
Graphical pangenomics

Erik Garrison

Department of Biology
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Fitzwilliam College September 2018

for E2 & E3

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Erik Garrison
September 2018

Acknowledgements

This work responds to ideas that arose in conversation with Deniz Kural. Our friendship
is the first reason that I became a biologist, and his exploration of graphical models
for genomes inspired my own. It is thanks to Alexander Wait Zaranek that we had the
opportunity to work in George Church’s lab, which pulled us both into biology from our
previous fields. There I met Madeline Price Ball, who guided me during an immersive
and engaging introduction to biology and genomics.

Deniz introduced me to Gabor Marth, with whom I apprenticed in the art of bioin-
formatics. Gabor encouraged me to contribute extensively to the 1000 Genomes Project,
whose objective captured my imagination and whose participants, in particular the
members of the analysis group, taught me many lessons in the way of science. I can
thank Hyun Min Kang, Goncalo Abecasis, Adam Auton, Gerton Lunter, Mark DePristo,
Ryan Poplin, Zamin Iqbal, and Heng Li, for always motivating me, and for helping me
to understand and correct the many mistakes I made. Meanwhile, Mengyao Zhao and
Wan-Ping Lee gave me my first look inside the alignment algorithms that are such an
important part of this thesis.

During those years I had the pleasure of living with Benjamin “Mako” Hill and Mika
Matsuzaki, who showed me what it means to work as a scientist for the commons. Not
only did I learn from them, but from the many thinkers, dreamers, and travelers who
they brought into our life in Somerville. These include Hanna Wallach, who helped me
to understand the theory and practice of the learning problems I first encountered in
genomics, and Nicolás Della Penna, who continues to shape my understanding of many
aspects of the scientific artifice, in particular the fuzzy boundary between the social and
the technical.

This thesis would cover a considerably narrower set of topics if not for the efforts of
the many people who have I have worked with to build the variation graph toolkit, vg.
These include, but are not limited to, Jouni Sirén, Benedict Paten, Eric Dawson, Shilpa
Garg, Adam Novak, Charles Markello, William Jones, Hajime Suzuki, Jordan Eizenga,
Mike Lin, Glenn Hickey, Jerven Bolleman, and Toshiaki Katayama.

viii

Pedro Fernandes gave Tobias Marschall and me the chance to teach a course on
pangenomics using vg, which motivated many of the applications of variation graphs
that I present here. Eppie Jones, Rui Martiniano, and Daniel Wegmann have guided and
supported my work on ancient DNA. Remo Sanges and Mariella Ferrante gave me a lab
to be part of and a fascinating project to explore in my time in Napoli.

Working with Richard Durbin has been a singular pleasure. Richard has an expansive
vision for genomics, but he is always ready to dig into the details of a problem. He is
a true master of his craft, able to support and guide every aspect of our work. The
group he leads is motivated by his wide-ranging interests in biology. I owe its former and
current members thanks for their encouragement and imagination.

Without my family, it is unlikely I would have ever begun the meandering trip that
has led me to this thesis. My parents helped me to be independent, and opened my mind
to the world of ideas, which set me out on a wonderful trip. Along the way, my brother
and sister have kept me honest and careful of myself.

Much of this trip has been alongside my partner Enza Colonna. Non so come dire
quanto mi ha aiutato, o quanti passi ho fatto in questo viaggo secondo le idee che abbiamo
condiviso. I also am grateful to her parents, Donato e Concetta, under whose almond
and olive trees I wrote many pages of this work. Mi hanno liberato dai problemi di vita
quotidiana, e con il loro aiuto ho potuto scrivere tutta la tesi in una solo mese.

Our daughter, Exa, who always convinces me to play, made sure that I was never too
tired to keep going. I look forward to sharing this with her.

Abstract

Completely sequencing genomes is expensive, and to save costs we often analyze new
genomic data in the context of a reference genome. This approach distorts our image of
the inferred genome, an effect which we describe as reference bias. To mitigate reference
bias, I repurpose graphical models previously used in genome assembly and alignment to
serve as a reference system in resequencing. To do so I formalize the concept of a variation
graph to link genomes to a graphical model of their mutual alignment that is capable of
representing any kind of genomic variation, both small and large. As this model combines
both sequence and variation information in one structure it serves as a natural basis for
resequencing. By indexing the topology, sequence space, and haplotype space of these
graphs and developing generalizations of sequence alignment suitable to them, I am able
to use them as reference systems in the analysis of a wide array of genomic systems, from
large vertebrate genomes to microbial pangenomes. To demonstrate the utility of this
approach, I use my implementation to solve resequencing and alignment problems in
the context of Homo sapiens and Saccharomyces cerevisiae. I use graph visualization
techniques to explore variation graphs built from a variety of sources, including diverged
human haplotypes, a gut microbiome, and a freshwater viral metagenome. I find that
variation aware read alignment can eliminate reference bias at known variants, and this is
of particular importance in the analysis of ancient DNA, where existing approaches result
in significant bias towards the reference genome and concomitant distortion of population
genetics results. I validate that the variation graph model can be applied to align RNA
sequencing data to a splicing graph. Finally, I show that a classical pangenomic inference
problem in microbiology can be solved using a resequencing approach based on variation
graphs.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Genome inference . 4

1.1.1 Reading DNA . 4
1.1.1.1 The old school . 5
1.1.1.2 “Next generation” sequencing 6
1.1.1.3 Single molecules . 7

1.1.2 Genome assembly . 9
1.2 Reference genomes . 11

1.2.1 Resequencing . 12
1.2.2 Sequence alignment . 12
1.2.3 Variant calling . 17
1.2.4 The reference bias problem . 18

1.3 Pangenomes . 19
1.3.1 On pangenomic models . 20
1.3.2 The variation graph . 23

1.4 Graphical techniques in sequence analysis 24
1.4.1 (Multiple) sequence alignment . 25
1.4.2 Assembly graphs . 27

1.4.2.1 Overlap graphs . 28
1.4.2.2 De Bruijn graphs . 29
1.4.2.3 String graphs . 30
1.4.2.4 RNA sequencing graphs 32
1.4.2.5 Genome alignment graphs 32

1.4.3 Pangenomic alignment . 34

xii Table of contents

1.4.3.1 Alignment to unfolded pangenomic references 34
1.4.3.2 Alignment to tiled pangenomic references 35
1.4.3.3 Alignment to graphical assembly models 36
1.4.3.4 Genotyping using a sequence DAG 37
1.4.3.5 Population reference graphs 38
1.4.3.6 Succinct pangenomic sequence indexes 39
1.4.3.7 Mapping to k-mer based pangenome indexes 42

1.5 Overview and objectives . 42

2 Variation graphs 45
2.1 A generic graph embedding for genomics 46

2.1.1 The bidirectional sequence graph 46
2.1.2 Paths with edits . 46
2.1.3 Alignments . 47
2.1.4 Translations . 48
2.1.5 Genotypes . 48
2.1.6 Extending the graph . 49

2.2 Variation graph construction . 49
2.2.1 Progressive alignment . 50
2.2.2 Using variants in VCF format . 50
2.2.3 From gene models . 51
2.2.4 From multiple sequence alignments 52
2.2.5 From overlap assembly and deBruijn graphs 52
2.2.6 From pairwise alignments . 53

2.3 Data interchange . 55
2.4 Index structures . 56

2.4.1 Dynamic in-memory graph model 57
2.4.2 Graph topology index . 57
2.4.3 Graph sequence indexes . 60
2.4.4 Haplotype indexes . 63
2.4.5 Generic disk backed indexes . 66
2.4.6 Coverage index . 67

2.5 Sequence alignment to the graph . 67
2.5.1 MEM finding . 68
2.5.2 Distance estimation . 68
2.5.3 Collinear chaining . 70
2.5.4 Unfolding . 70

Table of contents xiii

2.5.5 DAGification . 71
2.5.6 POA and GSSW . 71
2.5.7 Banded global alignment and multipath mapping 74
2.5.8 X-drop DP . 75
2.5.9 Chunked alignment . 76
2.5.10 Alignment surjection . 77
2.5.11 Base quality adjusted alignment 78
2.5.12 Mapping qualities . 79

2.6 Visualization . 79
2.6.1 Hierarchical layout . 80
2.6.2 Force directed models . 81
2.6.3 Linear time visualization . 83

2.7 Graph mutating algorithms . 84
2.7.1 Edit . 84
2.7.2 Pruning . 85

2.7.2.1 k-mer m-edge crossing complexity reduction 85
2.7.2.2 Filling gaps with haplotypes 86
2.7.2.3 High degree filter . 86

2.7.3 Graph sorting . 87
2.7.4 Graph simplification . 87

2.8 Graphs as basis spaces for sequence data 89
2.8.1 Coverage maps . 89
2.8.2 Bubbles . 90
2.8.3 Variant calling and genotyping . 91

3 Applications 93
3.1 Yeast . 94

3.1.1 A SNP-based SGRP2 graph . 94
3.1.2 Cactus progressive assembly . 96
3.1.3 Constructing diverse cerevisiae variation graphs 100
3.1.4 Using long read mapping to evaluate cerevisiae graphs 101

3.2 Human . 103
3.2.1 1000GP graph construction and indexing 105
3.2.2 Simulations based on phased HG002 105
3.2.3 Aligning and analyzing a real genome 106
3.2.4 Whole genome variant calling experiments 108
3.2.5 A graph of structural variation in humans 109

xiv Table of contents

3.2.6 Progressive alignment of human chromosomes 110
3.2.7 Building graphs from the MHC 112
3.2.8 CHiP-Seq . 115

3.3 Ancient DNA . 117
3.3.1 Evaluating reference bias in aDNA using simulation 118
3.3.2 Aligning ancient samples to the 1000GP pangenome 118

3.4 Neoclassical bacterial pangenomics . 123
3.4.1 An E. coli pangenome assembly 123
3.4.2 Evaluating the core and accessory pangenome 125

3.5 Metagenomics . 127
3.5.1 Arctic viral metagenome . 127
3.5.2 Human gut microbiome . 129

3.6 RNA-seq . 132
3.6.1 Yeast transcriptome graph . 132

4 Conclusions 135

References 139

Appendix Related publications 163

List of figures

1.1 The tree of life, reference genomes, and variation graphs. 2
1.2 A variation graph . 4
1.3 Computational pangenomics . 21
1.4 Pangenomic models . 22

2.1 A sketch of the XG index . 59
2.2 A sequence graph and its de Bruijn transformation 61
2.3 Searching in the GCSA2 . 62
2.4 The Graph Burrows Wheeler Transform 65
2.5 Alignment of a PacBio read to a yeast pangenome 69
2.6 DAGification . 72
2.7 The dozeu X-drop alignment algorithm 76
2.8 Hierarchical visualization with Graphviz’s dot 82
2.9 Force-directed layout with Graphviz’s neato 82
2.10 Force-directed layout with Bandage . 83
2.11 Linearized variation graph visualization 84
2.12 Pileup variant calling with vg call . 91
2.13 Graph augmentation-based variant calling in vg genotype 92

3.1 Comparing alignment to the linear reference and SGRP2 97
3.2 Cactus yeast variation graph . 98
3.3 Cactus yeast simulation . 99
3.4 Whole genome alignment graphs for S. cerevisiae 102
3.5 Long read alignment against various S. cerevisiae pangenome graphs . . 104
3.6 Simulated reads from HG002 versus various human pangenome graphs. . 107
3.7 Indel allele balance in HG002 . 108
3.8 Alignment against the HGSVC graph . 111
3.9 Seqwish assembly of the MHC in GRCh38. 113

xvi List of figures

3.10 vg msga assembly of the MHC in GRCh38. 114
3.11 Dotplots from assemblies of the MHC in GRCh38. 115
3.12 Resolving reference bias in 36-bp CHiP-seq 116
3.13 Comparing bwa aln and vg map using simulated ancient DNA 119
3.14 Downsampling a high-coverage aDNA sample 120
3.15 Allele balance in the Yamnaya sample . 121
3.16 D-statistic based ABBA-BABA test of reference bias in aDNA 122
3.17 An E. coli pangenome . 124
3.18 Evaluating alignment to the E. coli pangenome. 126
3.19 An arctic freshwater viral metagenome 128
3.20 Comparing vg and bwa alignment to the viral metagenome 129
3.21 A human gut microbiome . 130
3.22 Human gut microbiome alignment comparison 131
3.23 Aligning reads against the yeast transcriptome 134

List of tables

3.1 S. cerevisiae variation graphs . 100
3.2 1000GP variation graphs . 105
3.3 Selected results from the PrecisionFDA Truth Challenge 109

Chapter 1

Introduction

All life on our planet is connected through a shared history recorded in its DNA. Over
time, the genomes of organisms are copied, sometimes with error or recombination. These
mutations give rise to genetic, and ultimately phenotypic diversity. Through isolation
and drift, genetic diversity enables and defines the generation of new species.

Although easily surmised, this basic process is often forgotten at the level of the most
common analyses in genomics. When considering the genomes of many individuals, we
frequently pluck a single related genome from the tree of life to use as a reference. Using
alignment, we express our sequencing data from the collection of samples in terms of
positions and edits to the reference sequence. We then use variant calling and phasing
algorithms to filter and structure these edits into a reconstruction of the underlying
haplotypes. We can then proceed to use the inferred genotypes and haplotypes to answer
biological questions of interest.

In this way, we have not fully sequenced the new genomes, but resequenced them
against the reference genome. Pieces of the new genomes which could not be mapped to
the reference will be left out of our analysis, which can distort our results.

Resequencing has arisen in response to the technical properties of the most commonly-
used DNA sequencing technologies. These “second generation” sequencing-by-synthesis
technologies produce abundant and inexpensive short reads of up to 250 base pairs, and
in the past decade have become the largest source of data in the DNA sequencing market.

Higher sequencing costs previously motivated the application of expensive computa-
tional approaches to analyze all the sequences of interest simultaneously. The decades
prior to the development of cheap sequencing saw the use of multiple sequence alignment
algorithms with high computational complexity. Analyzing hundreds or thousands of
sequences with such techniques is expensive but justifiable given the costs of acquiring
them.

2 Introduction

ge
ne

ra
tio

ns

variation

genomes
variation graph

reference genome

Fig. 1.1 The tree of life, reference genomes, and variation graphs.
.

