Privacy-Preserving GANs - Federated Learning and
Fully Homomorphic Encryption Inference

Octavian-Alexandru Trifan”
Faculty Of Mathematics and Computer Science
Babes-Bolyai University
Cluj-Napoca, Romania
octavian.trifan @stud.ubbcluj.ro
0009-0005-3607-2705

Abstract—In the face of tech companies and governments
challenging the fundamental right of privacy, new innovations
arise that balance the perks of Artificial Intelligence while
preserving privacy. We tackle the privacy problem from two
perspectives - training and inference. Regarding training, we
use Federated Learning in order to show that large GAN
models can be trained securely among multiple participants, with
negligible performance loss. We employ Differential Privacy as
another layer of security during training. For the inference, we
prove the possibility of building Generative Artificial Intelligence
algorithms that are capable of being privacy-preserving by using
Fully Homomorphic Encryption. We build a MNIST GAN using
Concrete ML and we optimize our model through Quantization
Aware Training and Pruning. Lastly, we deploy on AWS and
observe that the fastest inference time in a real client-server
environment is 12 minutes, five orders of magnitude slower than
non-FHE generation.

Index Terms—Privacy, Generative Adversarial Networks, Fed-
erated Learning, Fully Homomorphic Encryption

I. INTRODUCTION

roducing

W trmned & model cafled ChatGPT which interacts ina.
o g e 0

Whoops, Samsung workers
accidentally leaked trade
secrets via ChatGPT

ChatGPT doesn't keep secrets.

By Cecily Mauran on April 6, 2023

f v @

Amajor whoopsie from Samsung. Credit: Gefty Image:

Fig. 1: ”ChatGPT doesn’t keep secrets” [1]

Generative Al has witnessed exponential growth in usage
across many industries, especially in the last year. We are
seeing Al helping us write code, writing novels, composing
music, creating digital art, all from simple prompts. Generative
Al is definitely altering the landscape of human-computer
interaction. But can we trust it?

One of the questions that pop up more and more in the
Generative Al space is privacy. What happens to all of our
data? Are we just mindlessly feeding our personal data to
these Als, just hoping that “maybe” they respect our privacy?
The harsh truth is that our right to privacy is being constantly

“Equal contribution

Eduard-Timotei Pauliuc”

Faculty Of Mathematics and Computer Science
Babes-Bolyai University
Cluj-Napoca, Romania

eduard.pauliuc @stud.ubbcluj.ro
0009-0007-7450-0824

challenged by big tech companies and governments, which are
using our data in any way they might see fit.

We can look at the privacy problem of Generative Al from
two major perspectives: training and inference.

First, Generative models are trained on extensive data
sets, which can often contain sensitive data that the training
machine can see. A solution to this problem is using a
technology called “Federated Learning,” (FL) which leverages
the possibility of training models in a distributed manner,
locally, without sending sensitive data to a central machine.
While this research is not the first to explore FL outcomes, it
stands out by focusing on a large model which has shown
real-world practicality [2] [3], while most of the models
used in other works are only experimental. An additional
original contribution was the extension of the FL framework
employed, NVIDIA FLARE. At the time of this work, no
public implementations for training GAN models within this
framework were identified.

Second, if we want to perform inference, anything we send
to the server is revealed in order to perform computations.
A novel way of performing computations on encrypted data
is called “Fully Homomorphic Encryption”, (FHE) which we
will use to preserve privacy. The server will never find out
what input it was given or what it has generated.

To the authors’ knowledge, this is the first implementation
of FHE inference for any generative algorithms.

In this paper, we have chosen Generative Adversarial Net-
works as they are very popular among the Generative Al
algorithms. We will implement FL. and FHE in order to prove
that a complete flow of privacy is possible when working with
GANSs - from training to inference.

The need for ethical Al is growing and it needs a way
to ensure privacy. This privacy is key to ensuring that the
powers of Generative Al are harnessed responsibly and that
we are not jeopardizing individual rights or societal norms.
Technological advancement must be adopted in balance with
ethical responsibilities.

