-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_SBL_real_data.m
30 lines (23 loc) · 1.62 KB
/
run_SBL_real_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
% Erick J. Canales-Rodríguez, Jon Haitz Legarreta-Gorroño, Yasser Alemán-Gomez, Marco Pizzolato, Jonathan Rafael Patiño, Gaëtan Olivier D Rensonnet, Muhamed Barakovic, Joaquim Radua, Edith Pomarol-Clotet, Raymond Salvador, Jean-Philippe Thiran, Alessandro Daducci. Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI. Neuroimage. 2019 Jan 1;184:140-160.
clear; clc;
% ========================== Path to the data =========================== %
path_to_folder = '/home/erick/Code/preprocesed_data_hcp';
path_to_data = [path_to_folder '/dwihcpl_den_gibss_eddy.nii'];
b_vector = [path_to_folder '/gradientshcpl.txt'];
b_value = [path_to_folder '/bvalueshcpl.txt'];
path_to_mask = [path_to_folder '/mask.nii'];
% ----------------- Format to save the fODFs and maxima ----------------- %
format_to_save_fODF = 'ODF-FSL-dyads';
path_to_save = '/home/erick/SBL_recon';
mkdir(path_to_save);
% ======= Kernel/Dictionary used for the model-based deconvolution ====== %
% Define the diffusivities in your data (i.e, DTI eigenvalues for regions of parallel fibers), for example:
lambda1 = 1.7e-3 % mm^2/s (parallel to the fiber)
lambda2 = 0.23-3 % mm^2/s (perpendicular to the fiber)
lambda_csf = 3.0e-3 % mm^2/s (free diffusion coefficient)
tic
display('=================================================');
SBL_SD(path_to_data, path_to_mask, b_vector, b_value, format_to_save_fODF, path_to_save, lambda1, lambda2, lambda_csf);
display('=================================================');
total_time1 = toc;
disp(datestr(datenum(0,0,0,0,0,total_time1),'HH:MM:SS'));