However, such approaches became completely inconceivable as new sequencing tech-
nologies allowed the generation of tens and then hundreds of gigabytes of data in a single
run. The new, low-cost techniques allowed joint analyses of thousands of genomes from a
single species. Resequencing provided a practical means to complete these analyses. The
alignment phase could be completed independently and in parallel, with each sample
compared to the common reference genome, and only in a final phase of analysis might all
the genome data be collected together for the inference of alleles at a given genetic locus.
By enabling the analysis of genomes at a previously unthinkable scale, resequencing
became the core genome inference pattern in genomics. The standardization of data
formats promulgated in large genome sequencing projects supported the separation of
different phases of analysis, yielding a rich ecosystem of interacting tools.

In resequencing, the reference sequence shapes the observable space in a process that
is often called reference bias. DNA sequencing reads that contain sequence which is
divergent from or not present in the reference sequence are likely to be unmapped or
mismapped. This results in lower coverage for non-reference alleles, in effect forcing new
samples to appear more similar to the reference than they actually are. Divergence itself
frustrates the genome inference process, as alignment may produce different descriptions
of diverged sequences depending on the relative position of the read. Alignment works

3

best when the sequences we are aligning are similar to the reference. Increasing divergence
requires greater computational expenditure to overcome reference bias.

We can avoid reference bias by working on pure assemblies generated only from the
sequencing data in our experiment and unguided by any prior information. Doing so
can be rigorous, but comes at a significant cost, especially when the assembly algorithm
requires us to load all the sequencing data into memory simultaneously. We will require
much higher coverage to obtain the same level of accuracy in our assembly as we will have
when resequencing, and our read lengths will limit the length of contiguous sequences we
can infer. Virtually all assembly algorithms lose information about their source reads
through the process of assembly, and this information must be somehow reconstituted if
we wish to apply downstream algorithms to the input data in the context of the output
of the assembler.

Genome assemblers frequently use a graphical transformation of their inputs that
supports algorithm steps used to infer contigs implied by the reads. These data structures
are typically bidirectional graphs in which nodes are labeled by sequences and edges
represent observed linkages between sequences. If constructed from a set of reads that
fully cover the genome, it can be shown that such a graph contains the genome which
has been sequenced. In effect, the assembler works to filter the edges from the graph and
un-collapse repeats in order to establish a sequence assembly.

In this work I repurpose the assembly graph data model to build a pangenomic
reference system. Assembly graphs are designed to represent the full set of genomic
information to which they are applied, so it is natural to use them to develop coherent
reference systems for unbiased sequence analysis. By building a conceptual framework
and data structures that enable resequencing against this structure, we can mirror the
patterns and workflows that have already been developed for resequencing. This allows
us to retain the benefits of parallel analysis even while we resolve the issue of reference
bias. By recording genomic sequences as paths through this graph I provide anchors
for existing annotations and positional systems within the pangenome. I call these
bidirectional sequence graphs with paths variation graphs.

In this chapter I will provide background context for my work. I will cover the
history of DNA sequencing methods, assembly algorithms, and the development of
reference genomes and their use in resequencing. Finally, I will review similar data
models that are used in genome inference. In the remainder of the work I describe data
structures and algorithms that allow the use of variation graphs as a reference system for
unbiased genome inference, and demonstrate the benefits of this approach with a series
of experiments.

4 Introduction

T

A

T

T

CA CTAAATTATAAAATGA

A

G

A

GGG TCAT

C

G

C

TTGCAACATG TCTCTCC

A

C T

A

CTACTGTCTTT

A

GG

C

ATTTGCTCACTGATTCAGCA G

A

Fig. 1.2 A fragment of a variation graph built from fully-assembled Saccharomyces
cerevisiae genomes. Colored paths represent genomes which traverse sequences (nodes).
Edges are implied by the path structure of the graph. The construction and properties
of the graph are described in section 3.1.2. This visualization was rendered using the
SequenceTubeMap https://github.com/vgteam/sequenceTubeMap.

.

1.1 Genome inference
Not two centuries have passed since the first experiments that demonstrated the existence
of genetic material [177]. In the first part of the twentieth century, these ideas about
heredity grew into the core of a modern synthesis linking biological micro- and macro-
evolutionary theory to the quantitative basis of genetics [110]. It was understood that
DNA encoded the information that gave rise to biological structures [11]. The discovery
of the structure of DNA in the 1950s [276] made clear the nature of that information
and the mechanism for its faithful transmission from generation to generation. This
knowledge, coupled with the sequencing and synthesis of proteins, which demonstrated
that they had distinct polymeric chemical identities [228] led to Crick’s postulation of
the “central dogma” of biology [50, 51]. Simply stated, the “dogma” argues that in
living systems’ information is transcribed from DNA to RNA and ultimately translated
into proteins, which guide and structure the cell and thus living organisms. The central
dogma clarifies the significance of the sequence of the genome, and over the following
decades a series of projects scaled up the throughput and fidelity of DNA sequencing
until genome inference became a practical and everyday reality in biology.

1.1.1 Reading DNA

The quest to sequence genomes began with arduous and sometimes dangerously radioac-
tive experimental techniques, in which years of researcher time could be spent in obtaining
sequences of tens of bases from partly-characterized sources. It has then progressed
through three distinct phases. In the first, these early laboratory techniques gave way

https://github.com/vgteam/sequenceTubeMap

1.1 Genome inference 5

to automated sequencing using chain terminator chemistry, and related techniques were
ultimately used to generate genome sequences for human and a number of organisms,
albeit at high costs. In the second phase, multiplex sequencing reactions were used to
miniaturize the chain terminator reaction and observe its progression using fluorescent
imaging or electrical sensing, evoking a drop in cost per sequenced base of many orders of
magnitude, and simplifying library preparation steps dramatically by sequencing clones
of individual molecules. The third wave of development has been characterized by two
techniques which allow realtime observation of single DNA molecules. These produce
enormously long read lengths that are limited by the molecular weight of input DNA,
but produce readouts with high per-base error rates. Supporting the second and third
wave are methods that allow for haplotype-specific sequencing and the observation of
long range structures in the genome.

1.1.1.1 The old school

In the 1970s a group led by Walter Fiers published the first complete gene [118], and
then genome sequence [81] from the MS2 bacteriophage using laborious digestion and
2-dimensional gel electrophoresis techniques to sequence RNA based on work by Fredrick
Sanger and colleagues [226, 3]. To avoid the limitations of digestion based assays, Ray
Wu and colleagues developed a sequencing technique based on the partial blockage of
DNA polymerization with radiolabeled nucleotides [281, 201]. Subsequently, Sanger
developed a reliable DNA sequencing method based on the same DNA polymerization
chain-termination concept by dividing the sequencing reaction into four, one for each
base, and sorting the resulting DNA fragments in parallel on an acrylamide gel [230].
Optimized and implemented using fluorescent chemistry [255], this approach, now known
as Sanger sequencing, became the foundation of the first commercial sequencing machines
in the late 1980s.

Sanger sequencing was the workhorse standard of biology for nearly 30 years, from
the late 1970s until the mid 2000s. Its read length is limited by the reaction efficiency
required to obtain a fraction of terminations at every base in the sequence. In practice,
reads of 500 to 1000 base pairs can be obtained. With clonal DNA as input the per base
accuracy of the method is extremely high, as each base readout reflects the termination
of large numbers of molecules [33], a feature which has ensured it remains important
for validation of sequencing results [242]. However, heterogeneity in the input DNA
library can produce muddled signals that rapidly become uninterpretable. Insertions
and deletions (indels) will cause a loss of phase in the sequencing trace [262], a problem
which is still encouraging algorithm development [105]. In order to sequence whole

6 Introduction

genomes, which are often heterozygous, laboratory techniques were developed to allow
the segregation of clonal DNA as a substrate for sequencing. These include bacterial
artificial chromosomes (BACs) and their equivalent in yeast (YACs) [183]. The effective
read length could be increased by using “mate pair” techniques, in which the ends of a
longer molecule would be sequenced [233]. To yield fully assembled genomes, these data
required the development of suitable computational techniques [191].

1.1.1.2 “Next generation” sequencing

In the late 1990s and early 2000s, several groups began exploring alternative sequencing
strategies. In the ultimately dominant one, DNA that has been clonally arrayed on a
surface is directly sequenced using fluorescent imaging. Sequencing progresses through
the synthesis of the second strand of each of the molecules, and so these techniques
are typically called “sequencing-by-synthesis.” This modality allowed for a massive
parallelization of the sequencing reaction, and has resulted in a dramatic reduction of
cost.

In 2003 George Church and colleagues demonstrated that individual sequences could
be read from polymerase colonies or “polonies” suspended in an acrylamide gel using
fluorescence microscopy [182]. This fluorescent imaging model became the basis for “next
generation” sequencing [237]. Contemporaneously, a sequencing-by-synthesis method
which is now known as Illumina dye sequencing, was implemented using laser fluorescent
imaging and reversible terminator technology developed by Shankar Balasubramanian and
David Klenerman at Solexa (later acquired by Illumina) [12, 16]. Rather than polymerase
colonies embedded in an emulsion or gel, Solexa’s technology relied on “bridging PCR”,
in which the polymerized clones of a particular fragment were locally hybridized to an
adapter-bearing surface of a flowcell. Controlled synthesis of the second strand, based on
reversible terminator chemistry [30] and fluorescently labeled dNTPs, is then used to
observe the sequence of the DNA molecule in each colony.

A diverse set of similar approaches were explored during this period, although few
saw more than limited success in the sequencing market. Church’s group focused on a
hybridization based sequencing protocol proceeded by an emulsion based polony PCR
step [238], and later attempted to commercialize an open source sequencing device (the
Polonator)1. In ion semiconductor sequencing direct observation of pH changes were used
to determine DNA sequences [225]. 454 Life Sciences’ “pyrosequencing” implementation

1My interest in open source projects, developed while an undergraduate studying the social sciences,
led me to work on this device. The project introduced me to biology, bioinformatics, and DNA sequencing,
which have attracted my interest and effort ever since.

1.1 Genome inference 7

used a luciferase reporter assay to track the progression of DNA synthesis [171], and it
was used to generate the first whole genome human sequence using “next generation”
techniques [279]. Helicos commercialized the first single-molecule sequencing system,
using a similar chemistry to Illumina’s but observing single molecules rather than pools,
which proved technically challenging and only saw use in its own development [102].

Illumina’s sequencing protocol provides greater throughput and a superior error profile
relative to these methods. Its low per base error rates and handful of context specific
error types simplify analysis [6]. It is unsurprising that the vast majority of sequencing
data produced in the 2010s comes from Illumina sequencers. Illumina’s sequencing
technology is characterized by short reads (<250bp) with per-base accuracy (≈ 99.5%)
comparable to that of Sanger sequencing. Although the read length has been increased
by optimization of the technology, the difficulty of achieving perfect per-base reaction
efficiency apparently prevents greater extension of the read length.

A number of methods extend the genome inference capacity of Illumina sequencing,
allowing it to be used to infer long haplotypes and genome organization. Moleculo, and
later 10X Genomics commercialized barcode-guided haplotype sequencing and assembly
[287]. The later has focused on providing raw tag information that could be used
downstream by an array of haplotype-resolution and assembly tools [185]. The single
template aspect of Illumina paired end sequencing allows longer contiguous DNA reads to
be obtained by merging partly-overlapping read pairs computationally [166]. Single-cell
DNA template strand sequencing (strand-seq) can be used to obtain reads from only
one half of the chromatids in a single cell [74] via bromodeoxyuridine (BrdU) treatment
and cleavage of the nascent strand, which can aid in haplotype reconstruction [212].
The Hi-C method [157] uses bisulfite treatment to generate read pairs that are likely to
physically co-locate in vivo, thus enabling the mapping of long range DNA and chromatin
interactions. It may be combined with other sequencing information to obtain estimates
of the syntenic ordering of contigs produced by assembly [90], which has already been
used to obtain de novo reference quality genomes in several difficult sequencing projects
including amaranth [158], Aedes aegypti [64], and the domestic goat [18].

1.1.1.3 Single molecules

All previously described sequencing techniques are dependent on the observation of pools
of molecules. These methods benefit from amplification of DNA, which increases signal,
but also adds and a potential source of error to DNA sequencing. They also suffer from
de-phasing resulting from imperfect stepwise reaction efficiency, which fundamentally
limit the maximum length of an accurate read. A method to sequence single molecules

8 Introduction

accurately would theoretically allow longer read lengths, but this requires the difficult,
direct observation of DNA. Efforts to develop such a method have been continuously
underway throughout 2000s and 2010s. Two successful commercial sequencing platforms
based on this principle are rapidly defining a new technical phase of genome inference.

By utilizing zero-mode waveguides (ZMWs) to observe DNA polymerase in real time,
Pacific Biosciences (PacBio) generated the first successful commercial single-molecule
sequencing system [72]. In this platform, DNA polymerase is immobilized in sub-
diffraction size, picoliter detection volumes at the bottom of wells formed in aluminum
on a glass slide [135]. Single stranded DNA and fluorescently-labeled dNTPs are added
to the buffer above the ZMWs. As synthesis progresses, the fluorophore attached to
the DNA base that is being incorporated will tend to remain inside the ZMW longer
than would be expected due to random diffusion of the dNTPs, allowing a readout of
the sequence of incorporated bases as a series of fluorescent pulses. The base-level error
rate of sequencing is high, up to 15%. It is difficult to perfectly observe the series of
fluorophores pulled into the well, and random occupancy is often indistinguishable from
polymerization-mediated occupancy, which results in insertion errors. Although subtle
context dependent biases do exist [199], due to their genesis in Brownian motion, the
errors themselves may be considered as almost perfectly random in analysis [224, 188]. In
recent years PacBio’s system has become a foundational technology in genome sequencing,
with many recent genome assemblies completed using it [221].