II. BACKGROUND KNOWLEDGE

The following subsections provide an introduction into
GAN:g, as well as FL and FHE, which we used in our approach.

A. Generative Adversarial Networks

The first formal introduction of the GAN training loop
is accredited to Ian Goodfellow [4] using two Deep Neural
Networks [5]. The proposed GAN architecture consists of two
models, G, the generator, and D, the discriminator. The G
take as input a random noise vector z and learns a mapping
G : z — y, where y is an output image. D takes as input an
image and outputs a scalar value, where D(x) signifies the
probability of x being a real image, not generated by G.

In his paper, Goodfellow, when presenting future work
capabilities, includes the possibility of creating a conditional
GAN, by providing an additional input ¢ to both the G and
D models, where G : {c,z} — y and D : {c,x} — p, where
p is a probability scalar. In an unregulated generative model,
the modes of generated data are not specifically controlled.
Yet, when extra information is used to condition the model, as
demonstrated by Mehdi Mirza in 2014 [6], the data generation
process can be guided.

D is trained to correctly classify both the training samples
and instances generated by G. In parallel, G is trained to
minimize the value of log(1— D(G(z))), which encourages G
to produce samples that D is more likely to classify as real.

The objective of the classical conditional GAN, where G
tries to minimize the objective and the adversarial D tries to
maximize it, is formulated as

mén max Lc.can(G, D) =E. ;[log D(c, x)]+

ey
Ec,z[log<1 - D(C’ G(Ca Z)))]

Goodfellow specifies that during training, it is better, show-
ing improved starting gradients, to train G to maximize
log D(¢,G(c, z)). This optimization is used in most imple-
mentations of conditional GANs.

B. Federated Learning

In many practical cases, due to the necessity of large data
sets in training generative models, entities do not possess
enough data to train advanced GANSs, especially in complex
use cases. Collaboration between multiple entities that collect
similar data can result in a better model than any entity would
be able to create with its own data.

Data anonymization has been shown to be insufficient as a
privacy solution [7]. A different approach was proposed by H.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hamp-
son and Blaise Agiiera y Arcas at Google in 2016 [8]. In their
research, they explored a method that leverages user mobile
devices to train models for tasks like image classification and
language modeling. This involved utilizing user photos and
their text inputs, all while avoiding the centralization of this
sensitive data.

In the proposed algorithm, Federated Averaging (FedAvg),
each client computes multiple steps of local Stochastic Gra-
dient Descent (i.e., performs local updates) over their data,
and then sends these locally updated model parameters to
the aggregator server. The server averages these models, often

using a weighted average where the weights are proportional
to the number of local samples. Because each client performs
multiple steps of SGD, the amount of communication between
server and clients is greatly reduced compared to other dis-
tributed learning algorithms.

C. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a groundbreaking
concept in cryptography that allows computations to be per-
formed on encrypted data without the need to first decrypt it.
This revolutionary property makes it possible to maintain the
confidentiality of the data during computations, opening new
possibilities for secure data processing and privacy-preserving
applications in cloud computing, machine learning, etc.

FHE supports addition and multiplication operations:
Enc(pk,ml) + Enc(pk,m2) = Enc(pk,ml + m2) and
Enc(pk,ml) * Enc(pk, m2) = Enc(pk, m1 x m2) by lever-
aging large polynomials. Although a fascinating technology,
FHE is a very costly and slow operation.

The advent of FHE starts in 1978 with [9] by Rivest,
Adleman, and Dertouzos (the "R” and ”A” in RSA). This
is the first paper that defines and explores the concept of
privacy-preserving computations using homomorphic encryp-
tion. However, until 2009, only Partial and Somewhat Homo-
morphic Encryption schemes were developed, which limited
the number of operations that could be done before the
noise grew too big, and the ciphertext could not be correctly
decrypted. After 30 years of doubt, Craig Gentry of Stanford
University finally theoretically proved the possibility of FHE
in his Ph.D. thesis in 2009 [10] by introducing the concept of
bootstrapping. Bootstrapping allows FHE to perform as many
arithmetic operations as needed without worrying about the
noise each operation introduces.

