-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster.tex
612 lines (537 loc) · 24.9 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
%\documentclass[a0paper, portrait, 17pt]{tikzposter}
%12pt, 14pt, 17pt, 20pt, or 25pt;
%[25pt, a0paper, portrait, margin=0mm, innermargin=15mm,
% blockverticalspace=15mm, colspace=15mm, subcolspace=8mm]
\documentclass[blockverticalspace=0.2cm,colspace=0.2cm,
%titletotopverticalspace=0.1cm, titletoblockverticalspace=0.1cm,
a0paper, portrait, 20pt]{tikzposter}
%for IMA
%You can bring your poster (40 inches (101 cm) high by 30 inches (76 cm) wide)
%Poster Dimension: You can bring your poster with you to fit on the IMA poster board ? 40 inches (101 cm) high by 30 inches (76 cm) wide. Poster size can either be 40×30 (landscape) or 30×40 (portrait). IMA will provide the thumbtacks.
%The poster board can accommodate 8 or 9 A4 pages.
%A1 format measures 841 x 594 mm or 33,11 x 23,39 inches. Its length corresponds to the width of the A0, and its width corresponds to the length of the A2. Its printing surface is 791 x 554 millimeters when the conventional printing margins are applied.
%\documentclass[a1paper,portrait, 17pt]{tikzposter}
%\geometry{paperwidth=76cm,paperheight=101cm}
\usepackage{amsmath}
%\usepackage{graphicx}
\usepackage{amssymb}
%\usepackage{subfigure}
%\usepackage{amsthm}
\usepackage{enumerate} % To use roman numerals in enumerate
\usepackage{multicol}
\usepackage[backend=bibtex,style=numeric,sorting=none]{biblatex} % to use .bib file
%\usetheme{Simple} % red white
%\usetheme{Basic} % green
%\usetheme{Envelope} % blue and blue
\usetheme{Board} % light blue, kind of cute
%\usetheme{Autumn} % like simple but brown and blue
%\usecolorstyle[colorPalette=BrownBlueOrange]{Germany}
%\usetitlestyle{Wave}
\renewenvironment{tikzfigure}[1][]{
\def \rememberparameter{#1}
\vspace{1pt}
\refstepcounter{figurecounter}
\begin{center}
\tabular{c}
}{
\ifx\rememberparameter\@empty
\else %nothing
\\[1pt]
{\small Fig.~\thefigurecounter: \rememberparameter }
\fi
\endtabular
\end{center}
}
\input{mycommands} %%%%
%%%%%%% TIKZ %%
\input{tpath_poster_figures} %%%%
%%%%%%% TIKZ %%
%%%%
%%%%%
%%%%%% TIKZ %%%
%%%%%% TIKZ %%%
%%%%%%%%%%%%%
%%%%%%%% shortcuts %%%
\newcommand\TpathSize{0.8}
%%%%% shortcuts %%%%%
%%%%%%%%%%%%%%%
% \settitle{ \centering \vbox{
% \@titlegraphic \\[\TP@titlegraphictotitledistance]
% \centering
% \color{titlefgcolor} {\bfseries \Huge \sc \@title \par}
% \vspace*{1em}
% {\huge \@author \par} %\vspace*{1em}
% %{\LARGE \@institute}
%}}
\title{Atomic Bases and $T$-path Formula for Cluster Algebras of Type $D$} \author{Emily Gunawan* and Gregg Musiker - University of Minnesota, Minneapolis, USA}
%\institute{University of Minnesota, School of Mathematics, Minneapolis, USA}
%\titlegraphic{\includegraphics{logo}}
\addbibresource{references.bib}
%\bibliography{references}
\begin{document} \maketitle[titletoblockverticalspace=-0.6cm]
\begin{columns}
\column{0.65}
%
%\block{Abstract}{
%We extend a $T$-path expansion formula for arcs on an unpunctured surface
%to the case of arcs on a once-punctured polygon
%and use this formula to give a combinatorial proof
%that cluster monomials form the atomic basis of a cluster algebra of type $D$.