The idea that electrophoresis of DNA through nanometer scale pores might allow
the direct sequencing of DNA was first postulated in the late 1980s by David Deamer
and others [58]. While the sequencing model itself is among the simplest ever proposed,
it would take twenty-five years of work [121, 214] before the technique was brought to
market by Oxford Nanopore (ONT) [179] and used to fully sequence genomes [164, 116].
In this approach, a DNA strand is pulled through a nanometer pore by electrophoresis.
The specific DNA bases in the pore effect characteristic changes in the electric current
density, and the DNA molecule can be read by measuring the changes in current over
time. Due to context and history-dependent effects that distort the signal, the measured
patterns in the current flux must be interpreted by sophisticated models that have been
trained to convert the traces to DNA sequences [54]. As with PacBio, its per-base error
rate approaches 15%. In practice nanopore sequencing has the highest error rate of any
commercially available method, which reflects the difficulty of mapping between the
observed signal and the underlying DNA sequence. Nanopore sequencing can also obtain
the longest reads of any sequencing technology, with megabase-scale reads reported by
some users.

1.1 Genome inference 9

1.1.2 Genome assembly

Due to technical limits that are unlikely to ever be fully eliminated, individual DNA
sequence reads are rarely able to cover the entire genome of an organism. This means
that in many cases, the best sequencing data possible is a set of random reads sampled
from fragments of the genome. In whole genome “shotgun” sequencing the genome is
fragmented, perhaps by sonication or enzymatic digestion, and the resulting fragments
are sequenced and then reassembled using computer programs [87, 227]. This process
necessitates a reconstructive step in which the information obtained from the sequenced
fragments is reassembled into the whole genome from which they arose. This process
is known as assembly, and computer algorithms implementing it have been used when
inferring genome sequences since the generation of the first whole genome sequence for
bacteriophage φX174 in 1977 [229, 253].

The earliest assembly algorithms have come to be known as “overlap-layout-consensus”
(OLC) algorithms, due to their three-phase strategy. They first establish a set of head
to tail overlaps between reads (overlap), an ≈ O(N2) order problem when all pairwise
relationships are considered between N sequence reads. However, given an efficient
method to find read pairs that are very likely to match together, the overlap step remains
tractable as the overall complexity of matching can be reduced to be approximately
quadratic in read depth and linear in genome size [108]. These overlaps are then used
to establish an estimate of the ordering of the reads (layout). The layout is then used
to generate a consensus sequence through heuristics or dynamic programming over the
layout [123]. This final phase is equivalent to the multiple sequence alignment (MSA)
problem, although instead of generating an MSA as output methods would typically take
the consensus sequence, as the objective is often to reconstruct a linear representation
of the input genome. Early assemblers committed frequent assembly errors, which
necessitated time-consuming manual “finishing” [93]. The OLC assembly approach was
utilized by genome projects for the following twenty-five years, including in the public
Human Genome Project (HGP), where BAC clones of 150kb fragments of the genome
were sequenced, initially assembled by algorithm and finally manually finished into the
“golden path” that would become the reference genome [48].

In principle, the assembly process could be fully automated, but as late as the early
1990s this frequently was not seen as feasible due to the lack of reliable algorithms [168].
The improvement of OLC algorithms eventually met the challenge, yielding methods such
as PHRAP [99] (a quality aware assembler that saw extensive use downstream of Sanger
sequencers), TIGR [258] (which was used in the generation of the first assembly of a free
living organism, the 1.8Mbp genome of Haemophilus influenzae [83]), GigAssembler [126]

10 Introduction

(which was used by the HGP), and the Celera assembler [191, 180] (which saw extensive
use in the generation of early large whole genome assemblies in the late 1990s and early
2000s, including the privately funded genome project [272]2.) The process implemented
in the Celera assembler (including repeat masking) has remained essential to the genome
assembly problem until the present.

In 2005, Myers formalized an idealized version of the assembly problem in the string
graph data structure [187], which is a sequence graph induced from the overlaps in a set of
shotgun sequencing reads. This model demonstrates that repeats greater than the length
of a sequence read will collapse into single copies in the graph, while unique sequences
will form loops between different repeat classes that flank them. The string graph can be
shown to represent the full information available in the input sequence data, and successful
assembly algorithms are built around an induction of the string graph via the construction
of the FM-index [78] from Illumina read sets [244, 245, 148]. If not using compressed data
structures and low-error reads, the repeats are often irresolvable and may be masked from
the assembly process to improve performance on the tractable non-repetitive regions of
the genome, which is a strategy still promoted and employed by Myers [188]. Canu and
FALCON, which to some extent stand as contemporary implementations of the Celera
assembly process, are among the best-performing assemblers for noisy single-molecule
sequencing data that is the mainstay of current genome assembly projects [41, 134].
These and similar methods have shown that long reads can be used to fully assemble
genomes without human finishing [164, 116].

The repeat problem has been tackled in various ways, but one of the most enduring
solutions resolves the issue through the reduction of the assembly overlap graph to a
de Bruijn graph (DBG) [210]. In this approach, the read set is fragmented into all
subsequences of reads of a given length k, and a graph is constructed where k-mers
label nodes and overlaps of k − 1 between successive k-mers induce edges representing
linkages between them. The de Bruijn graph simplifies the representation of the read set,
providing a clean basis for assembly algorithms. It enabled the first [285, 246, 114], and
most memory-efficient assembly methods for short read sequencing data, with techniques
like bloom filters [39], succinct DBGs [23, 143], and minimizer partitioning [40] applied to
generate a compressed representation of the graph. DBG based assemblies suffer from the
loss of information induced through the k-merization of their input, causing a reduction
in assembly contiguity [67], although in practice this can be mitigated by reconsideration
of the input reads and read pairs [29]. They also are applicable only where the sequence

2This project apparently still relied on data produced by the HGP [275], but the significance of this
reliance was disputed by researchers involved in the private project [192], who argued that the manner
in which they used the public sequences avoided contamination by manual finishing done by the HGP.

1.2 Reference genomes 11

error rate is low enough for overlapping reads to be expected to have exact matching
k-mers of the appropriate size (typically, k ∈ [20 . . . 50] base pairs), and as such cannot
be applied to third generation single molecule sequencing due to its inherently high error
rate.

Many of the sequencing methods I have described above are still in use today. Each
popular method, as it fades from use, remains relevant in a niche area where its particular
properties provide it a comparative advantage. As a result, we are not presented today
with a single ideal sequencing method, but a menagerie of approaches, each with its own
limitations and benefits, and current assembly pipelines require thoughtful design to
incorporate these myriad sources of information. It would appear that in order to use
these many technologies to generate the best-possible assemblies we must bring them
together in a single model [34]. A current development in assembly focuses on the design
of a common interchange format for which to organize such assembly processes, which
has been implemented as the GFA v1 and v2 formats.3 This file format and the data
model it implies is an essential link between the work that I present later in this thesis
and the problem of genome inference.

1.2 Reference genomes
Obtaining a single genome sequence de novo is an arduous task, and remains a complex
problem. The result is a valuable object which can be used to lower the cost of subsequent
analyses and enable direct whole genome comparisons which provide a full perspective
on the genetic relationship between multiple individuals or species. The need for ref-
erence genomes is clear, and they are collected in open public databases to allow their
dissemination and use by researchers. NCBI’s RefSeq release 89 of July 13, 2018 contains
some 81,345 organisms4, although it should be noted that only a small fraction of these
genomes are eukaryotic. Recent developments in long read, single molecule sequencing
have enabled great decreases in the cost and complexity of generating high-quality genome
assemblies, supporting a recent project to generate reference quality genomes of ten
thousand vertebrates [198, 133].

The reference genome serves as an anchor for annotations that describe sequences
and regions of interest within the genome, such as genes, exons, chromatin structures,
DNA interacting proteins, and genetic variation [239, 215, 47]. An established reference
genome can serve as a conceptual foundation for the communication and interpretation

3https://github.com/GFA-spec/GFA-spec
4https://www.ncbi.nlm.nih.gov/refseq/

https://github.com/GFA-spec/GFA-spec
https://www.ncbi.nlm.nih.gov/refseq/

12 Introduction

of scientific results [127], and is seen as essential for collaboration and the development
of a genome research community in a particular organism [251, 38].

Reference genomes tend to represent only a single version of each genomic locus. This
conceptual simplicity is a core feature of their public use. Although the issue of genetic
diversity has always been appreciated by those who work with genomes, expediency has
encouraged the use of linear models for reference genomes. Within the HGP, members of
the consortium could observe diversity within the BAC clones that they had sequenced
from different human donors, and initiated a debate about the inclusion of heterozygosity
in the reference itself. Ultimately, a graphical model was seen as too complicated, and
practicality necessitated the publication of a linear reference based around what came
to be called the “golden path” through the assembly5. Since early releases, the human
reference genome has included alternative versions of some regions, with current releases
including alternates for around 200 loci [235, 42], but these are represented as linear
sequences without a unifying alignment between them, which complicates their use in
resequencing and annotation [115].

1.2.1 Resequencing

Due to the high cost of obtaining error-free, full length genomes, standard practice will
use the best genome assembly for a given organism as a reference genome when analyzing
the sequences of other organisms from the same species. To do so, the genomes of the
other individuals do not need to be fully assembled, and instead shotgun sequencing
libraries from these new individuals may be aligned back to the reference to find small
differences between the genomes. To distinguish it from whole genome sequencing and
assembly, this process is known as resequencing.

Resequencing has two phases. In the first phase, reads from the sample or samples
under study are aligned against an appropriate, genetically similar, reference genome. In
the second phase, the aligned reads (alignments) are processed together locus by locus to
determine allelic variation within the samples relative to the reference genome.

1.2.2 Sequence alignment

An alignment expresses one sequence in terms of a set of positions, edits, and matches
to another. Algorithms to determine the most plausible alignment between a pair of
sequences have as long a history as sequencing itself. The first significant attempts
to algorithmically assess sequence homology and divergence between protein sequences

5Personal communication with David Haussler.

1.2 Reference genomes 13

arose in the 1960s with Fitch’s method for homology detection [82]. To account for
insertions and deletions, this method required the comparison of many subsequences of two
sequences to be compared, resulting in poor computational bounds. In 1970, Needleman
and Wunsch responded with an O(NM) time algorithm for the global alignment of
sequences [193]. Given strings to compare of length N and M , the algorithm builds an
M ×N matrix in which any possible full length alignment between both sequences can
be expressed as a path through a series of cells. The matrix is designed such that a
match corresponds to the shortest (diagonal) path through the matrix, and insertions and
deletions correspond to horizontal or vertical movements. To determine the most-likely
path, Needleman and Wunsch apply a recurrence relation dependent on the characters
at each pair of positions in the strings and the values of the cells above and/or to the
left. This implements a dynamic programming (DP) method [15]. For each cell, the
score is given as the maximum of: the score of cell to the diagonal plus a bonus if the
corresponding sequence characters are the same and minus a penalty if they are different;
and the scores of the cells above and below minus a penalty corresponding to the weight
given to an insertion or deletion. Finally, we determine the optimal path beginning from
the opposite extreme cell of the matrix from where the scoring began, in which we walk
back through the successive maximum scores until reaching the opposite extreme corner
of the matrix. This “traceback” encodes the alignment, which is most-simply represented
as a vector of pairs of matched bases in each sequence. It can be shown that provided
full evaluation of the dynamic programming problem, the optimal alignment is obtained
given a set of scores parameterizing the recurrence relation.

This alignment algorithm is known as a “global” alignment algorithm, in that the
alignment covers all bases of both sequences. In practice, this type of comparison is not
always needed, and it can be advantageous to obtain only the optimal sub alignments
between sequences. Smith and Waterman provided a clean modification of the algorithm
of Needleman and Wunsch, altering it to prevent negative scores, which allowed it to
produce optimal “local” alignments [252], while ignoring regions unlikely to contain
significant homology. The algorithm, further refined by Gotoh [94] to enable affine
gaps6 and computation in O(MN) time, is today one of the most important in genome
analysis. The amount of work on this topic is considerable, and the subsequent decade
yielded numerous modifications of the basic alignment concept, for instance reducing
the memory bounds to O(N) through a divide and conquer approach [189], and further
explorations of affine gap scoring schemes [8, 95]. Subsequent works have offered improved

6In affine gap schemes the cost of a gap per base decreases as its length increases. Such a scheme
approximates the ζ-distributed excursions of a particle under Brownian motion, which structure the
length of insertions and deletion mutations observed in nature.

14 Introduction

implementations, using vectorized instructions to improve the runtime of the algorithm
[76] and heuristics to selectively evaluate only part of the DP matrix [259]. However,
such changes were not sufficient to enable alignment against large sequence databases.

O(MN) algorithms for sequence alignment are impractical when either M or N

becomes large. Naturally, as sequence databases grew and the size of sequenced genomes
increased, heuristic strategies to efficiently reduce the alignment problem size were
introduced. When aligning a short sequence against a large database we expect to obtain
a sensitive alignment, but provided sufficient homology between the sequence and the
database it is unlikely that we need to evaluate the full problem using an algorithm like
Smith-Waterman-Gotoh (SWG). By indexing either the query or target set of sequences
to efficiently obtain patterns of exact matches, candidate sub-regions of both can be
isolated and submitted for more sensitive alignment.

This strategy was implemented in the mid- to late-1980s in the FASTA [208] and
BLAST [9] alignment algorithms. FASTA first uses a seeding step that finds exact
matches between the query and target, using chains of short k-mer seeds to establish the
longest matching subsequences. A few of the best scoring candidates are enumerated
and evaluated using a banded SWG algorithm. In contrast, BLAST implements a fully
heuristic alignment process based solely on the k-mer seeds and ungapped alignment.
This is much faster than FASTA but can perform slightly worse with highly divergent
sequences. BLAST’s heuristic alignment is many orders of magnitude faster than full
DP based algorithms at a minor cost to accuracy. The popularity of BLAST in biology7

is clear evidence of the importance of the alignment problem to all kinds of genomic
analysis. It is also evidence that minor losses in accuracy are acceptable given the cost
of sequence analysis in large data sets. Jim Kent’s Blast-like alignment tool (BLAT)
indexes the target set with non-overlapping k-mers and queries all k-mers in the reads,
yielding a method that is less sensitive but several orders of magnitude faster again than
BLAST [125].

As reliable commercial second-generation sequencing systems became available the
rate of sequence data acquisition growth rapidly outstripped the rate of improvement
in computing performance [142, 132]. This necessitated further improvements in the
computational cost of sequence alignment. The most-widely used of these methods
focused on the increasingly prevalent problem of aligning short reads to reference genome
type sequence databases. Due to the high quality of the reference sequence, low error rate
of the short (≤100bp) reads, and low nucleotide diversity of humans (where θ ≈ 10−3),
algorithms that focused on exact string matching had great success. Much like BLAST

7The BLAST1 paper has been cited more than 70,000 times as of August 2018.