Since Gentry’s breakthrough in 2009, many FHE schemes
have emerged. Out of them, the most important are GSW [11]
and TFHE [12], which focus on a fast bootstrapping approach,
and CKKS [13], which is a leveled approach. In this paper,
we will be using the framework Concrete ML [14] by Zama,
which is based on TFHE. For Quantization Aware Training,
a concept we will present later, we will use the Brevitas [15]
library for PyTorch. As the theoretical aspects of FHE are too
vast and intricate to be presented in detail here, we recommend
[12] for a deep dive into the theory.

III. RELATED WORK
A. Training GANs with FL

Chenyou Fan and Ping Liu have shown that GANs can be
trained in federated scenarios and produce qualitative models
[16]. They have found that synchronization of both Generator
and Discriminator produces the best results (Figure 2). They
have used a DCGAN architecture model, with the input being
a class label (a digit for MNIST or category label for CIFAR-
10). In their paper, they recommend synchronizing both G and
D models when the communication costs are not an issue, and
synchronizing only G otherwise.

[T TR,]

OWw L v~
U P -

o
!
;
4
5
-]
7

(c) Sync D {d) No Synz

Fig. 2: Comparison between different synchronization choices
[16].

The developers of the NVIDIA FLARE framework have
studied the possibilities of Gradient Inversion Attacks on FL
systems [17]. They provide ways in which the amount of
information leaked in such attacks can be visualized and
measured. Using these tools, they have found that increasing
the amount of local iteration a client performs and a more
diverse dataset decreases the amount of information that can
be extracted in such an attack. This motivated the choice of
an increased number of local iterations per training round in
our experiments.

Researchers at Apple have also looked into ways to use FL
concepts and apply them at scale. One of their publications
[18] shows how they managed to train a Speaker Identification
model using the FedAvg algorithm with different types of
Differential Privacy implementations. Their work validates the
utility and effectiveness of this technology in large applica-
tions.

B. FHE in Machine Learning

The 2023 paper [19] from the Zama team is the closest
in concept to what we are trying to achieve in this paper.
They are showing how to construct Deep Neural Networks that
are compatible with FHE, and they discuss the architectural
decisions behind their models.

They are also concerned with the MNIST dataset, but for a
computer vision task, meaning that they are concerned with the
classification of handwritten digits. They are using Brevitas for
the quantization and L1-norm unstructured pruning to optimize
the models. These settings, combined with Concrete-ML, give
us a close representation of what we have implemented, but
from a classification view instead of a generative one.

The models tested are convolutional neural networks
(CNN), some fully connected (FC), with 3 or 6 layers. We
can see in Table I that the inference times are inversely-
proportionate to the accuracy. The hardware tests were per-

formed on an Intel i7-11800H CPU with 8 cores and 16
threads. However, it is safe to assume that a model that keeps
the accuracy at a high level will take over 300 seconds to be
classified with FHE.

TABLE I: Experimental results obtained with Brevitas and
Concrete-ML [19]

. Circuit
Network Ql;l.d nt. Data-set bit Accuracy Igference
its . time (s)
width
3-layer FCNN 2/2 MNIST 6 92.2% 31
3-layer FCNN 2/2 MNIST 7 96.5% 77
3-layer FCNN 2/2 MNIST 8 97.1% 300
LeNet 2/2 MNIST 8 97.6% 2780
6-layer CNN 2/2 MNIST 8 98.7% 5072

IV. RESEARCH QUESTIONS

RQ1: What is the impact on GANs performance when
training across multiple clients?

RQ2: Can data privacy be preserved when GANs are
collaboratively trained?

RQ3: Can we have a server that is ’blind” to both the
input and to the generated content?

RQ4: What is the performance of an FHE-enabled
GAN?

V. DISTRIBUTED GAN TRAINING (RQ1, RQ2)
A. Method

In order to measure the performance and security of a
possible distributed learning scenario, we propose and exper-
iment in which we train a state-of-the-art conditional GAN,
the Pix2Pix model [20]. This model utilizes a U-Net style
generator and a Markovian discriminator, termed PatchGAN
in their paper.