%}
\block{What is a cluster algebra? (Fomin and Zelevinsky, 2000)} {
\begin{itemize}
\item
A (coefficient-free) \emph{cluster algebra} of rank $n$ is a $\mathbb{Z}$-subalgebra of $\mathbb{Q}(x_1, \dots, x_n)$
% the field of rational functions in n variables with rational coefficients
generated by elements called \emph{cluster variables}:
\begin{enumerate}[-]
\item Start with an \emph{initial seed}: a \emph{cluster} $\mathbf{x}=\{ x_1, x_2, \dots, x_n\}$
and a skew-symmetrizable \emph{exchange matrix} $B=(b_{ij})$.
\item For each $k=1,\dots,n$, we can \emph{mutate} in the $k$-th direction
$\left( \{ x_1, \dots, {x_k}, \dots, x_n\},B \right) \overset{\mu_k}{\longrightarrow}
\left( \{ x_1, \dots, {x_k'}, \dots, x_n\}, \mu_k(B) \right)$
to obtain a new seed
where
\[x_k' =\frac{1}{x_k}\left( {\prod_{b_{ik}>0} x_i^{b_{ik}} + \prod_{b_{ik}<0} x_i^{-b_{ik}}}\right)
\, \text{ and }\, \mu_k(B)_{ij}=
\begin{cases}
- b_{ij}&\text{if $k=i$ or $k=j$} \\
b_{ij} + \frac{1}{2} \left(|b_{ik}|b_{kj}+b_{ik}|b_{kj}|\right) &\text{otherwise}
%b_{ij} + b_{ik}b_{kj} &\text{if $b_{ik}>0$ and $b_{kj}>0$}\\
%b_{ij} - b_{ik}b_{kj} &\text{if $b_{ik}<0$ and $b_{kj}<0$}\\
%b_{ij} &\text{otherwise}
\end{cases}\]
\item Apply all possible sequences of mutations to produce all cluster variables (usually infinitely many).
\end{enumerate}
%\item Construction of cluster variables:
%\begin{itemize}
%\item Specify an initial \emph{cluster}
%$\{ x_1, x_2, \dots, x_n\}$ %of cluster variables
%
%\item Produce new clusters $\{ x_1, \dots, \hat{x_k}, \dots, x_n\}$ by \emph{mutation} at $k$
%via certain exchange relations
%$$ x_k' = \frac{\prod x_i^{d_i+} + \prod x_i^{d_i-}} { x_k }$$
%where the products run through other elements of the cluster
%$\{ x_1, \dots, {x_k}, \dots, x_n\} \longleftrightarrow \{ x_1, \dots, \hat{x_k}, \dots, x_n\}$.
%
%\item Repeat this procedure (usually infinitely many times).
%\end{itemize}
\end{itemize}
\begin{itemize}
\item \textbf{Laurent Phenomenon:} each cluster variable can be expressed as a Laurent polynomial in $\{ x_1, \dots, x_n\}$.
\item \textbf{Positivity:} this Laurent polynomial has positive coefficients (2014, [Lee and Schiffler], [Gross, Hacking, Keel, and Kontsevich], and special cases by others).
\end{itemize}
}
\block{Cluster algebras from surfaces} {
\begin{multicols*}{2}
\innerblock{Definition: ordinary arcs}{
\begin{itemize}
\item An \emph{ordinary arc} $\ga$ is a non-contractible curve between marked points
such that $\ga$ does not cross itself or the boundary, and $\ga$ is not homotopic to a boundary edge.
%\begin{itemize}
%\item $\gamma$ does not cross itself or the boundary of $S$
%\item $\gamma$ is not homotopic to a boundary edge.
%\end{itemize}
%\item A loop \TikzNoose{0.4} that cuts out a monogon with $1$ puncture is called a \emph{noose}.
\item An \emph{ideal triangulation} is a maximum collection of distinct arcs that pairwise do not cross.
\end{itemize}
%\OncePuncturedSquare{0.6}
\TikzTtwoIdealTriangulation{0.6}
\TikzToneOnly{0.6}
%\caption{Some ideal triangulations of a once-punctured disk}
%\end{figure}
}
\innerblock{Definition: tagged arcs}{
\begin{itemize}
\item A \emph{tagged arc}
is an ordinary arc (which does not cut out a monogon with $1$ puncture \TikzNoose{0.4})
decorated (plain or with a $\bowtie$) at each endpoint.