1.2 Reference genomes 15

and BLAT, the first wave of aligners capable of indexing the human reference genome and
aligning short reads to it utilized exact k-mer matching via hash tables followed by local
alignment [155, 141, 153]. Substantial improvements would be yielded by the development
of aligners based on contemporary developments in compressed data structures.

The suffix tree [278] encodes all suffixes of a sequence S in the structure of a tree
such that the suffixes may be enumerated by a depth first search (DFS) of the tree. This
structure can be used to determine if a given sequence q = c1c2 . . . c|q| is present in S in
O(|q|) time. Search begins at the root, progressing across the topology (edge or node)
of the tree which is labeled with the next character until no further matches may be
found. By labeling the tree with the sequence positions corresponding to each node, the
search may also yield the positions of the exact matches detected within S. Suffix trees
may be built in linear time and space relative to their input [269], and support diverse
algorithms for string comparison [10], such as whole genome alignment [61], but they
require relatively large amounts of memory per input base. They were superseded by
equivalent data structures with better memory bounds such as the suffix array (which
represents the tree in a linear array of suffix sort ranks) [169], and its compressible sibling
the Burrows-Wheeler Transform (BWT) [28].

By augmenting the BWT to enable the exact matching via emulation of the suffix tree,
Paolo Ferragina and Giovanni Manzini developed the FM-index [77, 79]. Given a string S,
the FM-index may be built using a series of transformations and auxiliary data structures
that induce the suffix tree by constructing the BWT. First, we add marker characters for
the start and end with lexicographic order less and greater than the rest of the characters
in the alphabet, e.g. #S$. Conceptually, we take all rotations of the sequence and
sort them, yielding matrix M , which is sometimes called the Burrows-Wheeler Matrix
(BWM), but in fact this is done in a space-efficient manner without the enumeration of
the rotations. This sort has many similarities to the suffix tree, and for instance it can
be seen that a lexicographically-ordered DFS through the suffix tree would enumerate
the prefixes of the rotations of the sequence preceding the terminal character # in the
same order as they are sorted. The suffix array SA is given by the vector of the suffix
ranks in the sorted order they occur in M , and is related to the ordering of characters
in the first column F , while the BWT is given as the last column, L. If the input text
has repetitive patterns, then these will tend to result in runs in the BWT that may be
compressed using various schemes. To emulate traversal of the suffix tree, it is sufficient
to construct a function LF (i) which maps between indexes L[i] = F [j] which represent
the same character. This is done by the augmentation of the data structure with array
C such that C[c] returns the number of characters in the text that are lexicographically

16 Introduction

smaller than c, and a function rank(c, k) that yields the number of instances of c in the
prefix L[1 . . . k]. Now, LF (i) may be defined as C[L[i]] + rank(L[i], i). By allowing the
traversal of equivalencies between the suffix array and the BWT, LF mapping enables
“backward search”. Because rotations of S have been ordered in M , a given pattern will
occur as the prefix of a particular contiguous range of M . We can find all occurrences of
a given pattern by maintaining a range in the suffix array within which a given pattern
occurs, beginning at s and ending at e, which we initially set as s = 0 and e = |L| − 1.
To search for a pattern, we obtain s′ = C[c] + rank(s, c) + 1 and e′ = C[c] + rank(e, c),
walking backwards through the characters c in our query q. Our search terminates when
we complete our query or e′− s′ ≤ 0, which indicates that the previous step in the search
did not match our target S. The various matches of q in S may now be obtained by the
positions in SA[s . . . e]. The addition of the longest common prefix (LCP) array on the
sorted suffixes can be used to emulate all algorithms on suffix trees in this context [2],
and in turn this enables O(|q|) search of queries against S. Of particular relevance to this
work, when completing a phase of backward search we could use the LCP to traverse the
suffix links in the suffix tree and continue with the next (partially overlapping) maximal
exact match.

The FM-index is used in modern short-read aligners such as BWA [151] and BOWTIE
[138], which used backtracking LF alignment to directly align sequences to the suffix
array encoded in the FM-index. This backtracking search is fast, but has problems
detecting indels (as these require exponentially more backtracks to infer) and performs
less well with increasing read length. In response, the authors merged initial exact
matching with a final DP step to yield “long read” capable aligners like BWA-SW [152]
and BOWTIE2 [137]. Further refinements of this concept yielded BWA MEM [146],
which uses a heuristic algorithm to determine “supermaximal exact matches” (SMEMs)
and reseed “sub matches” within them using a bidirectional FM-index (the FMD index).
Due to its relative robustness to error and variation, the MEM concept has ultimately
prevailed and as of the time of this writing BWA MEM can be seen as the industry
standard method for aligning short reads to the genome.

Much of the second generation sequencing data has been generated for humans in
medically-motivated genome wide association studies [49] or population survey projects
like the 1000 Genomes Project (1000GP) [1, 45]. The development of these methods was
accelerated by an open, competitive spirit fostered during the 1000GP, whose primary
sequencing data remains the largest completely publicly available data set, with more
than 100TB of sequence data available for download from public URLs without any
authentication. There, project participants formalized the resequencing process by

1.2 Reference genomes 17

generating a series of data formats linking the various stages of analysis, including the
sequence alignment/map format (SAM) and its binary equivalent (BAM) [154] that is
the standard output format for contemporary aligners.

1.2.3 Variant calling

DNA sequencing reads of all types contain errors, and genomes contain diversity. To
resolve these errors and infer the genome’s state, we aggregate information from many
reads mapping to each locus. In the context of resequencing, this process is known as
variant calling. The simplest methods resemble the consensus step in OLC assembly, and
are implemented as heuristic filters on the mutually gapped alignment matrix of a set of
homologous sequence reads [131]. A Bayesian model can incorporate prior expectations
about the genomic state with the available data to generate a posterior estimate of the
probability of polymorphism that can propagate uncertainty to downstream analyses.
It can use first principles to integrate various sources of information in addition to the
sequence of the reads themselves, including the base quality (BQ), or machine-estimated
probability of an erroneous base call, and mapping quality (MQ), which represents the
aligner’s estimate that the given alignment is a mismapping or ambiguous [144]. A
Bayesian approach also supports the joint analysis of many individuals from the same
population. For instance, in a panmictic population under neutral selection the pattern
of observed genotypes should be consistent with Hardy-Weinberg Equilibrium (HWE),
and to have confidence in a given genotyping call, the evidence for variation should be
stronger than the prior odds of there being no genetic variation at the site.

The earliest implementations of Bayesian variant calling and genotyping were applied
to expressed sequence transcripts (ESTs) [172]. Competition fostered by the 1000GP
encouraged the development of variant calling algorithms based on a variety of principles.
The simplest methods would detect variation given pointwise SNP and indel descriptions
directly from the alignments [154, 62]. However, this technique was shown to be suscep-
tible to inconsistencies in the alignment process, and several groups developed methods
that would reevaluate the alignments in a reference-independent manner in order to ho-
mogenize the representation of small variation. These techniques became known as “local
assembly” variant detection algorithms, and include the windowed haplotype detection
implemented in freebayes [88] as well as full local de novo assembly based on de Bruijn
graphs as implemented in Dindel [4], Platypus [222] and the GATK’s HaplotypeCaller.
In parallel, several whole genome de novo assembly methods, including SGA and Cortex,
were applied to the full data set, yielding variant calls that minimized bias towards
the reference genome. The final project results were merged into a population genome

18 Introduction

assembly using statistical phasing algorithms [27, 106, 60] guided by genotyping results
from sequencing and genotyping arrays [45]. Members of the 1000GP also developed a file
format for describing collections of resequenced genomes, including their genotypes and
inferred haplotypes, the variant call format (VCF) [53], which has become the standard
interchange format for sequencing-based variant and genotyping information.

Due to the absence of a reliable truth set, early variant calling method implemented
conceptually-derived inference methods rather than machine learning techniques. Subse-
quently, projects at Illumina (Platinum genomes) and NIST (Genome in a Bottle) have
generated “truth sets” for variant calls matched to cell lines for which large amounts
of sequencing data is publicly-available [69, 290]. These truth sets have then enabled
the development of “universal” variant callers using machine learning techniques [211]8.
It may be expected that this trend will continue as the number of highly accurate
independently sequenced genomes increases.

1.2.4 The reference bias problem

Short reads are insufficient to generate de novo assemblies of reference quality, and
this issue is exacerbated when they are used in resequencing, as the prior information
provided by the reference is relatively strong and can distort our results [257]. Most
aligners operate on the principle of matching each sequence read to the linear reference,
and differences between the read and the reference induced by both error and variation
will tend to reduce the success of mapping. As I will demonstrate later in this work,
reference bias is most severe for larger variants. However, the bias towards the reference
is relevant even for SNPs, a fact which adds great complexity to experimental contexts
that are sensitive to slight changes in allele observation count, such as allele specific
expression (ASE) quantification from RNA sequencing [254], or in the context of short
and high error reads as are common in the sequencing of ancient DNA [288].

Advances in sequencing technology can reduce reference bias in some contexts where
long reads can be obtained. Long reads can overlap structural variants that would contain
shorter reads, allowing their direct discovery by alignment. However, costs of second
generation sequencing continue to drop, so it seems likely that there will continue to
be a cost advantage to resequencing with short reads for the near future. Nonetheless,
reference bias remains relevant even in a future in which all sequencing is completed with
long, low-error reads. As long as the reference is used as a basis space for analysis, it
will be impossible to develop unbiased representations of all sequences in a given cohort.

8Along with Nicolás Della Penna, I developed a similar but much simpler method based on a linear
learner: https://github.com/ekg/hhga

https://github.com/ekg/hhga

1.3 Pangenomes 19

We cannot consistently describe variation in sequences which are not in the reference
unless we bring these sequences into communication with each other. It is non-trivial to
establish if structural variants independently described against the reference represent
the same allele [34]. We can use improvements in assembly methods, such as the linked
DBG [268], to build space-efficient joint assemblies of populations of genomes. But these
approaches are unlikely to improve in efficiency by the many orders of magnitude required
to consider applying them directly to sequencing from hundreds of thousands or millions
of genomes.

1.3 Pangenomes
Following the completion of the 1000GP, researchers have sought to use the population
reference established by that project as an input to genome inference processes. Rather
than establishing a single linear reference genome, these methods base their analysis
on a representation that contains some or all of the known variation in the species of
interest. In these approaches, the reference system becomes a pangenome9, or data
space representing all the genomes and their interrelationships. The term was first
used to describe the sequence information obtained from DNA and RNA for a cancer
sample [241], but later became an important concept in microbiology as results from
bacterial genome sequencing indicated extensive diversity between bacterial genomes
[263, 176]. Due to horizontal gene transfer (driven in large part by the permissive sex
lives of bacteria), mobile DNA in the form of viruses and transposable elements, and their
enormous population sizes, the genome diversity of many prokaryotes is much greater
than that seen in larger, complex organisms. In microbial pangenomic theory, the main
object of interest is the open reading frame (ORF) and its distribution across species in
a clade [273], with particular interest to classification of ORFs or genes into a gradient
between those that are essential and found in every species (the “core” pangenome) to
those that are found infrequently (the “dispensable” pangenome). The term “pangenome”
is by no means microbiology-specific, and has also seen use in species contexts where
small, homozygous genomes support practical direct whole genome comparison, such
as Arabidopsis thaliana [31]. With reducing sequencing costs, the levels of diversity in
eukaryotic genomes can be more easily appreciated, and in the 2010s evidence has rapidly
accumulated that significant levels of large-scale variation occur in the genomes of many
species, humans [156, 256, 257, 34], arabidopsis [7], brewer’s yeast [283], and the fruit fly
[35].

9“pan-” from Greek παν−, meaning “all” or “every”

20 Introduction

Evidence that non-reference genomic variation matters even in a human or medical
context motivated extensive discussion within a sub-project of the Global Alliance for
Genomics and Health (GA4GH)10. At the beginning of my studies I participated in the
GA4GH’s reference variation task team (RefVar), which was led by Benedict Paten,
David Haussler, and Richard Durbin. The group had regular meetings where its members
entertained proposals for new variation-aware genomic data models and discussed results
obtained with software implementations of them. By chance, a meeting of the GA4GH
in June 2015 in Leiden overlapped a conference held at the Lorentz Centre on “Future
Perspectives in Computational Pan-Genomics”11, whose participants were discussing
ways to apply the concept of pangenomics to many problems in genomics. Can Alkan,
who had been invited to both meetings, brought members of the GA4GH’s RefVar group
to the concurrent workshop, where both groups presented on their work and ultimately
joined efforts. This exchange motivated members of the RefVar group to consider
many alternative resequencing and genome modeling problems. For the consortium,
our software vg became a template for the pangenomic resequencing concept that it
would present in the paper resulting from the meeting [46] (figure 1.3). And in turn,
the consortium imagined the missing pieces that would be required to fully enable a
pangenomic reference system and support common genome inference patterns using it.
Much of the work I will present in chapters 2 and 3 of this thesis follows the design
presented by this group.

1.3.1 On pangenomic models

My own work builds on a particular model for encoding a pangenome. Here, I will briefly
describe alternative models and justify the use of the graphical one that I present, while
the remainder of the chapter will provide background on more-closely related graphical
approaches more closely related to my work.

Traditional techniques from microbial pangenomics have focused on cataloging the
distribution of ORFs across bacterial species [202]. In this sense the pangenome is not so
much a sequence-based object, but a matrix encoding the presence or absence of genes
across the species of a given clade.

If we want to use pangenomic principles to resolve issues with resequencing, then
we must take the concept of pangenome more literally, and build a representation that
losslessly encodes genomes together with a focus on their sequence content. In this

10The GA4GH is an international consortium of researchers and genomics professionals chartered with
the development of new genomics data formats and interchange systems https://www.ga4gh.org/.

11https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort

https://www.ga4gh.org/
https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort

1.3 Pangenomes 21

monotonic sequences of coordinates where possible and coord-
inates should be concise and interpretable.