In addition to the classical cGAN objective (Equation 1),
Isola also used the classical loss function L1. The ultimate
goal of the Pix2Pix model, with A determining the influence
of the L1 norm, can be expressed as follows:

ménmgxﬁcGAN(G,D) + A1 (G) 2)

The authors have found that the best-performing model
architecture (as seen in Figure 3), is with a discriminator patch
size of 70x70.

The use case chosen for this experimental part is one of
the use cases presented in the Pix2Pix paper [20], where the
model is trained to generate aerial photo from a map image,
using the data provided by the authors. This particular use
case does not use sensitive data, but it was chosen so that it
can be compared with the original results when trained with
the same hyperparameters.

The scenario considered in this work is of three entities
with the same amount of images. The data is split randomly
into three batches, therefore it is independent and identically
distributed (IID). Non-IID scenarios should also be analyzed
in future work.

Input image

Generator

Real or
Generated image

N

S

Discriminator

Discriminator

prediction

I
I ¥ H
I I 3 ¥ iGenerated image
| .
S| @ o || || |o| |8
O || |~ | N| || | = |™m |©f Y |~
S X |3 X |3 X o X |3 X (3] X |3 X |3 X [X |3 X |3 X |53 x|
||| |©] eo| (=]] |=r| || |© || (| (o] |©f
©| o |« =5 =| || |©| |8 |b]:
o2 912 12 Channets °2 512 9 = |
% 512 s12 Lo L
64 !
Legend
K —> 2x2 Convolution/Deconvolution, stride 2
' P1 | Pz P30 Sk
H — il il
<| [} o oo o ip connection
(,? | ‘;? : . - : D Up-sampling block
< ||t
© M : D Down-sampling block
512 Pso1 | Pao,2 Paa.z0

D Down-sampling block

Fig. 3: The architecture of the Pix2Pix model.

We implemented three scenarios which we then compared.
In the first experiment, we centralized the data in one site
and trained the model locally, performing 200 training epochs
over the whole data set, with a batch size of 1, as mentioned
in the Pix2Pix paper. Clearly, this approach compromises all
the data, or at least some part of it, if the central entity is one
of the participating parties. However, this method was chosen
to be tested in order to analyze the performance and compare
it with further, more secure methods.

As one of the objectives of this work is to determine
whether federated learning is worth implementing in a cross-
silo scenario, a training run was performed on the data of
a single client. The experiment has the same settings as the
previous centralized case, only with a third of the data.

In the third experiment, we implemented a FL solution using
the NVIDIA FLARE framework. The simulated local learning
mode was used, in which the server and the three participating
clients run on separate processes.

Lastly, a truly distributed experiment was performed using
the Azure Machine Learning platform, creating a separate
Virtual Machine (VM) for each previous process, the server,
and the clients. The clients were created on VMs with NVIDIA
Tesla M60 GPUs. The NVFLARE framework provides the
communication and setup infrastructure needed to perform the
distributed learning. We also applied differential privacy on the
model updates by introducing Gaussian noise with oy = 0.1.

In order to evaluate the performance of the generator
models, we used the Fréchet inception distance (FID) [21],
implemented in Python and maintained by Maximilian Seitzer
and it is available on GitHub [22].

B. Results

The generator or discriminator loss are not objective metrics
that can be used to analyze the performance of the model.
However, it is worth comparing the model loss in the different

settings we have described. Figure 4 shows the losses of these
runs.

The local site training has the lowest loss, but, as will be
seen further, it produces the worst results. This can be due to
model overfitting, due to the limited data set. The model loss
when adding differential privacy to federated learning closely
follows the federated learning loss. This shows that the added
noise does not cumber the generator in reaching its subjective
goal. However, the generator takes a longer number of epochs
to reach the same loss as the centralized model.