%is obtained by making each endpoint of an ordinary arc (that is not a noose)
%either plain or notched (indicated by a bow tie).
\item A \emph{tagged triangulation} is a maximum collection of distinct tagged arcs
that are pairwise ``compatible''.
%satisfying several criteria including pairwise non-crossing
\end{itemize}
\TikzTtwoTaggedTriangulation{0.6}
\TikzToneOnly{0.6}
\TikzToneBowtiesOnly{0.6}
}
\end{multicols*}
\innerblock{Theorem (Fomin, Shapiro, and Thurston, 2006)}{
One can define a cluster algebra from a Riemann
surface $+$ interior points (called \emph{punctures}) and/or
marked points on the boundary:
\begin{align*}
\text{seed $\left( \mathbf{x}_T, B_T\right)$} &\longleftrightarrow \text{tagged triangulation $T=\{\tau_1,\dots,\tau_n\}$}\\
\text{cluster variable $x_\ga$} &\longleftrightarrow \text{tagged arc $\ga$}\\
\text{cluster mutation} &\longleftrightarrow \text{``flipping diagonals"}
% \text{cluster monomials} && \longleftrightarrow & &\text{multi-tagged dissections}
\end{align*}
}
}
\note[width=10cm, targetoffsetx=0.1\textwidth,targetoffsety=-9cm,innersep=.2cm,angle=0,connection]{
\TikzTwoRectanglesFlipsAndThreeDigonsFlips{0.5}
}
\column{0.35}
\block{Example: once-punctured $4$-gon%\OncePuncturedSquare{0.25}
}{
A tagged triangulation of a once-punctured square $\longleftrightarrow$ A quiver that is mutation equivalent to an orientation of a type $D_4$ Dynkin diagram.
\TikzTtwoTaggedNextToQuiver{0.7}
\begin{tikzpicture}[scale =0.4]
\begin{scope}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm, ultra thick, red]
\node (2) {};
\node (1) [ left of=2] {};
\node (r) [ above of=2, right of=2] {};
\node (rp) [ below of =2, right of=2] {};
\path[every node/.style={font=\sffamily\small}]
(2) edge (1)
(2) edge (rp)
(2) edge (r);
%(r) edge [bend right] (2);
\draw (1) node{$1$};
\draw (2) node{$2$};
\draw (r) node{$r$};
\draw (rp) node{$r^{\bowtie}$};
% \draw (10,0) node{};
\end{scope}
\end{tikzpicture}
% \caption {Finite $D_4$ Cluster algebra $\leftrightarrow$ finite $D_4$ Dynkin diagram}
%\begin{tikzpicture}
% \draw (0:0) node{
% \begin{math}\bordermatrix{
%\text{\small arcs} & \text{\small $1$} & \text{\small $2$} & \text{\small $r$} & \text{\small $r^{\bowtie}$}\cr
% \text{\small $1$} & 0 & -1 & 0 & 0 \cr
%\text{\small $2$} &1 & 0 & 1 & 1 \cr
%\text{\small $r$} & 0 & -1 & 0 & 0 \cr
%\text{\small $r^{\bowtie}$} & 0 & -1 & 0 & 0}\end{math}};
%\end{tikzpicture}
}
\note[width=10cm,targetoffsetx=1cm,targetoffsety=-1.5cm,innersep=.4cm,connection]{
This example corresponds to \\
\begin{math}
B = \bordermatrix{
%\text{\small arcs}
& \text{\small $1$} & \text{\small $2$} & \text{\small $r$} & \text{\small $r^{\bowtie}$}\cr
\text{\small $1$} & 0 & -1 & 0 & 0 \cr
\text{\small $2$} &1 & 0 & 1 & 1 \cr
\text{\small $r$} & 0 & -1 & 0 & 0 \cr
\text{\small $r^{\bowtie}$} & 0 & -1 & 0 & 0}\end{math}
}
\block{Example: once-punctured $3$-gon}{
\begin{tikzfigure}
[There are ${{2n}\choose n}-{{2n-2}\choose{n-1}}$ tagged triangulations of a once-punctured $n$-gon.]