Biological features and computational layers
Annotation of biological features should be coherently provided
across all individual genomes (see Figure 2, ‘Annotate’ oper-
ation). Computationally, these features represent additional
layers on top of pan-genomes. This includes information about
(1) genes, introns, transcription factor binding sites; (2)

epigenetic properties; (3) linkages, including haplotypes; (4)
gene regulation; (5) transcriptional units; (6) genomic 3D struc-
ture; and (7) taxonomy among individuals.

Data retrieval
A pan-genome data structure should provide positional access to
individual genome sequences, access to all variants and to the
corresponding allele frequencies (see Figure 2, ‘Retrieve’

Figure 2. Illustration of operations to be supported by a pan-genome data structure.

124 | Marschall et al.

Downloaded from https://academic.oup.com/bib/article-abstract/19/1/118/2566735
by guest
on 03 August 2018

Fig. 1.3 An overview of techniques required to support pangenome-based resequencing.
In vg, we have implemented virtually all the presented components and algorithms.
Reprinted from [46].

.

22 Introduction

perspective, the classical bacterial pangenome becomes a derivative product that we can
produce using analyses based on a sequence-oriented pangenomic reference. I will mostly
focus on sequence-based pangenomic models. The main classes are described visually in
figure 1.4.

Fig. 1.4 Various pangenomic models of a small collection of sequences. (A) shows an
unfolded pangenome, (B) provides an MSA encoding the same sequences, (C) shows the
DBG with k = 3, (D) is an acyclic version of the pangenome, akin to the alignment in
(B), and (E) represents a compressed alignment graph allowing cycles to represent copy
number variants. Reprinted from [46].

.

The simplest possible sequence-aware pangenome is just a set of whole genome se-
quences of many species or individuals, in which all sequence homologies and evolutionary
relationships are implicit (figure 1.4A). The unfolded pangenome resolves reference bias,
and can be extended with new data by simply including new genome sequences. This

1.3 Pangenomes 23

model does not benefit from compression related to shared sequences in the pangenome, as
adding a new genome always adds all the sequence in that genome to our system. Without
additional information about homologies, an unfolded pangenome cannot represent new
sequences in terms of recombinants between known sequences.

An MSA (figure 1.4B) provides a matrix describing the relationships between the
sequences as well as the sequences themselves. We must introduce a concept of a gap
character to pad the matrix. The MSA is a linear object, and cannot represent structural
variation compactly. An MSA has an equivalent representation as a sequence DAG, as in
figure 1.4D.

Assembly graphs, in particular DBGs (figure 1.4C), provide a simple decomposition
of collections of genomes. However, a strict DBG without any labeling loses the mapping
back to the original genomes. Sequence graphs, as in figure 1.4E, when annotated with
the full set of input paths, provide a lossless representation of the input genomes. If
they are also bidirectional like DBGs (not shown in figure 1.4E) then they can directly
represent copy number variations and inversions.

1.3.2 The variation graph

In this thesis I employ a reference system that encodes genomes and the base-level
relationships between them. This model can be understood as a kind of all-versus-all
alignment between the sequences in the pangenome. If the data model is to allow
recombination between known sequences (a key contributor to genomic diversity) and
tandem repeat copy number variation (which occurs readily in genomes), then it can be
represented as a regular language encoded in a graphical model like a nondeterministic
finite automaton (NFA).

We can adjust the regular language model slightly so that it has properties similar to
those of DNA. NFAs are represented graphically with states (in our case, pangenomic
coordinates) as nodes connected by edges labeled by characters (e.g. DNA bases) in
the alphabet of strings that the language recognizes. In DNA the atomic element is the
DNA base, which is represented as a character. Graphical models with nodes (or edges)
labeled by sequences and edges (or nodes) representing allowed transitions between them
are a straightforward generalization of the linear string. Compression can be achieved by
allowing the labels on the nodes to have more than a single character on them. Because
DNA is double-stranded, any such a language implies a reverse complement language
which recognizes the reverse complement of any sequence in the first. Formalizing this
by allowing edges to transition between different strands of the graph allows the model
to directly represent sequence inversions.

24 Introduction

If we combine these adjustments, we arrive at a kind of regular language model
that resembles DNA and allows the representation of collections of related sequences by
allowing us to represent homologous sequences and all kinds of natural polymorphism
between them. This structure is often referred to as a bidirectional DNA sequence graph,
indicating that the graph is sequence-centric, directed, stranded, and allows transitions
between strands. Sequence graph, then implies a simpler concept in which the graph is
meant to model sequences but only one strand is considered. Assembly and multiple
sequence alignment methods have employed sequence graphs of both types since the
earliest computational analyses of biosequences, and it is sensible that we might employ
them to represent collections of genomes.

The conceptual basis of the work I present here is the extension of the bidirectional
DNA sequence graph with paths that may be used to describe sequences as walks through
the graph. In this way, the panel of reference genomes or sequences used to construct
the graph may be related to the graph itself, and the relationships between them made
evident in the structure of the graph. Existing knowledge expressed with respect to
known sequences may thus be projected into the graphical pangenome model. Similarly,
entities within the graph may be “surjected” out into the space of a given path. These
properties ensure that the pangenome fully encompasses existing reference technologies.
In addition, maintaining the sequences in the space of the graph makes the graph lossless,
in that it fully represents the input sequences without additional information. Perhaps
most importantly, this feature resolves the exponential decay in mutual information which
limits the applicability of Markovian models like the sequence graph to modeling natural
sequences [159]. I term this combination of a bidirectional sequence graph and paths a
variation graph, as it represents sequences and the variation between them. In chapter 2
I will formalize the variation graph model and important auxiliary data structures that
enable its modification and use in resequencing.

1.4 Graphical techniques in sequence analysis
Many genome analysis algorithms employ sequence graphs. I introduced the alignment
algorithms described in 1.2.2 in terms of a matrix, but they may also be described as
algorithms on graphs, although the nodes in these graphs correspond to matrix cells and
thus alignment states rather than characters or sequences. Similarly, hidden Markov
models (HMMs) have a long history of use in bioinformatics [66], and these models
bear similarities to the bidirectional sequence graph model. Here, I will focus on those
methods that are most closely related to variation graphs, and upon which my work

1.4 Graphical techniques in sequence analysis 25

draws most heavily. These include techniques for generating and encoding multiple
sequence alignments, genome assembly graphs, RNA splicing graphs, and the related
gene model graphs used in RNA sequence analysis, and the sequence DAG implied by
the VCF format.

1.4.1 (Multiple) sequence alignment

Optimal multiple sequence alignment generalizes the problem of pairwise sequence
alignment from a 2D matrix to an N -dimensional lattice, where the optimal mutual
alignment of N sequences of average length L can be determined in O(LN) time [32].
In the early days of sequencing, when only a handful of sequences might be considered
in one analysis, such costs were almost acceptable, even if they limited the number
of sequences in the MSA to only 3. By pruning regions of the lattice in which no
optimal alignments could occur, the authors of the tool “MSA” increased the number of
sequences which could be optimally aligned into an MSA to 6 [161]. In contrast to the
optimal alignment approach, progressive multiple sequence aligners such as CLUSTAL
build a guide tree based on alignment of all sequences to all others in O(NL2) time,
and then generate the MSA progressively using the guide tree in O(L2 log N) time,
resulting in polynomial time algorithms capable of generating MSAs for hundreds of
sequences using contemporary computers [104]. In this form of progressive alignment,
the MSA is built recursively from the leaves to the root of the guide tree, with each
step combining pair of MSAs representing different branches of the tree using the best
pairwise alignment between the sequences they contain. The progressive approach is
fundamentally greedy, and susceptible to errors that propagate along the guide tree,
although such errors can be mitigated by structuring the alignment using biological priors
[264]. Further improvements to the quality of the MSA can be gained by guiding the
progressive alignment with a limited kind of global information about the relationships of
all the sequences, as in T-COFFEE [194], but this popular method exhibits a worst-case
computational complexity of O(N3L2).

The progressive alignment in MSA algorithms like CLUSTAL may be represented
graphically. In the late 1980s Eugene Myers and Webb Miller developed algorithms to
optimally align sequences to sequence graphs, and sequence graphs (in the form of regular
expressions) to each other in O(MN) time (where M and N are the sequence length
of the graphs) [190, 282]. Unfortunately, to my knowledge were never implemented in
publicly available software for sequence analysis12. A recent implementation of sequence

12Myers was unable to provide related source code on request.

26 Introduction

to graph alignment [219] transforms a sequence graph into an alignable graph which is
acyclic and partially ordered, on which a bit-parallel alignment algorithm is applied to
achieve high performance when aligning long noisy reads to arbitrary sequence graphs.
This work is related to that of Wu, Manber and Myers [282], wherein the authors provide
an algorithm for the alignment of pairs of regular expressions using a transformation of
the regexes to NFAs and bit-parallel resolution of the final alignment. Later in chapter 2
I will present and evaluate a similar approach to align reads to arbitrary bidirectional
sequence graphs through transformation of the graph into an ordered graph against which
accelerated sequence to graph alignment may be run.

Christopher Lee later provided the first implementation of an MSA algorithm based on
sequence to graph alignment [140]. Apparently unaware of the work of Myers and Miller,
he instead built on the concept of “consistent equivalence relations” that DIALIGN used
to represent the MSA [184]. Where DIALIGN’s authors appear to consider the MSA
in the space of the N -dimensional lattice, Lee encoded the equivalence relations in a
partial order graph, which is often referred to as a directed acyclic graph (DAG). In
this DAG, characters label nodes and edges label observed linkages between them in
sequences embedded in the MSA. Lee demonstrated that a straightforward generalization
of the recurrence relations used in Smith-Waterman-Gotoh would allow the alignment of
sequences of length N to the DAG of sequence length M in approximately O(MN) time.
To determine the score at a given position, partial order alignment (POA) considers
matches and deletions relative to all the characters that immediately preceded the current
one in the partial order. Later, POA was extended to allow the direct alignment of pairs of
MSAs using partial order to partial order alignment (PO-POA) [97]. Like CLUSTAL-W
and other progressive methods, POA would build its MSA using pairwise alignments across
a guide tree. But, rather than aligning the last pair of sequences, PO-POA alignment
would be used to align the MSAs from each branch together. This resolved problems with
order dependence, yielding MSAs with nearly the same accuracy13 as T-COFFEE across
a range of problems. As PO-POA proceeds over a neighbor joining guide tree, it requires
N log N alignment steps. Given low sequence divergence, the cost of each step will
approximate L2. The algorithm thus has a lower bound of approximately O(L2N log N),
which the authors confirmed with experiments demonstrating subquadratic scaling in
the number of input sequences.

Despite its use of an algorithm that scales cubically with the number of input sequences,
T-COFFEE’s higher accuracy has resulted in it receiving ten times the citations of POA.

13Here goodness is quantified using a sum of pairs score (SPS) metric representing the goodness of the
alignment.

1.4 Graphical techniques in sequence analysis 27

The low rate of use meant that the POA concept was “rediscovered” by participants in
the 1000GP who needed a computationally inexpensive method to align sequences to
VCF-based pangenomes14.

Lee’s POA model provides a simple pattern for thinking about pangenomes. However,
POA MSAs are linear objects which cannot capture many natural kinds of genetic
variation such as repeats or rearrangements without duplication of the rearranged
sequences. Several methods have extended the MSA concept to unordered graphs,
including the Threaded Blockset Aligner (TBA) [21], which models the MSA graph as
a set of partially ordered MSAs linked by unordered larger scale connections, and the
A-Bruijn Aligner (ABA), which models the MSA using a de Bruijn graph and represents
a solution to problems in MSA using techniques that later become important to short
read assembly [217]. Variation graphs generalize these models without the limitations of
order (as in POA and TBA) or k-mer based graph structures (as in ABA).

1.4.2 Assembly graphs

The problem of assembling large genomes is not dissimilar from that of multiple sequence
alignment. MSA algorithms tend to be applied to the alignment of a single coherent
genomic locus. Their input sequences might be expected to have approximately the
same length, and maintain synteny between them. In contrast, whole genome shotgun
assembly methods cannot rely on such assumptions, as reads of a large genome rarely
overlap, and both strands of DNA will be sampled, yielding ambiguity about relative
orientation. Thus, the graphical models used in assembly must maintain bidirectional
structure. OLC assembly methods in some sense began their evolution with the set of
compromises that MSA algorithms ended theirs, with thrifty heuristic methods being
used to establish the overlaps between all pairs of sequence reads from a given genome,
and the resulting overlap set subsequently represented graphically. Earlier in section 1.1.2
I gave a historical outline of the development of these methods in response to changes in
available sequencing technology. Here, I provide deeper technical detail to describe these
methods and illustrate their relationship to the variation graph model.

14Sequence to graph DAG alignment was one of Deniz Kural’s main PhD projects. I worked with him
in Gabor Marth’s laboratory, and we applied his implementation of POA to generate accurate genotype
likelihoods for indels and complex variation in the final phase of the 1000GP. We learned of the prior
work later, when a reviewer pointed out that the algorithm was roughly equivalent to POA.

28 Introduction

1.4.2.1 Overlap graphs

One interesting feature of overlap-based assembly graphs is that their efficient construction
tends to yield a representation in which sequences attached to nodes partially overlap
with the nodes in their neighborhood in the graph15. This follows from the fact that
the graph induction algorithms use a kind of pairwise alignment, retaining relationships
between sequences in a pairwise rather than compacted N-wise form. In the case of DBGs
and the FM-index based string graph assemblers, an iterative overlap-wise sequence
comparison where unitigs (unbranching sequences in the graph) are inferred from the
compressed sequence graph yields overlap graph. Given a node-labeled sequence graph,
it is common to think of the edges as representing the overlaps between the nodes they
connect. This represents an incomplete compression of the relational information in the
graph, but this is typically not important to the use of these methods. They are judged
by the quality of the set of contiguous sequences (contigs) they output rather than their
raw assembly graph. These methods will traverse linear portions of the graph to generate
contigs, after pruning or ignoring edges, which the uncompressed overlap representation
does not inhibit.

Due to its duplicated representation of sequences within overlaps, the overlap graph
model is more complex to use as a reference system (in which positions should be unique)
than a “bluntified” representation in which the overlaps are non-ambiguously reduced
into the nodes in the graph and its linkage topology. In their most general form, overlaps
are themselves alignments, and have a natural encoding in graph form (section 1.4.1).
However, assembly data models often encode alignments using several dissimilar data
structures, a fact which is reflected in the complexity and redundancy of the GFA version
2 specification16. In general this overlap representation makes it difficult to work directly
with such graphs using the algorithms we will introduce, and they must be reduced into
a “blunt-ended” bidirectional graph.