Generator Loss

2] |

224

204

Loss

—— Centralised
— Fed

| — Fed+DP
Site

New Round

100 125 150

Epochs

0 25 50 75

Fig. 4: Generator Loss Values Comparison

As one of the chosen metrics for this work is the FID score,
the generator state was saved at epochs 50, 100, 150, and 200.
In the case of federated learning runs, these correspond to
rounds 5, 10, 15, and 20, respectively. These models were used
to generate outputs for each of the evaluation images. These
generated collections of images were then used to compute
the FID scores seen in 6, comparing them to the ground truth
of the evaluation data.

A problem with the computed FID scores is that models
were evaluated over the whole data set, but such a metric is

Input

Local

> &8 , » L e S e L 3
< 7y 4 2 e »

Fig. 5: Visual comparison of the different training methods

FID Metric vs. Epochs

340 —— Central
—— Site
320 - —8— Federated
—&— Federated DP
300 1
o 2804
b=
[t
=
o 260
[y
240 1
2201
2004
T T T T
50 100 150 200
Epochs

Fig. 6: FID scores over the whole data set (Lower is better)

not possible in a real-world scenario, as the evaluation images
are private and stored at the participating sites. In order to
evaluate the practicality of this approach, the final model of
each training method was used to infer over the whole set of
evaluation images of each site, storing the generated images
locally at each site. The FID score was then computed for
each of these generated sets. In Table II, it can be seen that the
proportionality between the FID scores of the different training
methods used is the same as in the centralized evaluation.
The other metric used to analyze the models is visual
evaluation, as the goal is to produce images indistinguishable
from reality by humans. Some of the generated images at

[Site | Centralized [FL + DP [Local |
North EU 204.01 229.49 268.49
West EU 202.99 233.44 272.72
US 207.09 230.64 274.81

TABLE II: FID scores over the local data after 200 epochs

the last model state are seen in Figure 5. The locally trained
models are the farthest from the ground truth, as the model
produces detailed but fuzzy images. The images trained in the
Federated Learning setting with Differential Privacy are close
in quality to the ones generated by the centralized model, albeit
less detailed.

These visual results support the results of the FID scores
comparison. Federated training produces better results than
training locally, but there is a loss in quality compared to the
centralized model.

VI. PRIVATE GAN INFERENCE (RQ3, RQ4)
A. Methods (RQ3)

The majority of FHE models need to be quantized to meet
FHE constraints, as FHE is limited to 16-bit computations.
Quantization is the process of reducing an input of very
large values (for example, real numbers) to a discrete set
(for example, integers). Quantization reduces the precision
of the computations done in a model. Usually, this is done
by switching from floating-point representations (like FP32)
to lower bit-width numbers, for instance, fixed-point (like
INTS). In order to achieve the best accuracy, we are using
Quantization Aware Training (QAT). The term “aware” means
that the model is being trained with the precision limitation

being imposed during training rather than after it. By making
the model “aware” of quantization, we allow it to adjust the
weights to our needs.

Initially, we tried to implement the conditional Pix2Pix
GAN above, by adding QAT, as we can see in Figure 7. The
problem seemed to be that the discriminator learned way too
quickly how to classify the images. We have tried to reduce
the learning rate but to no avail. Unfortunately, it seemed like
the model needed the precision in order to produce the images,
which unfortunately was a deal-breaker for us. As we could
not quantize the model successfully, we had to totally abandon
all the FHE-related work done prior and start over with a new,
smaller model.

(a) Input 1 (b) Output 1 (c) Input 2 (d) Output 2

Fig. 7: Generated images from the Pix2Pix Quantized model

That is why we have settled to go for a MNIST GAN, and
started to implement it in Python using the library PyTorch,
using [23] as a reference.

28%28

V784
Real or Generated *, Channels
image

Fig. 8: Structure of MNIST GAN

We applied QAT using Brevitas on all the layers and
activation functions.

