhao, Daguang Xu, Heng Huang, and Ziyue Xu.
Closing the generalization gap of cross-silo federated medical image
segmentation, 2023.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients,
2019.

[ZPIE17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired image-to-image translation using cycle-consistent adversarial
networks. In Computer Vision (ICCV), 2017 IEEE International Confer-
ence on, 2017.

[ZWL+20] Jie Zhong, Ying Wang, Jie Li, Xuetong Xue, Simin Liu, Miaomiao Wang,
Xinbo Gao, Wang Quan, Jian Yang, and Xianjun Li. Inter-site harmo-
nization based on dual generative adversarial networks for diffusion
tensor imaging: Application to neonatal white matter development.
BioMedical Engineering OnLine, 19, 01 2020.

46

	Introduction
	Motivation
	Objectives
	Structure
	Original contributions
	Scientific Presentations

	Artificial Neural Networks
	Beginnings
	Convolutional Neural Networks

	Conditional Generative Adversarial Networks
	History of GANs
	Conditional GANs
	Pix2Pix
	Evaluation Metrics

	Private Federated Learning
	Distributed Learning
	Federated Learning and Federated Averaging
	NVIDIA FLARE

	Privacy Attacks and Solutions

	Related Work and State-Of-The-Art solutions
	Experiments
	Objective
	Evaluation Metrics
	Methods
	Centralized scenario
	Simulated federated training
	Distributed federated learning with Differential Privacy

	Comparing the experiments

	Conclusions
	Bibliography