It is also possible to directly induce a bidirectional string graph from a set of pairwise
alignments, sidestepping the overlap issue. In section 2.2.6 I will present my design
and implementation of an external memory algorithm that transforms sets of pairwise
alignments into a variation graph using a transitive closure of the equivalencies implied
by the alignments.

15In many formulations, sequences in the overlap graph are attached to edges rather than nodes. This
model is equivalent to one in which sequences are attached to nodes, which I will use here for consistency.
The same convention is used in vg’s data model and in the GFA interchange format that it reads and
writes.

16https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md

https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md

1.4 Graphical techniques in sequence analysis 29

1.4.2.2 De Bruijn graphs

De Bruijn graphs [56] are graphs in which a set of k-mers are taken as the nodes of
the graph, and edges are added for each pair of k-mers k1 → k2 in which the last k − 1
bases of k1 are the same as the first k − 1 bases of k2. As discussed previously in section
1.1.2, this model simplifies the overlap graph structure, allowing efficient calculation and
representation of the graph. For instance, k-mer lengths may be chosen so that they
fit inside a machine word, allowing bitwise operations and integer math rather than
string comparison to be used to infer the graph structure directly implied by the k-mers
themselves.

In second generation sequencing, where per-base error rates are low and read lengths
are short, little information is lost by breaking the read set into k-mers of 1/3 or 1/5th the
length of the original reads, and so the de Bruijn graph model has been readily applied
to cheap short read sequence data since its introduction to genomics in the mid 1990s
and early 2000s [111, 210]. Velvet [285], which used a straightforward but memory-costly
hash table strategy to encode the DBG. Zamin Iqbal then extended the DBG model
to support various kinds of pangenomic analysis by labeling each k-mer with “colors”
representing read counts from different samples [114]. The colored DBG (cDBG) model
has seen application in RNA-seq transcript quantification, where the model is used as a
reference basis for the relation of known transcripts to pseudoalignments of reads to the
cDBG [25]. Later versions of the Cortex assembler have extended this to fully encode
long reads or contigs relative to the DBG [268]. Similarly, improvements in performance
have been yielded by linking read pairs in the DBG model [13].

The simplicity of the DBG has made it possible to develop very memory-efficient
data models to support its use in assembly. The DBG can be effectively encoded in the
FM-index of a read set [23], and this succinct DBG model underpins the most-scalable
assembly methods currently available [143]. Other techniques, such as bloom filter
encodings and minimizer partitioning schemes are also used to provide time and space
efficiency to DBG methods [39, 40].

In the compacted DBG generalization non-furcating regions of the graph are merged
into a single node with label length > k. The compacted DBG is now often a typical
output for DBG assemblers [40, 181]. The compressed nodes and their overlaps with
their neighbors comprise a set of unitigs that, together with their neighbor relations, are
often taken as the most-raw kind of assembly output. DBG assemblers like SPAdes and
Minia3 infer longer contigs by filtering and further contracting the unitig graph [13].

As with any overlap graph, DBGs must be made into blunt-ended sequence graphs
before they can be utilized by variation graph based algorithms. The basic method for

30 Introduction

doing so is simpler than for generic overlap graphs, as overlaps in DBGs are exact string
matches. In my work I have found this an important feature, as in addition to being
generated by efficient methods, it ensures that DBGs are universally convertible into
variation graphs.

1.4.2.3 String graphs

The string graph is a formalism that describes the full information represented by
a shotgun sequencing experiment and an all-against-all alignment between its reads
[186, 187]. Myers argued that the then-current paradigm of assembly, which attempted to
generate the shortest common superstring (SCS) incorporating all the N input sequence
reads, failed to reconstruct the genome correctly in the context of repeats in the genome
that are longer than the average read length L. He then posited the “chunk graph” (later,
string graph) as a graphical model of the overlap set, showing that the correct consensus
sequence would by definition exist as a walk through the graph, and that constraining
the collapse using coverage information would improve reconstruction of the genome read
in the shotgun sequencing experiment. In this graph nodes (or edges) represent sequence
reads and directed edges (or nodes) represented observed ϵ-approximate overlaps between
them. Repeat units in the genome that are longer than L will collapse in this graph,
provided errors in the reads can be corrected so such repeats become fully identical.

This idea was introduced at the same time as de Bruijn graphs, with Myers’ work
on string graphs and the first description of a genome assembly algorithm using de
Bruijn graphs both presented at the same workshop in 1995 [186, 111]. Myers’ 2005
formalization of the string graph [187] responds particularly to de Bruijn models, and he
points out that generating k-mers from the reads as the basis for the graph means that
the resulting graph is not “read coherent”, or in other words does not accurately represent
the information in the read set. Subsequent work has shown that the boundaries between
the two models are not so well-defined. As a specialization of the overlap string graph,
the de Bruijn model may be applied to certain complex subsets of a string graph, creating
a kind of hybrid assembler where the k-mer model is used to resolve the most-difficult
components, while the generic overlap model is used elsewhere [109]. Similarly, the high
cost of error and graphical complexity suffered by the string graph encourage the use of
k-mer based read correction methods, which could be seen as filtering the reads using a
DBG model.

String graphs are often described as “lossless” representations of the input read set
and the alignments between them [145]. Neither in practice, in Myers’ formalizations, nor
its implementations like the Celera assembler (CABOG) [180] is this strictly true. In the

1.4 Graphical techniques in sequence analysis 31

model, overlaps are assumed to be ϵ−correctable at approximately the raw sequencing
error rate. In practice, this filtering can result in a loss of input sequence from the string
graph. String graphs can consume very large amounts of memory when fully constructed
without filtering from a read set [149, 134]. Input filtering, mostly to reduce repeat
content, is used to mitigate this issue. If not aggressively corrected, repeats tend to
generate ultra-dense graph regions that are known as “hairballs” which can increase the
complexity of assembly by orders of magnitude.

To deal with repetitive sequences in the genome, one solution is to mask out repetitive
k-mer, minimizer, or alignment seeds used in generating the overlap set, as in CABOG,
FALCON, and miniasm [180, 41, 149]. Recently, the authors of Canu showed that alter-
native probabilistic seed filtering based on the tf-idf (term frequency, inverse document
frequency) metric can retain information about repeats and support their separation
rather than excision from the assembly string graph [134].

String graph methods related to the Celera assembler, such as FALCON and Canu,
implement error correction steps before overlap inference, as this reduces memory require-
ments during assembly. Similarly, methods that generate assemblies via a string graph
induction step from Illumina sequencing data (SGA, fermi, and fermikit) also apply an
error correction processes before the generation of the string graph [245, 243, 148], which
helps to reduce the graph complexity and improve contiguity of the resulting assembly.

Allelic diversity in either a string graph or de Bruijn graph will, if sufficiently separated
from repeats and other allelic variants, result in a bubble, or graph component connected
to the rest of the graph via single sources and sinks. Like de Bruijn graphs, string
graphs have been used to support variant calling, for instance finding heterozygotes
represented as bubbles in the assembly graph [145]. All methods that I am aware of
will establish variants relative to a reference sequence threaded through the graph. Also,
thus far no method has specifically merged the two concepts of variant calling and graph
based assembly finishing together, although assembly projects may use a variant caller
to establish variants in their contigs [116, 232].

With minimap and miniasm Heng Li took the approach of efficient all versus all
alignment and overlap graph generation without prior read correction [149]. With no
multiple alignment step, this generates an assembly in which the error rate in the contigs
approaches that of the input reads. Tools like racon [271] have been developed to
subsequently generate a consensus, but these work on the level of individual contigs
rather than an assembly graph. Li [149] also proposed to mix and match different
assembly components (for instance using DALIGNER [188] rather than minimap for the
overlap step, or swapping quiver for nanopolish for consensus generation) by establishing

32 Introduction

a set of standard data types including the pairwise alignment format (PAF) and the
graphical fragment assembly (GFA). These encode the results of the overlap step and a
graphical model for the assembly at any state of its progression. GFA is used in a wide
number of methods, but as of August 2018 it appears that very few tools both read and
write GFA17, and much of the assembly improvement steps are implemented on contigs
(encoded in FASTQ or FASTA format) rather than the string graph itself.

1.4.2.4 RNA sequencing graphs

While many approaches to transcript analysis consider each particular gene transcript
separately, a more compact representation would be as a splicing graph in which all
alternative splicing junctions are represented by edges connecting bases of the underlying
reference sequence [103, 140]. Transcript assembly has attracted many of the same
approaches as those used in genome inference, but their application must be adjusted
to account for variation in read coverage of several orders of magnitude caused by
large differences in expression of different genes [173], and in some cases they may
not be suitable as the ideal of a transcript assembly is not a linear sequence assembly,
but a splicing graph that models the combinatorial relationships in the transcriptome
[96]. Standard assemblers, parameterized or modified to better support RNA transcript
assembly have been applied to the problem since their development for genome assembly
[20, 223, 236]. But methods which are specifically design to meet the needs of the problem
have arguably been more popular [96, 37].

Direct use of the splicing graph concept is limited, with the most-popular workflow
involving “splice-aware” alignment to a reference transcript model followed by quantifi-
cation of expression versus the alignment and transcript model [265]. More recently,
probabilistic approaches have come into favor, and to support these assembly models
have been applied to transcript quantification via pseudoalignment to a colored DBG
annotated with reference transcripts [25]. In contrast, Daewan Kim’s HISAT2 aligns
RNA-seq reads to a whole genome splicing graph [129, 130], including SNP and indel
variation directly in the whole genome index.

1.4.2.5 Genome alignment graphs

The graphs used in genome alignment algorithms are the nearest in content and structure
to variation graphs, and it can be shown than a number them of nearly identical
representational capacities [124]. The alignment graph, first introduced in the context of

17https://github.com/GFA-spec/GFA-spec#gfa-1

https://github.com/GFA-spec/GFA-spec#gfa-1

1.4 Graphical techniques in sequence analysis 33

multiple sequence alignment [122, 218], represents a collection of alignments in graphical
form, supporting the induction of a sequence graph (or MSA when such a graph is
partially ordered). Vertices in the alignment graph Ga = (V, E) represent characters in
the input sequences S, and edges represent cases where characters in the input sequences
have been aligned, with an additional relation ≺ on V such that v ≺ w holds if and only
if v precedes w in S. As it contains both the sequences and their alignments, this graph
may then be contracted to produce a compressed graph that represents both. We can
then contract Ga into the base graph Gs, adding a node for each connected component
in Ga and labeling it with the corresponding character, while adding an edge for each
pair of nodes X and Y which represent a pair of input characters in Ga that satisfy ≺.
Each column of an MSA matrix or each base in a variation graph would correspond
to a particular connected component in Ga. It is worth noting that the equivalence is
not exact unless we generalize the alignment graph to represent alignments in both the
forward or reverse complement orientations, which has been explored in the A-Bruijn
model [217].

The Enredo graph model Ge = (V, E), used by the Benedict Paten’s Enredo/Pecan
multiple genome aligner [203], generalizes the alignment graph model to be bidirectional
by representing each genome segment in the graph with two nodes, a head and tail.
The graph maintains two kinds of edges, Es which represent genome segments and are
equivalent to nodes in Gs, and Ea which represent breakpoints of adjacencies between
segments. To obtain a graph like Gs from the Enredo graph, the MSA resolver Pecan is
applied to sets of homologous Es connecting the same head and tail nodes.

Paten further refined multiple genome alignment by the development of the Cactus
graph Gc = (V, E) [204]. To construct the Cactus graph, we build a precursor graph
G′

c by adding a node for each adjacency-connected component in the Enredo graph Ge

and adding edges between nodes for each segment Es whose head and tail lie in both
adjacency components. To obtain the Cactus graph, we collapse three-edge connected
components in G′

c into single nodes, yielding an Eulerian graph with a tree like structure.
The nodes in the Cactus graph can be shown to correspond to a tree of ultrabubbles
(graph components connected to the rest of the graph by one or two head and tail nodes)
in the sequence graph from which it was constructed [206]. This forms the basis for the
development of genotype models on top of arbitrary graphs.

Without additional labeling, these graph models are insufficient to fully reproduce
their input, and although it may be implemented in corresponding software, existing
models to do not clarify how this labeling is accomplished [124]. Variation graphs respond

34 Introduction

to this issue by making the path embedding of the sequences in the graph explicit in the
model.

1.4.3 Pangenomic alignment

As the review presented in this chapter shows, the idea of using pangenomic models
as a reference basis is not new, and interest in the topic extends back to the earliest
explorations of the multiple sequence alignment problem. But it was only in the last
decade, as surveys of populations of genomes routinely produced sets of phased variant
calls [162, 277, 31, 1, 45] that the idea of scaling up alignment to enable the alignment
of short reads to populations of genomes gained traction. Numerous methods use some
form of pangenome aware alignment. These have helped me to understand the problem
and guided my work to a significant degree. Each has important limitations relative to
more generic problems. For instance, some operate on sequence DAGs, and cannot easily
be generalized to work on arbitrary bidirectional sequence graphs. Others implement a
limited form of alignment that prevents their use for every kind of sequencing technology.
Virtually all use the pangenome only as an additional source of information during
alignment, and do not use the pangenome as the reference system itself.

1.4.3.1 Alignment to unfolded pangenomic references

As discussed in section 1.3.1, the simplest pangenomic model stores each genome sequence
individually, without recording the implied homologies or relationships between the
sequences. Such a model grows linearly with the number of genomes included, and in this
way it does not benefit from compression provided by sequence relationships and shared
evolutionary histories. Annotations can be provided for each genome and interlinked at
a higher level of semantic relationships, as is done in major genome annotation catalogs
like Ensembl genomes [128]. This expedient approach provides almost all the benefits of
the kind of pangenomic models I present in this thesis, excepting that it cannot represent
base-level sequence relationships within the semantic model without significant effort.
Whenever a researcher uses BLAST or BLAT to search a large database of sequence they
are interrogating this “unfolded” pangenome. This pattern could be thought of as the
default in bioinformatics, and it is the starting place for many DNA-based analyses.