To further help us with decreasing the FHE load, we use
pruning. Pruning is a technique that removes certain parts of
the network, such as weights, nodes, or even whole layers,
therefore reducing the computational complexity of the model.
As a pruned model usually has fewer parameters and connec-
tions, it will run more efficiently and occupy less memory, all
while trying to maintain a comparable level of performance.
Evidently, by cutting off information we can expect a drop
in accuracy, but because we are removing only the most
unimportant parts, we expect this drop to not be significant.
For our experiments, we use L1 unstructured pruning.

We deploy the model on AWS with the help of ConcreteML
scripts and we build a client to send requests. We will use
powerful machines in order to see how it affects inference
times.

B. Results (RQ4)

1) Training: We have trained three different models, all
using the same machine, locally. The device used was an Asus
Zephyrus G14, CPU: Ryzen 7 4800HS, 16GB RAM, and a
NVIDIA GeForce GTX 1650TI GPU with CUDA Enabled.

[Generator Model Type [Training Time / 200 epochs (in seconds) |

Regular Model 3208s
6-bit QAT Model 7507s
4-bit QAT Model 70685

TABLE III: Training Times for Different Generators

The information in Table III suggests that on average, the
Quantization Aware Training is around 2 times slower than
the regular training. This is mainly because of Python’s paral-
lelization issues and Brevitas’ lack of optimizations. Although
these training times might be a problem for large models (for
example, LLMs) where the training times are very large, we
expect these issues to be optimized in the future.

1] {]4
III EIETEIE] FEIEI)
2 FIEHE BEEIA EFEREF

(a) Epoch 5 (b) Epoch 30 (c) Epoch 100 (d) Epoch 200

cn\i

Fig. 9: Regular Generator

aaaaaaa

EIFIEIF EEEEE
QEER DOnN CANG

(b) Epoch 30 (c) Epoch 100 (d) Epoch 200

(a) Epoch 5

Fig. 10: 6-bit Quantization Aware Training Generator

aaaaaaa

- IEIE] EII III
ﬂ IEEI III IIIEI

(a) Epoch 5 (b) Epoch 30 (c) Epoch 100 (d) Epoch 200

Fig. 11: 4-bit Quantization Aware Training Generator

AUUE 6/0
;qe 6
3141315 343
AikE E

(b) 20% pruned (c) 50% pruned (d) 80% pruned

& On ol

(a) Original
Fig. 12: Pruning results

[Model type [Pruned | FID |
Original None 57.1517
4-bit QAT None 59.1477
4-bit QAT 20% pruning | 60.7165
4-bit QAT 50% pruning 67.8442
4-bit QAT 70% pruning | 108.1767
4-bit QAT 80% pruning | 143.2431

TABLE IV: FID for Different Generators (Lower is better)

FID for Different Generators

i

140 +

120 4

AD

100 +

80 4

60

Fig. 13: Plot of FID (Lower is better)

We can see in Figures 9, 10, 11, 12, 13 and Table IV that
the quality of photos is not much different whether we use
an original, 6-bit, or 4-bit QAT model. Therefore, we choose
the most efficient model, the 4-bit model. Next, we can see
in Figure 13 that pruning affects the model minimally at 20%
and 50% but drops off drastically at 70%. Therefore, we can
consider that the 20% or 50% pruned models give the best
balance between quality and performance.

2) Inference: We have run inference tests for all kinds of
devices and models, in order to find find the best time. There-
fore, we have considered software and hardware optimizations.

For the hardware, the following devices were used:

e Macbook Pro 16° M1 Pro, 16GB RAM, 10-core CPU

o« AWS cS.large - 2 vCPUs, 4GB RAM

e AWS mé6i.8xlarge - 32 vCPUs 3rd Gen Intel Xeon
Scalable, 128GB RAM

e AWS mé6i.metal - 128 vCPUs 3rd Gen Intel Xeon Scal-
able, 512GB RAM

It is worth noting that FHE is a CPU-intensive operation,
therefore we have focused on having AWS instances that
have as many vCPUs as possible. The GPUs are not used
for inference, so we disregarded those when choosing the
appropriate instances.