%[The exchange graph for tagged triangulations of a once-punctured triangle]
\TikzDFourClusters{0.6}
\end{tikzfigure}
}
%\block{}{
%$n^2$ cluster variables
%\begin{enumerate}[]
%\item $ \frac{x_{0} x_{1} + x_{0} x_{2} + x_{1} + x_{2}}{x_{0} x_{1} x_{2}} $ %
%\item $ \frac{x_{0} x_{2} + x_{1} + x_{2}}{x_{0} x_{1}} $ %
%\item $ \frac{x_{1} + x_{2}}{x_{0}} $ %
%\item $ \frac{x_{0} + 1}{x_{1}} $ %
%\item $ \frac{x_{0} x_{1} + x_{1} + x_{2}}{x_{0} x_{2}} $ %
%\item $ \frac{x_{0} + 1}{x_{2}} $ %
%\item $ x_{2} $
%\item $ x_{1} $
%\item $ x_{0} $
%\end{enumerate}
%}
%\end{subcolumns}
\end{columns}
\begin{columns}
\column{0.55}
\block{Result 1: $T$-path formula for cluster variables (type $D$)}
{
%\coloredbox{
We extend Schiffler and Thomas' $T$-path definition and formula for unpunctured surfaces (2009).
Let $T^o$ be an ideal triangulation (of an unpunctured surface or a once-punctured disk) and $\ga$ an ordinary arc that crosses $T^o$.
Let $\blacktri{k}$ denote the $k$-th ideal triangle crossed by $\ga$.
%We expect to generalize this to other punctured surfaces.
%}
%\begin{definition}[Complete $(T^o,\ga)$-path]\label{def:Tpath}
\innerblock{Definition: quasi-arc}{
If $\tau$ is an ordinary arc,
let an associated \emph{quasi-arc} $\tau'$ be a curve (not passing through the puncture $\puncture$) which agrees with $\tau$ outside of a small radius-$\epsilon$ disk $D_\epsilon$ around $\puncture$.
%If $\tau$ is not adjacent to the puncture, let the associated quasi-arc be $\tau$ itself.
%If $\tau$ is an ordinary radius of $\Cn$ between a marked point $v$ on the boundary and the puncture $\puncture$,
%let an associated \emph{quasi-arc} $\tau'$ be a curve (not passing through $\puncture$) which agrees with $\tau$ outside of a radius-$\epsilon$ disk $D_\epsilon$ around $\puncture$, where $\epsilon$ is chosen small enough so that the intersection of $\tau$ with any other arc is outside of $D_\epsilon$.
%Otherwise, we let the associated quasi-arc be $\tau$ itself.
}
\innerblock{Definition: $T$-path}{
%Let $T^o$ be an ideal triangulation (of an unpunctured surface or a once-punctured disk) and an arc $\ga$ that crosses $T^o$.
A \emph{(complete) $(T^o,\ga)$-path} %(or \emph{$(T^o,\ga)$-path} for short)
$\om = (\om_1, \dots, \om_{2d+1})$
is a concatenation of quasi-arcs and boundary edges such that:
\begin{itemize}
\item [(T1)]
Each even step $\om_{2k}$ ($k=1,\ldots,d$) is the $k$-th arc that $\gamma$ crosses.
\item[(T2)]
The path $\om$ is homotopic to $\ga$, and satisfies the following:\\
Let $p_1,\dots,p_d$ be the intersection points of $\gamma$ and $T^o$.
Let $\gamma_k$ be the segment along $\gamma$ between $p_k$ and $p_{k+1}$.
Then the segment $\gamma_k$ is homotopic to the segment from $p_k$ following $\om_{2k}$,
following $\om_{2k+1}$, following $\om_{2k+2}$ until $p_{k+1}$.
%
%For $k=0,\ldots,d$, each $\om_{2k+1}$ traverses a side of the ideal triangle $\blacktri{k}$.
%In addition, $\om_1$ traverses the edge $\tg{0}$ or $\tg{-1}$ (which is adjacent to $s$)
%and $\om_{2d+1}$ traverses the edge $\tg{d}$ or $\tg{d+1}$ (which is adjacent to $t$).
%\begin{enumerate}[i.)]
