-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
103 lines (89 loc) · 4.06 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from utils import torch_utils
import torch
import numpy as np
import config as cfg
from model import Net
from dataset import BMDataset
from utils.eval_indicators import Indicators
from utils import display
def inference(model, data):
device = torch_utils.select_device()
model.to(device)
model.eval()
with torch.no_grad():
if model.ntype == "Linear":
data = data.view(1, -1)
elif model.ntype == "Conv":
data = data.view(1, 1, 3, 3)
data = data.to(device)
output = model(data)
return output
def get_predicts_labels(model, dataset):
'''获取数据集的预测值和真实值
Args:
model: 训练后的模型
dataset: BMDataset
Returns:
predicts: 预测值, shape = (N, ), np.array
labels: 样本标签值, shape = (N, ), np.array
'''
predicts = list()
labels = list()
for data, target in dataset:
predict = inference(model, data)
predict = dataset.decode_label(predict.cpu().item())
target = dataset.decode_label(target.item())
predicts.append(predict)
labels.append(target)
# predicts.append(predict.cpu().item())
# labels.append(target.item())
predicts = np.array(predicts)
labels = np.array(labels)
# print("predicts:\n{}\nlabels:\n{}".format(predicts, labels))
return predicts, labels
def main():
ntype = cfg.config["ntype"]
model = Net(ntype)
checkpoint = torch.load(cfg.config["ckpt"])
# print(checkpoint)
model.load_state_dict(checkpoint['model'])
data_fpath = cfg.config["data_path"]
if "data_min" in cfg.config and "data_max" in cfg.config:
data_min = np.load(cfg.config["data_min"], allow_pickle= True)
data_max = np.load(cfg.config["data_max"], allow_pickle= True)
else:
raise ValueError("Please run script utils/cal_min_max.py to get data_min.npy and data_max.npy")
if "data_mu" in cfg.config and "data_sigma" in cfg.config:
data_mu = np.load(cfg.config["data_mu"], allow_pickle= True)
data_sigma = np.load(cfg.config["data_sigma"], allow_pickle= True)
else:
raise ValueError("Please run script to get data_mu.npy and data_sigma.npy")
train_dataset = BMDataset(data_fpath, data_min, data_max, data_mu, data_sigma, ntype, "train")
valid_dataset = BMDataset(data_fpath, data_min, data_max, data_mu, data_sigma, ntype, "valid")
test_dataset = BMDataset(data_fpath, data_min, data_max, data_mu, data_sigma, ntype, "test")
train_preds, train_labels = get_predicts_labels(model, train_dataset)
train_indicators = Indicators(train_preds, train_labels)
train_R2 = train_indicators.R_square()
train_MAPE = train_indicators.MAPE()
train_RMSE = train_indicators.RMSE()
train_MAE = train_indicators.MAE()
display.draw_actual_vs_predict(train_labels, train_preds, "Training set\nR2={}".format(round(train_R2, 4)))
# print("***Training set*** R2: {}, MAPE: {}, RMSE: {}, MAE: {}".format(train_R2, train_MAPE, train_RMSE, train_MAE))
valid_preds, valid_labels = get_predicts_labels(model, valid_dataset)
valid_indicators = Indicators(valid_preds, valid_labels)
valid_R2 = valid_indicators.R_square()
valid_MAPE = valid_indicators.MAPE()
valid_RMSE = valid_indicators.RMSE()
valid_MAE = valid_indicators.MAE()
# print("***Valid set*** R2: {}, MAPE: {}, RMSE: {}, MAE: {}".format(valid_R2, valid_MAPE, valid_RMSE, valid_MAE))
display.draw_actual_vs_predict(valid_labels, valid_preds, "Test set\nR2={}".format(round(valid_R2, 4)))
test_preds, test_labels = get_predicts_labels(model, test_dataset)
test_indicators = Indicators(test_preds, test_labels)
test_R2 = test_indicators.R_square()
test_MAPE = test_indicators.MAPE()
test_RMSE = test_indicators.RMSE()
test_MAE = test_indicators.MAE()
# print("***Test set*** R2: {}, MAPE: {}, RMSE: {}, MAE: {}".format(test_R2, test_MAPE, test_RMSE, test_MAE))
display.draw_actual_vs_predict(test_labels, test_preds, "Valid set\nR2={}".format(round(test_R2, 4)))
if __name__ == "__main__":
main()