For the models used, we have the following options:

o Regular model - not used in the inference

o 6-bit QAT Model - tested locally

o 4-bit QAT Model - tested locally

o 4-bit QAT Model + 20% pruning - tested locally
o 4-bit QAT Model + 50% pruning - tested locally and on
AWS

[Server device | Generator Type | Inference Time (s) |

Macbook Pro 6-bit QAT 5721s
Macbook Pro 4-bit QAT 4823s
Macbook Pro 4-bit QAT + 20% pruning 4314s
Macbook Pro 4-bit QAT + 50% pruning 3780s
AWS c5.large 4-bit QAT + 50% pruning | Insufficient memory
AWS m6i.8xlarge | 4-bit QAT + 50% pruning 2114s
AWS mo6i.metal 4-bit QAT + 50% pruning 738s

TABLE V: Inference Times

Inference times

6000 Mac 6b

5000

4000 +

3000

Inference time (s)

2000 -

1000 50%

Fig. 14: Plot of Inference Times (Lower is better)

We can see in Figure 14 that our optimizations help the
inference times tremendously. By switching from a 6-bit QAT
to a 4-bit QAT we achieve a 1.3x speedup. Moreover, if we
add the pruning, we achieve about a 1.6x speedup from what
we initially had. Having a very powerful device to run the
computations on proved to be one of the biggest factors in
achieving a 7x speedup, which is the lowest inference time
our experiments have found. We note that our first experiment
ran an un-optimized 6-bit model on our local device running
on lower-power mode, which is why our very first experiment
timed at about 2 hours. However, we do not include this
first measurement as we have re-run the experiments on the
Macbook without the power limitations. These results show
that having the right hardware and optimizations is having a
massive impact on the performance of the inference, without
losing much quality.

It might seem surprising that a machine with 128vCPUs
and 512GB RAM needs a whole 12 minutes just to generate
a 28x28 image, considering that inference in the clear takes
about 0.01 seconds. However, this was expected from the
beginning. These experiments show that FHE is around 5
orders of magnitude slower than computations in the clear,
which is supported by state-of-the-art research on other types
of Machine Learning models.

VII. CONCLUSIONS

Motivated to integrate privacy-preserving methods into
high-performing generative models, in an era characterized by
increasing data breaches, the aim of this work is to provide
insight into how these models can be efficiently trained and
inferred on while minimizing the exposure of private user
information.

We begin our experiments by training the Pix2Pix model
with different methods and comparing the obtained results.
Answering RQ1, we show that training the model with FL
provides better results than training only with the local data
a client holds. However, the performance of the resulting
model is still lower than the centralized approach, as we
expected. Visual examples show that the model still produces
good results even when applying Differential Privacy through
Gaussian noise.

Combining DP with the security provided by the FLARE
framework, we trained this model in the cloud, using Azure
services. Obtaining qualitative results, evaluated both using
FID scores and visual comparison, we conclude that the data
used in training a GAN model with FL is not jeopardized
(RQ2), while still obtaining performant models.

Regarding FHE inference for GANs, we have proven its
possibility by building and deploying the model, however, with
various limitations, such as the need for a simple model (RQ3).
Overall, we have achieved a 7x speedup through various
optimizations, but our lowest inference time was around 12
minutes, which proves that FHE as a technology is not yet
practical (RQ4). There are various improvements that might
help improve the FHE results: better optimizing the model,
using alternative pruning methods, changing the structure of
the generator, etc. Future work in FHE is mainly concerned
with hardware optimizations. Our 12-minute inference time
cannot be vastly improved with software or design improve-
ments, even if we sacrifice more of the accuracy. Rather,
in the following years, we can expect a 10.000x speedup
from specialized FHE hardware processors, which will greatly
improve our inference times.

All our findings point to one conclusion: are possible, but
far away from being practical. Researchers expect FHE to
be ready for real-life applications in about 5 years. However,
we knew this from the beginning, and these results are not a
discouragement: rather, they are a fascinating view into what
the future might look like.

Privacy should not be a luxury, but a right. By employing
these methods, we are proving that in the future, privacy within
Generative Al could be guaranteed by design.