%\item
%Moreover, for $k=1,2, \ldots, d-1$, let $\pkpkone{\om}$
%denote the segment of $\om$ starting at the point $p_k$
%following $\om_{2k}$, continuing along $\om_{2k+1}$ and $\om_{2(k+1)}$ until the point $p_{k+1}$.
%Then the segment $\ga_k$ is homotopic to $\pkpkone{\om}$.
%If $S=\Cn$, then we mean homotopy in the disk minus the puncture.
%
%\item
%The segment $\ga_0$ is homotopic to the segment $[s,p_1]_{\om}$
%of the path starting at
%the point $s=p_0$ following $\om_1$ and $\om_{2}$ until the point $p_1$;
%
%\item
%The segment $\ga_d$ is homotopic to the segment $[p_d, t]_{\om}$
%of the path starting at
%the point $p_d$ following $\om_{2d}$ and $\om_{2d+1}$ until the point $p_{d+1}=t$.
%\end{enumerate}
\item[(T3)]
The step $\om_{2k+1}$ traverses a side of the triangle $\blacktri{k}$, and
starts and finishes in the interior of $\blacktri{k}$ or at a boundary marked point.
%This means that, if $\om_{2k+1}$ goes along a quasi-arc $\tau'$ associated to a radius, $\tau'$ must be chosen so that its endpoint $\puncture'$ near the puncture is located in the interior of $\blacktri{k}$.
\end{itemize}
}%\end{definition}
%}
%\block{$T$-path formula}{
%\innerblock{Definition: \emph{Laurent monomial} from a $T$-path $\alpha$}{
%the \emph{Laurent monomial} corresponding to a $T$-path $\alpha = (\alpha_1, \dots, \alpha_{2d+1})$
%}
%\end{definition}
\innerblock{Theorem ($T$-path formula)}{
The cluster variable $x_\gamma$ expressed
in the variables corresponding to $T^o$ is
%\coloredbox{
$$x_\gamma = \sum_\om x(\om)$$%}
over all $(T^o,\gamma)$-paths $\om = (\om_1, \dots, \om_{2d+1})$,
where
$x(\om) := \left( {\prod_{i\text{ odd}} x_{\om_i}} \right)
\left({\prod_{i\text{ even}} x_{\om_i}}^{-1}\right).$
%\end{theorem}
}}
\note[targetoffsetx=7cm, targetoffsety=-3.5cm, innersep=1cm,angle=-7,connection, width=4cm]{new}
\note[width=10cm,targetoffsetx=7cm, targetoffsety=-5.9cm, innersep=1cm,angle=-20,connection]
{We expect to generalize this to other punctured surfaces.}
\column{0.45}
\block{}{
\newcommand\TikzFourTpathsSize{0.41}
\newcommand\TikzNooseTpathsSize{0.47}
%\mbox{
%\subfigure[An arc $\ga$ of $\Cnn{4}$ which crosses $T^o$ $5$ times.]{
\begin{tikzfigure}
[Four of the nine $(T^o,\ga)$-paths from the first figure. %(of $T^o$ and $\ga$ from Figure \ref{fig:T2_triangulated_polygon_original}) which contain a (counterclockwise) non-backtrack cycle $(\rrNon)$.
All \emph{backtracks} $(\underline{2,2})$ and $(\underline{\ell,\ell})$ have been omitted.]
\label{fig:T2_triangulated_polygon_original}
\TikzTtwoIdealTriangulationWithNumberLabels{1.8*\TikzFourTpathsSize}
\TikzTpathSix{\TikzFourTpathsSize}{\TpathCompleteSixDollar}
\TikzTpathSeven{\TikzFourTpathsSize}{\TpathCompleteSevenDollar}
\TikzTpathEight{\TikzFourTpathsSize}{\TpathCompleteEightDollar}
\TikzTpathNine{\TikzFourTpathsSize}{\TpathCompleteNineDollar}
\end{tikzfigure}
\begin{tikzfigure}
[The four $(T^o,\ga)$-paths of the ideal triangulation $T^o$ and the arc $\ga$ of the first figure.]