In terms of methods specifically designed to align large sequence read sets against an
unfolded pangenome, few are currently under development. Of note, the CHIC aligner
provides an initial implementation of such an idea [270] This method is based on an
indexing strategy which uses Lempel-Ziv (LZ77) [289] parsing of the pangenome to

1.4 Graphical techniques in sequence analysis 35

generate a “kernel” sequence encoding the pangenome that may be indexed and used
by a standard short read aligner (the authors use BOWTIE2). By using this kernel,
the seeding step is aware of alternative sequences embedded in the pangenome, but the
local alignment step is ultimately run against a linear reference. As this approach aligns
directly to the unfolded pangenome it is not able to correctly estimate mapping quality,
as the reference does not encode any model about the relationships between the genomes
that comprise the pangenome and consequently we cannot determine when multiple
alignments match to homologs in different genomes or paralagous copies dispersed across
one or many genomes. The linear growth in data scale can add algorithmic complexity
when sequencing many genomes, and so it is understandable that experiments using the
CHIC aligner only used up to 100 genomes at a time. By relying on the linear reference to
report alignments, CHIC gains the ability to hook into standard resequencing workflows,
but it loses the ability to describe variation in sequence that is not contained in the
reference.

1.4.3.2 Alignment to tiled pangenomic references

A near-approximation of the unfolded model is one in which genomes are broken into
small pieces in the construction of the model. These blocks or tiles can then be formed
into sequence DAG by the addition of edges showing linkages between successive blocks
[101]. These models present as a specialized kind of sequence DAGs18, and can represent
the whole set of sequences in a pangenome in a semi-compressed way using the same
principles as in POA, DBG, or string graph models. Each tile represents a known
haplotype in a given window of the pangenome. As new genomes are added to the
structure, new tiles only need to be added where we observe a new sequence in a given
window.

A tiled pangenome graph was employed by the pangenomic aligner, GenomeMapper
[234], which was produced in support of the Arabidopsis thaliana 1001 Genomes Project
(AT1001GP). As arabidopsis frequently selfs, individuals may have extremely low levels
of genomic diversity, which in turn simplifies the process of genome inference [31]. At
the same time, several percent of the reference genome is missing or highly divergent in
various accessions (strains) [43, 284]. These conditions break standard short-read aligners
developed for mapping Illumina sequencing data against low-diversity reference genomes.
GenomeMapper models the pangenome using 256 basepair tiles. A k-mer index is used
to seed local alignment of very short (<50bp) reads against the pangenome. The authors

18Known implementations appear to be unable to directly represent inversions and copy number
variants in their structures, instead encoding them as if they were indels.

36 Introduction

report an extension of the Needleman-Wunsch alignment algorithm that allows alignment
against the graph wherein the graph traversal is converted into a tree of alignments
by duplicating the alignment process at each furcation. This alignment algorithm is
exponential in the average number of forks per sequence base, which may contribute to
the observation that it runs hundreds of times slower than standard alignment methods
on 100bp reads [163]. GenomeMapper does not have a graph-specific alignment format,
and instead reports alignments against the genome to which each is most similar, which
the authors call “reference free”. So that the alignments may be used downstream in
standard approaches, they may be projected against another chosen reference genome.

1.4.3.3 Alignment to graphical assembly models

In order to report their results relative to the reference, assembly methods require the
ability to align the reference genome into the sequence graph they have generated de
novo [114, 245], although this can be achieved through the alignment of the assembly
graph’s unitigs to the reference genome [148], which results in greater sensitivity to small
variation but may also increase bias towards the reference genome. Aligning external
sequence to an assembly graph is equivalent to extending the assembly to include the
sequence and recording the path through the assembly graph that represents it.

The deBruijn Graph Aligner (deBGA) inverts this approach by enabling the alignment
of short reads to a reference DBG (RdBG) [163]. An RdBG is a compacted DBG in which
one or more reference genomes have been embedded, and the authors of deBGA enable
alignment against it through a k-mer index that is used to drive a kind of MEM-based
seed and extend alignment. The alignment process itself attempts to link patterns
of k-mer hits in unitigs in the graph into larger alignments, finally producing a local
alignment by applying Smith-Waterman-Gotoh to the read and the particular reference
genome region to which it aligns. While deBGA uses a DBG to structure alignment,
it can output a BAM file against the linear reference genome for use in variant calling
or other analyses. The authors claim that deBGA is fast and, thanks to its use of a
DBG-based index, robust to alignment problems introduced by repeats. However, it is
not clear how the method develops mapping qualities, and due to its inability to represent
evolutionary homology or equivalence between regions of genomes, this would appear to
be is a significant limitation of the reference data structure they have chosen.

deBGA is the first published method specifically designed to align short reads against
arbitrarily-structured graph genomes. While deBGA was designed to work on collections
of linear references, the authors note that it would also be possible to apply the indexing
strategy to any sequence graph, as k-mer enumeration may be used to convert any

1.4 Graphical techniques in sequence analysis 37

sequence graph into a DBG19 The authors do not evaluate its operation on generic
DBGs, and instead compare it to linear reference based aligners on the same collections
of genomes.

1.4.3.4 Genotyping using a sequence DAG

Variant calls in the VCF format, when combined with the reference genome to which
they refer, form a sequence DAG that encodes all the genomes from which the calls were
derived as well as novel recombinations between them. As this feature of variant calls
was appreciated, it led to the development of several methods which first map reads
globally to a linear reference and then realign them locally to a variation-aware reference.
This can be shown to reduce reference bias, but it can only do so in a localized sense as
this form of graph resequencing cannot change the global placement of reads.

By the final phase of the 1000GP [45] it was apparent that indels and complex
variation were more difficult to genotype than SNPs. Their significance was appreciated
by 1000GP subprojects that examined the putative functional effects of such variants
[36], which motivated efforts to develop a high-quality variant set including them for the
final release. The best-performing methods for generating the SNP genotype likelihoods
(GLs) were only able to model biallelic SNPs [274], and additional methods would be
applied to derive GLs for non-SNP, non-biallelic variant types.

While participating in the project, Deniz Kural and I extended (as glia20) a POA
algorithm he had developed to realign poorly-mapped reads (such as those with softclips,
many mismatches, gaps, or unaligned fragments anchored by their pair mates) to a
sequence DAG created from the reference and candidate alleles in the region. By
projecting the alignment back into the reference space, we were able to generate a BAM
output from glia. I implemented improvements to freebayes that allowed it to genotype
alleles represented by observations in these alignments, as well as contamination estimates
that were essential to high-quality GLs in low-coverage data. This pipeline outperformed
alternatives, and was ultimately used to generate GLs for all non-SNP variation in the
project.

The indels were integrated into the phased scaffolds provided by the SNPs through two
cycles of genotyping. In the first, GLs generated by the method were given to MVNcall
[178], a multalleleic, site-independent phasing algorithm that can phase genotypes at
a given site onto a fixed background haplotype scaffold. The posterior genotype and

19Jouni Sirén and I had implemented an aligner based on a DBG transform of an arbitrary sequence
graph at the time of deBGA’s publication. The authors of deBGA were apparently as unaware of our
work as we were of theirs.

20https://github.com/ekg/glia

https://github.com/ekg/glia

38 Introduction

phasing quality estimates produced by MVNcall, along with a number of other metrics
related to indel sequencing error such as sequence entropy and homopolymer context,
were then used to establish a support vector machine (SVM) classification model which
was trained using data from high-quality genomes and applied to the full set of alleles to
remove likely errors. The final set of alleles were fed back through the glia, freebayes, and
MVNcall process to ultimately produce the set of indels in the 1000GP phase 3 release.

Hannes Eggertson’s GraphTyper [71] implements a similar workflow to the genotype
likelihood generation method applied to the 1000GP indels. In the GraphTyper pipeline,
Illumina reads are aligned against the reference genome using a standard short read
aligner. Those alignments with soft clips and apparent differences from the reference are
matched to a sequence DAG built from the reference and VCF in a window around the
read’s candidate mapping location. GraphTyper matches short k-mers between the read
and the sequence DAG using a k-mer index of the reference structure and 1bp-overlapping
k-mers from the read. This does not produce an alignment per se, but rather a list
of variant traversals supported by each read. This transformation provides sufficient
information to genotype the variants in the graph. The pipeline may update its reference
system so that it includes both known variation from other studies and new variation
discovered during analysis. GraphTyper uses the graph reference system internally to
improve algorithm performance, but results are projected into the linear reference and the
graph has no other representation than VCF. This prevents the representation of “nested”
variation or non-SNP or indel SVs. GraphTyper’s efficient and accurate performance on
exceptionally large resequencing problems supports the authors’ design decisions and
firmly asserts the utility of the graph realignment approach.

Sibbesen and colleagues generalize the genotyping problem to arbitrary variation
graphs with BayesTyper [240]. They adopt a kind of pseudoalignment model in which
exact k-mer matches between a read set and the reference are used to establish support for
paths across bubbles in the variation graph. These can then be used to build probabilistic
models of genotypes for any kind of variation represented in the graph, both small (SNPs
and indels), including nested variation.

1.4.3.5 Population reference graphs

Pangenomic references need not be used as a coordinate system in the same manner as
the linear reference genome. Instead, they can be used as a prior to infer most-likely
underlying haplotypes of a given individual. Further refinement can be achieved by
aligning the read set back to the inferred haplotypes. This approach makes sense if

1.4 Graphical techniques in sequence analysis 39

alignment against the pangenome is extremely costly, but efficient haplotype inference
patterns can be applied to the genome.

Population reference graphs (PRGs) [63] are POA-like graphs in which sequences
aligned by MSA are collapsed in the case of identity above a given k-mer size, which
embeds some information about local phasing into the graph. First assembled from
long sequences, the PRG is then augmented with local variation information, with SNPs
and indels added to all paths at appropriate positions. Dilthey and colleagues develop
a genome inference model based on the comparison of the PRG to a DBG built from
reads from a given individual. By comparison between these two structures, weighted
by k-mer frequency in the genome and PRG, they provide sufficient annotations to the
PRG to run an HMM on the graph to infer the most-likely underlying pair of haplotypes.
Short read alignment can be used to map the full reads back to these haplotypes in an
ad hoc manner in order to find new small variation against them and fully resolve their
sequences. The authors demonstrate that this method can be applied to the human
MHC, where high sequence diversity frustrates methods optimized for typical regions of
the human genome.

1.4.3.6 Succinct pangenomic sequence indexes

Generalizations of the FM-index to support indexing of sequence DAGs, or equivalently
regular languages, yielded a number of short read to sequence graph aligners. Such
methods enable pattern matching against pangenome graphs in much the same way as
done by FM-index based short read aligners.

The Generalized Compressed Suffix Array (GCSA) [248, 249] enables pattern matching
against arbitrary finite regular languages. It indexes a reverse-deterministic automaton21

that encodes the sequence DAG implied by a VCF and reference genome. To enable
path queries, it builds the BWT based on the sorted prefixes of the language encoded in
the automaton, adding support structures that allow pattern search as in an FM-index.
Additional support bitvectors akin to those used to encode and index labeled trees [80]
allow the traversal of the sequence DAG during query matching. Sirén constructs the
index using the prefix-doubling method used to construct sorted suffixes, wherein prefixes
and their starts and ends may be extended from length L to 2L through a sort and join
operation. Because it indexes a memoryless automaton and the construction requires the
enumeration of all the prefixes of the automaton, GCSA suffers from exponential costs in
index generation in the order of the number of possible recombinations represented in the

21Reverse determinization ensures that each prefix of this automaton can only have a single starting
position.

40 Introduction

sequence DAG. Careful curation of the pangenome allows the construction of the GCSA
for the entire human genome in the memory of an available computer (1TB), provided
the construction is broken into chromosomes and local complexity in the input sequence
DAG is reduced. Experiments with the GCSA used backtracking search as in BWA [151]
to directly align reads with differences from the indexed graph, but the method was not
developed into a full-featured short read alignment method.

Alternative schemes make no fundamental change to the CSA/FM-index model, but
rather embed information about particular kinds of pangenome graphs into the sequence
that is indexed. BWBBLE [107] encodes SNPs by extending the reference alphabet to
include ambiguity codes which match more than one DNA base. To encode indels, it
extends the reference by adding a sequence for each indel which includes the non-reference
allele and the surrounding 2l bases of the reference. The resulting index can support
queries of up to length l. A mapping between the positions in the extended reference and
the original reference sequence space is used to project alignments from the extended
reference to the base reference. This approach is simple and allows for a linear-time
indexing of the pangenome, but the added complexity of the extended reference and
larger alphabet required to represent SNPs yield a query time that is 100-fold slower
than the backtracking BWA method [107].

In gramtools [165], a particular kind of sequence DAG is indexed in a large-alphabet
CSA based on wavelet trees [100].22 Maciuca and colleagues develop an encoding for a
sequence DAG in which bubbles may not have any deeper internal structure, and any
traversal across a bubble is required to contain sequence. Effectively, bubbles contain a
number of alternate alleles that may be represented as linear sequences, and conveniently,
this kind of graph is exactly that which is used in VCF. To build its vBWT index of
the graph, gramtools linearizes the alt-bubble sequence DAG into an integer vector (the
“linear PRG”) in which DNA bases are represented normally while the structure of each
bubble is encoded as a series of alternate alleles delimited by i, flanked by delimiters i−1.
Each bubble gets a unique even integer i, requiring the use of alphabets with millions
of symbols. A CSA-based FM-index is then built from the linear PRG. The backwards
search algorithm is augmented to consider the alternate alleles when it encounters an odd
integer greater than 4 (the alphabet space allocated to DNA sequence encoding). The
use of a unique pair of integers for each bubble ensures that the alleles in the bubble will

22Wavelet trees reduce the representation of a large alphabet of size Σ into a tree of O(log Σ) bitvectors
that recursively partition the sequence space into each character. These bitvectors may be compressed
efficiently while maintaining accessibility, and by augmenting them with rank and select supports the
entire structure can be used to determine the number of each class of character before a given position,
or select the ith of a given character. This allows for the implementation of LF mapping on a CSA
represented in a large alphabet.