REFERENCES

[1] Cecily Mauran. Whoops, Samsung workers accidentally leaked trade
secrets via ChatGPT. https://mashable.com/article/samsung-chatgpt-
leak-details. Online; accessed 23 Apr 2023.

[2] Abeer Aljohani and Nawaf Alharbe. Generating synthetic images for
healthcare with novel deep pix2pix gan. Electronics, 11(21), 2022.

[3] Jingzhang Sun, Yu Du, Chien-Ying Li, wu Hsin, Bang-Hung Yang,
and Greta Mok. Pix2pix generative adversarial network for low dose
myocardial perfusion spect denoising. Quantitative Imaging in Medicine
and Surgery, 12, 01 2021.

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.
Jiirgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85-117, 2015.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

Luc Rocher, Julien Hendrickx, and Yves-Alexandre Montjoye. Esti-
mating the success of re-identifications in incomplete datasets using
generative models. Nature Communications, 10, 07 2019.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agiiera y Arcas. Communication-efficient learning of deep
networks from decentralized data. arXiv preprint arXiv:1602.05629,
2023.

Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169-180, 1978.

Craig Gentry. Fully homomorphic encryption using ideal lattices.
Proceedings of the Annual ACM Symposium on Theory of Computing,
9, 05 2009.

Xun Wang, Tao Luo, and Jianfeng Li. A more efficient fully homomor-
phic encryption scheme based on gsw and dm schemes. Security and
Communication Networks, 2018:1-14, 12 2018.

llaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachéne. Tfhe: Fast fully homomorphic encryption over
the torus. Cryptology ePrint Archive, Paper 2018/421, 2018.

https://eprint.iacr.org/2018/421.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances
in Cryptology—ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I 23, pages 409—
437. Springer, 2017.

Arthur Meyre, Benoit Chevallier-Mames, Jordan Frery, Andrei Stoian,
Roman Bredehoft, Luis Montero, and Celia Kherfallah. Concrete ML:
a privacy-preserving machine learning library using fully homomorphic
encryption for data scientists, 2022. https://github.com/zama-ai/concrete-
ml.

Alessandro, Giuseppe Franco, Ian Colbert, Andrei Stoian, nickfraser,
Javier Duarte, Luis Montero, MichalMachura, Omar Peracha, Sponta-
neousDuck, Yaman Umuroglu, derpda, and vfdev. Xilinx/brevitas: Super
resolution r0, May 2023.

Chenyou Fan and Ping Liu. Federated generative adversarial learning.
arXiv preprint arXiv:2005.03793, 2020.

Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko,
Wenqi Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz,
Daguang Xu, and Holger R. Roth. Do gradient inversion attacks make
federated learning unsafe? IEEE Transactions on Medical Imaging,
2023.

Filip Grangvist, Matt Seigel, Rogier van Dalen, Aine Cahill, Stephen
Shum, and Matthias Paulik. Improving on-device speaker verification
using federated learning with privacy. arXiv preprint arXiv:2008.02651,
2020.

Andrei Stoian, Jordan Frery, Roman Bredehoft, Luis Montero, Celia
Kherfallah, and Benoit Chevallier-Mames. Deep neural networks for en-
crypted inference with tthe. Cryptology ePrint Archive, Paper 2023/257,
2023. https://eprint.iacr.org/2023/257.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-

to-image translation with conditional adversarial networks. arXiv
preprint arXiv:1611.07004, 2018.
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard

Nessler, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. arXiv preprint
arXiv:1706.08500, 2018.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid, August 2020. Version 0.3.0.
PyTorch-Mnist-GAN. https://github.com/ccs96307/PyTorch-GAN-
Mnist. Online; accessed 25 Feb 2023.

Daisuke Matsuoka, Shiori Sugimoto, Yujin Nakagawa, Shintaro Kawa-
hara, Fumiaki Araki, Yosuke Onoue, Masaaki liyama, and Koji Koya-
mada. Automatic detection of stationary fronts around japan using a
deep convolutional neural network. SOLA, 15:154-159, 2019.