\label{fig:TikzNooseGammaIdealTriangulation}
\TikzNooseGammaIdealTriangulation{1.5*\TikzNooseTpathsSize}
%\label{fig:TikzNooseGammaIdealTriangulation}
\TikzNooseTpathOne{\TikzNooseTpathsSize}{$(b_1,1,\overline{2,2},\overline{3,3},\tau)$}
\TikzNooseTpathTwo{\TikzNooseTpathsSize}{$(\tau,1,b_2,2,\overline{3,3},\tau)$}
\TikzNooseTpathThree{\TikzNooseTpathsSize}{$(\tau,\overline{1,1},2,b_3,3,\tau)$}
\TikzNooseTpathFour{\TikzNooseTpathsSize}{$(\tau,\overline{1,1},\overline{2,2},3,b_4)$}
%}\label{fig:TikzNoose}
\end{tikzfigure}
\begin{tikzfigure}
[Three of the five $(T^o,\ga)$-paths of the ideal triangulation $T^o$ and the arc $\ga$ of the first figure.]
\label{fig:TikzNotNooseGammaIdealTriangulation}
%\mbox{
%\subfigure[An arc $\ga$ of $\Cnn{4}$ which crosses $T^o$ $3$ times.]{
\TikzNotNooseGammaIdealTriangulation{1.5*\TikzNooseTpathsSize}
%\label{fig:TikzNotNooseGammaIdealTriangulation}}
%\subfigure[\tiny$(b_1,1,\overline{2,\,}\underline{\overline{2},2},3,b_4)$]{
\TikzNotNooseTpathOne{\TikzNooseTpathsSize}{$(b_1,1,\overline{2,\,}\underline{\overline{2},2},3,b_4)$}
%\subfigure[\tiny$(0,1,b_2,\overline{2,2},3,b_4)$]{
\TikzNotNooseTpathTwo{\TikzNooseTpathsSize}{$(0,1,b_2,\overline{2,2},3,b_4)$}
%\subfigure[\tiny$(0,\overline{1,1},2,\underline{3,3},b_3)$]
%{
\TikzNotNooseTpathThree{\TikzNooseTpathsSize}{$(0,\overline{1,1},2,\underline{3,3},b_3)$}
%\caption{
% \ref{fig:TikzNotNooseGammaIdealTriangulation}.
%}\label{fig:TikzNotNoose}
\renewcommand\TikzNooseTpathsSize{0.5}
\end{tikzfigure}
\begin{tikzfigure}[Examples of \emph{non}-$(T^o,\ga)$-paths for the situations in Figures \ref{fig:T2_triangulated_polygon_original}, \ref{fig:TikzNooseGammaIdealTriangulation}, and \ref{fig:TikzNotNooseGammaIdealTriangulation}.
Either (T2) or (T3) is not satisfied.
%Each path is homotopic to $\ga$ and satisfies (T1) but fails (T2) or (T3).
]
%\mbox{
%\subfigure[A path with the same labels {\tiny\TpathCompleteSixDollar} as Figure \ref{fig:path_six}
% but fails (T2) because ${[p_4,p_5]_{\om}}$ is not homotopic to $\ga_4$.]{
\TikzTpathSixBad{0.4}{\TpathCompleteSixDollar}
%\label{fig:path_six_bad}
%}\quad
%\subfigure[A path with the same labels {\tiny$(b_1,1,\underline{2,2},\overline{3,3},\tau)$} as Figure \ref{fig:TikzNooseTpathOne} but fails (T3) because $\om_5=3$ starts outside $\blacktri{2}$.]{
\TikzNooseTpathOneBad{\TikzNooseTpathsSize}{$(b_1,1,\underline{2,2},\overline{3,3},\tau)$}
%\label{fig:TikzNooseTpathOneBad}
%}\quad
%\subfigure[A path with the same labels {\tiny$(0,\overline{1,1},2,\underline{3,3},b_3)$} as Figure \ref{fig:TikzNotNooseTpathThree} but fails (T3) because $\om_{1}=0$ starts outside $\blacktri{0}$ and $\om_3=2$ finishes outside $\blacktri{1}$.]{
\TikzNotNooseTpathThreeBad{\TikzNooseTpathsSize}{$(0,\overline{1,1},2,\underline{3,3},b_3)$}
\end{tikzfigure}
%\label{fig:TikzNotNooseTpathThreeBad}
%\caption{Examples of \emph{non}-$(T^o,\ga)$-paths for the situations in Figures \ref{fig:T2_triangulated_polygon_original}, \ref{fig:TikzNooseGammaIdealTriangulation}, and \ref{fig:TikzNotNooseGammaIdealTriangulation}.
%Each path is homotopic to $\ga$ and satisfies (T1) but fails (T2) or (T3).}
%\label{fig:non_tpaths}
%\end{figure}}
}
\note[targetoffsetx=-23.5cm, targetoffsety=-5cm, width=7.5cm]
{The \mbox{$T$-paths} are in \mbox{natural} \mbox{bijection} with Musiker, \mbox{Schiffler}, and Williams' snake graph \mbox{matchings.}\\
Also, a \emph{(complete)} \mbox{$T$-path} is uniquely determined by its \mbox{sequence} of labels.}
%\note[targetoffsetx=7cm, targetoffsety=-7cm, width=5.5cm]{Steps are not drawn exactly along the arcs/boundary edges for \mbox{illustration} purposes.}
\end{columns}
\begin{columns}
\column{0.45}
%\block{Application of $T$-paths: atomic basis proof} {
%\block{What is the atomic basis?}
%\block{Atomic Bases and Cluster Monomials}
\block{Atomic bases}
{
%\innerblock{What is the atomic basis?}%[Proper Laurent monomial property of cluster monomials]
%\innerblock{Definition: atomic bases and cluster monomials}{
\innerblock{Definition: atomic bases (Sherman and Zelevinsky, 2003)}
{
Let $\mathcal{A}$ be a (coefficient-free) cluster algebra.
\begin{itemize}
\item Let the \emph{positive cone} of $\mathcal{A}$ be
$\mathcal{A}^+:=\{$positive elements$\}$ =
$\{$elements that are positive Laurent polynomials %when expanded
with respect to every cluster$\}$.
\item The subset $\mathcal{B}$ of all indecomposable positive elements (\textit{i.e.}, those that cannot be written as a sum of two positive elements)
is called the \emph{atomic basis} if it forms a $\mathbb{Z}$-basis of $\mathcal{A}$.
%If $\mathcal{A}$ comes from a surface, a cluster monomial corresponds to a multi-tagged dissection D (i.e. a partial tagged triangulation allowing multiple copies of tagged arcs).
% We define xD = ??D x?.
\end{itemize}
}
The existence of this atomic basis is not known in general.
The cluster algebra with the exchange matrix
{
\small
\begin{math}
\begin{pmatrix}0 & b \cr -c & 0 \cr
\end{pmatrix}
\end{math}}
has no atomic basis
if $bc \geq 5$.
}
\column{0.55}
\block{Result 2: %combinatorial
$T$-path proof for type $D$ cluster algebras}{
\innerblock{Definition: cluster monomial}
{a \emph{cluster monomial} is a product of cluster variables all coming from the same cluster,
%\item A \emph{cluster monomial} is a monomial in a cluster,
e.g. $a^{5}be^2$ is a cluster monomial if $\{a,b,c,d,e \}$ is a cluster.}
%Result 2: Combinatorial proof of atomic basis for type $D$% cluster algebras
%Application of $T$-path formula: a purely combinatorial proof of the proper Laurent monomial property of a cluster algebra of type $D$.
%We give a combinatorial proof (using the $T$-path formula) for the following.
%\end{result2}
\innerblock{Theorem (atomic basis)}{% (Cerulli Irelli, 2011)}{
For a cluster algebra of type $A$, $D$, or $E$, the basis of cluster monomials is atomic.}
%\end{theorem}
%\innerblock{remark}{
\begin{enumerate}[-]
%\item Cerulli Irelli (2011) gives a representation theory proof which works for all finite type cluster algebras.
\item %\cite[Cerulli Irelli, 2011]{Cer11} and
Representation theory proof by {[Cerulli Irelli, 2011]} and
{[Cerulli Irelli, Keller, Labardini-Fragoso, and Plamondon, 2012]}.
\item We give a combinatorial proof (using the $T$-path formula) for type $D$,
inspired by work on types $A$ and $\widetilde{A}$ by {[Dupont and Thomas, 2011]}.
%\item Our proof is inspired by {[Dupont and Thomas, 2011]} for type $A$ and $\widetilde{A}$ cluster algebras.
\end{enumerate}
%\end{remark}
%}
}
\note[width=12cm, angle=-15,connection,
targetoffsety=3.5cm,targetoffsetx=9cm]{%If $\mathcal{A}$ comes from a surface,
A cluster monomial corresponds to a multi-tagged dissection (\textit{i.e.} a partial tagged triangulation allowing multiple copies of tagged arcs).}
\end{columns}
\begin{columns} \column{0.8}
\block{Atomic bases for other surfaces}
{\begin{multicols*}{2}
\innerblock{Conjecture (Fomin, Shapiro, and Thurston, 2008, unpublished, \\
based on Fock and Goncharov, 2006)}{
A candidate for atomic bases:
the \emph{``bracelets collection"} consisting of all cluster monomials %plus
$+$ a class of elements.
A \emph{bracelet} is a
closed loop in the interior of the surface which
wraps around itself once or multiple times and avoids marked points.
% is the atomic basis for a cluster algebra from a surface. %arising from a surface.
%(True for disks with $\leq 1$ puncture and annuli, types $A$, $D$, and $\widetilde{A}$).
% (type $\widetilde{A}$), and once-punctured disks (type $D$)).)
%(Only proven for disks (type $A$), annuli (type $\widetilde{A}$), and once-punctured disks (type $D$)).)
%\end{conjecture}
}
\begin{enumerate}[-]
\item True for annuli, type $\widetilde{A}$ (Dupont and Thomas, 2011).
\item The bracelets collection forms a basis for
unpunctured surfaces \mbox{(Musiker, Schiffler, and Williams, 2011)}.
\end{enumerate}
%}
\innerblock{Further directions}{
Type $\tilD_{n-1}$ cluster algebras ($(n-3)$-gons with $2$ punctures), \textit{e.g.} type $\tilD_{6}$ cluster algebra comes from a twice-punctured disk with $4$ marked points on the boundary.
\TikzAffineDSixTaggedNextToQuiver{0.7}
\begin{tikzpicture}[scale=0.4]
\begin{scope}[->,>=stealth',shorten >=1pt,auto,node distance=1.2cm, ultra thick, red]
\node (2) {};
\node (1) [ right of=2] {};
\node (r) [ above of=2, left of=2] {};
\node (rp) [ below of =2, left of=2] {};
\node (3) [right of=1]{};
\node (t) [ above of=3, right of=3] {};
\node (tp) [ below of =3, right of=3] {};
\path[every node/.style={font=\sffamily\small}]
(2) edge (1)
(2) edge (rp)
(2) edge (r)
(3) edge (1)
(3) edge (tp)
(3) edge (t);
\draw (1) node{$1$};
\draw (2) node{$2$};
\draw (r) node{$r$};
\draw (rp) node{$r^{\bowtie}$};
\draw (3) node{$3$};
\draw (t) node{$t$};
\draw (tp) node{$t^{\bowtie}$};
\end{scope}
\end{tikzpicture}
}
\end{multicols*}
}
\note[targetoffsetx=-6cm, targetoffsety=-0.8cm, innersep=0cm, width=4cm,angle=-10,radius=4cm,connection]
{
\TikzBraceletExample{0.85}
}
%\item A version of the $T$-path formula for tagged triangulations.
\note[targetoffsetx=33cm,targetoffsety=2cm, width=16cm,innersep=1cm]{
%We would like to thank Pasha Pylyavskyy, Vic Reiner, and Peter Webb for looking over an early version of this paper, Hugh Thomas for helpful discussions, and the referees for many useful comments.
\begin{enumerate}[-]
\item The authors were supported by NSF Grants DMS-1067183 and DMS-1148634,
and would like to thank P. Pylyavskyy, V. Reiner, \mbox{H. Thomas}, and P. Webb.
\item Preprint arXiv:1409.3610 (2014) to appear in SIGMA.
\item Email: egunawan@umn.edu
\item Home page: umn.edu/home/egunawan
\end{enumerate}}
\end{columns}
%\block{References}{
%%\bibliographystyle{authordate1}
% \printbibliography[heading=none]
%
%}
\end{document}