1.4 Graphical techniques in sequence analysis 41

be sorted together in the CSA of the linear PRG. The encoded bubble structure allows
backward search to furcate across the alternative alleles, and a new suffix array interval
is added to a heap of intervals that are extended together at each step. As this scheme
results in an exponential increase in the number of suffix array intervals, the input set of
alleles must be structured in a way to reduce the density of bubbles. In their experiments
the authors set an allele frequency threshold and merge alleles within a certain window
size into larger haplotype alleles23. It is perhaps due to this exponential factor that
gramtools’ query performance is many times slower than BWBBLE and around 1000
times slower than bwa mem on a linear version of the same reference [165]. In effect, the
method trades exponentially expensive construction for exponentially expensive queries.
Gramtools does not implement any local alignment model, and to demonstrate the
method’s conceptual utility, the authors apply it to infer the most-likely linear genome for
a given query set, to which the read set is ultimately mapped using a standard aligner.

HISAT2 implements variation-aware alignment against human genome scale graphs,
including alignment to RNA splicing junctions [130]. Its hierarchical GFM-index structure
allows seeding alignments against sequence DAGs. To find seeds globally, it uses an
implementation of the generalized compressed suffix array (GCSA) [248]. It builds
the global index including common short SNPs and indels. Then a set of local GCSA
indexes are used to allow fast search of the splice graph and determination of candidate
splicing junctions even when supported by minimal evidence in the read. HISAT2 is an
important point of reference as a scalable and mature implementation of sequence to
graph alignment, and is presently the only widely-used aligner based on the GCSA index.
Like other methods, HISAT2 writes BAM alignments resulting from the expression of
alignments to the sequence graph against the linear reference genome. Unlike the other
pangenomic aligners, HISAT2 can achieve very high throughput, and is competitive with
standard short read aligners even when considering splicing and small variants.

Sirén’s more recent work on this topic has produced GCSA2 [247]. This model
removes the automaton reverse-determinization step, allowing the index to be built on
top of any kind of graph. GCSA2 indexes a DBG generated from a bidirectional sequence
graph in which nodes retain both k-mer identity and their starting and ending positional
context in the graph. This positional information is used to drive the prefix doubling step
required to build the BWT of the DBG. The space requirements of GCSA are avoided
by terminating the prefix doubling at a length appropriate to accommodate queries
of interest, which in practice is limited to 256bp. By computing the longest common

23The algorithm used to convert the input VCF into the haplotype bubble form appears to be the
same as in vcfgeno2haplo in vcflib: https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp.

https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp

42 Introduction

prefix array (LCP) of its sorted suffixes, GCSA2 encodes the implied suffix tree, which
supports MEM-based seed generation algorithms for efficient and sensitive alignment
against variation graphs.

1.4.3.7 Mapping to k-mer based pangenome indexes

A k-mer index is trivial to build from a graph: one just needs to be able to enumerate
or sample k-long walks through the graph and link the graph position to the k-mer in
an efficient hash table or other kind of index. The size of the index can be reduced
by sampling k-mers in some pattern. This indexing strategy was used in an early
version of vg, which supported experiments by the GA4GH-DWG [196] oriented at
understanding the utility of various graphs constructed for a set of loci where GRCh38
encoded alternative sequences. This same indexing technique is used by a proprietary
method developed by members of the GA4GH-DWG from Seven Bridges Genomics Inc.
(SBG) [216]. The SBG graph aligner’s (SBGA) input is constructed from higher-frequency
variants found in various public variation resources. It masks out regions of high allelic
complexity and builds a reference-rooted edge-labeled sequence DAG to serve as an
alignment target. To enable graph mapping it builds an index of spaced k-mers by
walking short segments of the graph. The k-mers and their locations are used as seeds to
establish mapping candidate loci. A local alignment is obtained for each candidate, and
the output is transformed into the reference space as BAM.

Curiously, to align the reads to the graph locally SBG’s aligner does not use a method
like POA, and instead uses a kind of local backtracking exact matching against the tree
of paths through the local graph which has exponential complexity with respect to the
density of variation. If the variant density and read error rates are kept low, this scheme
allows SBGA to achieve extremely high read throughput, equivalent to that of bwa mem
without any apparent loss in accuracy on the linear reference. In this context the authors
demonstrate their method can significantly (although slightly) improve sensitivity to
known indels. However, the method is not adaptable to other graph types or sequencing
contexts, with reports from users indicating high increases in runtime with increased read
error and variant density. Due to the fact that SBGA is closed source and proprietary it
is not possible to appreciate exactly why.

1.5 Overview and objectives
Resolving the genome of a sample de novo requires sequencing and assembly. Standard
approaches to assembly are built on graphical models that allow for ambiguity, and out

1.5 Overview and objectives 43

of this system they attempt to derive a set of contigs which represent the true haplotypes
of the genome. When we have already assembled a genome related to the one we wish to
infer, we can describe our new sample in terms of a reference genome, with ambiguity
and variation represented only in the alignments of the new sequences where they can
be mapped to the reference genome. This reduces the cost of sequencing, as we can
infer much of the genome using lower sequencing coverage and shorter reads, but it also
exposes resequencing based genome inference to reference bias, which is a distortion of
inferred genomes towards the sequence of the reference genome.

I posit that by extending the reference genome to be a pangenome with a graphical
representation, we can enable population aware resequencing that avoids reference bias
to any particular linear reference. The model I develop, the variation graph, extends
the bidirectional sequence graph models used in assembly to support the labeling of
paths through the graph, and allowing the representation and relation of linear reference
systems within itself.

Variation graphs are related to a wide array of graphical models used in bioinformatics.
They have similarity with string graphs, multiple sequence alignments, and whole genome
alignment graphs. This indicates that they could serve as a unifying basis for many
domains of sequence analysis which have traditionally been separated by methodological
differences, such as assembly and variant calling.

Recently, several methods have been published which provide variation-aware align-
ment or genotyping based on sequence DAGs built from population resequencing. These
methods demonstrate the difficulty of the problem of generalizing resequencing to graph-
ical reference systems at the multi-gigabase scale of vertebrate genomes. In virtually
all cases, they use a graph reference model internally, but express their results in terms
of a linear reference genome, producing BAM alignments or genotyping results in VCF
format. None implement a generic strategy to work with a graphical model equivalent
to the variation graph. The method I develop, vg, is not the first pangenomic aligner,
but it is the first that models its results in terms of the pangenome itself, enabling full
resequencing analyses to be completed within the graphical model.

In the following chapters I will precisely define the variation graph and associated
data models that allow representing all kinds of resequencing data types in the context of
a variation graph. Then I will describe the algorithms implemented in vg that enable the
use of variation graphs as a basis for genome analysis, including their construction from
many data sources, serialization and visualization. I will present indexing methods that
support the queries needed to enable resequencing, and I will provide algorithms that
implement efficient read alignment to large scale graphs. Finally, I will cover applications

44 Introduction

of the method I developed. I will show that vg is applicable to a wide range of genomic
inference problems, with a particular focus on the quality of alignment of both short and
long sequence reads against variation graphs constructed from all kinds of sources.

Throughout this work I use the first person singular “I” to refer to work that I
completed alone, while the plural “we” where presenting work completed in collaboration
with others. Wherever possible, I clarify the nature of the collaboration and identify my
collaborators.

Chapter 2

Variation graphs

Variation graphs (VGs)1, previously introduced in section 1.3.2, combine a bidirectional
sequence graphs with paths that model sequences as walks through the positional space
of the graph. They link graphical models and linear sequence models. This allows them
to be used to model the relationships between collection of sequences, including all
variation contained therein. The encapsulation of these two divergent ways of modeling
about bioinformatic data systems allows them to bridge traditionally isolated analysis
modalities.

In this chapter, I will articulate the variation graph model and lay out the algorithms
and data structures that enable its use as a reference system in pangenomic resequencing.
First I will provide formulations for the graph, its paths, edits, alignments, and genotypes
define within it. Then I will present algorithms that induce the variation graph from
different data models introduced in the previous chapter. I describe the serialization
techniques used to exchange variation data via computer files or network connections. I
develop index structures to enable queries of the graph’s topology, sequence, and path
spaces, and algorithms to derive optimal alignments to the graph. Understanding variation
graphs requires techniques to visualize them, and I will present various approaches, each
with particular advantages and drawbacks. Working with variation graph references
necessitates a number of graph-modifying operations, including augmentation, sorting,
pruning, and bubble simplification. Finally, I will discuss how variation graphs can provide
normalized basis spaces for the analysis of pangenomes, such as through various projections
of alignment sets and the graph including coverage maps, ultrabubble decomposition,
and haplotype matching.

1I will refer to variation graph as VG, and to the software implementation of the VG model vg

46 Variation graphs

2.1 A generic graph embedding for genomics
We define a variation graph to be a graph with embedded paths G = (N, E, P) comprising
a set of nodes N = n1 . . . nM , a set of edges E = e1 . . . eL, and a set of paths P = p1 . . . pQ,
each of which describes the embedding of a sequence into the graph. By generalizing these
paths to support edits against the graph, we provide a mechanism to describe relations
between the graph and other sequences. Augmenting the path with additional information
important to sequence analysis allows us to construct an alignment. Collections of pairs
of paths covering the space of two graphs describe a graph to graph alignment, or
translation which can be generated when the graph is edited, to allow for the projection
of coordinates and sequences in one graph into the space of the other. A limited form
of this translation is a genotype, which maps the implied bubble formed across multiple
copies of a homologous locus into the space of the graph. Collections of genotypes are
the primary output of resequencing. Phasing algorithms extend genotypes into longer
phased haplotypes, which we record as paths through the graph. These data models thus
provide a sufficient informational basis for resequencing against variation graphs.

2.1.1 The bidirectional sequence graph

Each node ni represents a sequence seq(ni) that is built from an alphabet Σ = {A, C, G, T, N}.
Nodes may be traversed in either the forward or reverse direction, with the sequence being
reverse-complemented in the reverse direction. We write ni for the reverse-complement
of node ni, so that seq(ni) = revcomp(seq(ni)). Note that ni = n. For convenience, we
refer to both ni and ni as “nodes”.

Edges represent adjacencies between the sequences of the nodes they connect. Thus,
the graph implicitly encodes longer sequences as the concatenation of node sequences
along walks through the graph. Edges can be identified with the ordered pairs of oriented
nodes that they link, so we can write eij = (ni, nj). Edges also can be traversed in either
the forward or the reverse direction, with the reverse traversal defined as eij = (nj, ni).
VGs can contain ordinary cycles (in which ni is reachable from ni), reversing cycles (in
which ni is reachable from ni), and non-cyclic instances of reversal (in which both ni and
ni are reachable from nj).

2.1.2 Paths with edits

We implement paths as an edit string with respect to the concatenation of node sub-
sequences along a directed walk through the graph. We do not require the alignment

2.1 A generic graph embedding for genomics 47

described by the edit string to start at the beginning of the sequence of the initial node,
nor to terminate at the end of the sequence of the terminal node. To allow the path
model to support differences from the graph, each path is composed of a series of node
mappings pi = m1 . . . m|pi| which are semantically identical to the alignment format
used by standard aligners. Each mapping mi = (bi, ∆i) has a starting position encoded
as a node and offset in the graph bi = (nj, oi) and a series of edits ∆i = δ1 . . . δ|mi|.
Edits δi = (fi, ti, ri) represent a length fi in the graph node nj (a “from length” in the
reference), a length ti in the sequence the path encodes (a “to length” in the query), and
an additional sequence ri that would replace the sequence at the given position in the
reference in order to transform it into the query. In the case of exact matches, we allow
the replacement sequence ri to be empty.

Alignments are often described in terms of matches, mismatches, and indels. We
encode matches when fi = ti ∧ ri = ∅, single mismatches when fi = ti = 1 ∧ ri ̸= ∅,
deletions when fi > 0 ∧ ti = 0 ∧ ri = ∅, and insertions when fi = 0 ∧ ti > 0 ∧ ri ̸= ∅. As
paths are described by a series of mappings with independent positions, they can represent
all kinds of structural variation relative to the graph. When mapping positions are always
at the start of a node, the edit set for the path contains only matches, and the edges
traversed by the path are all present in the graph2, we say that the path is embedded. The
paths from which we construct the variation graph are fully embedded, and in practice
paths that contain differences occur only in the alignment of new sequences into the
graph.

2.1.3 Alignments

Auxiliary read information is important when analyzing collections of DNA sequencing
data sets. Each read has a name, and an identity related to a particular sequencing
experiment. It may be related to a particular genomic sample or individual. DNA
sequence reads themselves result from a previous set of analyses run on raw observations
derived from DNA, perhaps fluorescence or current traces or images. The process of
collapsing this raw information into the sequence read yields a confidence in addition to
a base call. These are recorded in a quality string in FASTQ. The need to collect this
information has resulted in the development of the SAM/BAM sequence alignment format,
which provides a standard for linking the called bases (sequence), quality information,
read name, features of the alignment against a reference genome and additional optional
typed annotations.

2Note that paths may contain disjoint mappings that are not connected by edges in the graph, which
allows them to represent structural variations.

48 Variation graphs

I follow this same model in developing an alignment format for read alignments
to the graph. An aligned set of sequences Q, A = a1 . . . a|Q|, represents a sequencing
experiment. Each aligned read connects a sequence, an (optional) quality string, a
path through the graph including possible edits, and an optional set of Di annotations:
ai = (si, qi, pi, k1 . . . kDi

). In principle the read sequence can be reconstructed from the
path, but retaining the sequence information makes the alignment object lossless with
respect to the input FASTQ and provides redundancy which can help in data processing.

2.1.4 Translations

A generalization of the alignment is the translation set Φ = ϕ1 . . . ϕ|Φ|, which relates paths
in different graphs to describe the mapping between them. A translation ϕ = (pf , pt)
defines the projection between two paths which may arise in the context of two graphs
Gf and Gt. In this use each pf corresponds to a path relative to Gf (conventionally the
base or reference graph), and each pt to some path in Gt.

If each node and edge and path in both graphs is represented in some graph translation
in Φ then it provides an isomorphic relationship between the graphs. Provided each
Φ encodes an isomorphism, then we can layer a series of Φi together to provide a
coherent coordinate space across any number of updates to a given graph. Consider a
function pattern translate, which allows the projection of paths relative to Gf through
translations Φ to yield paths in Gt: translate(pi, Φ)→ pj ∈ Gt, and similarly allows the
transformation of a base graph into a target graph: translate(Gf , Φ)→ Gt. If we have a
series of (Gi, Φ1) . . . (Gρ, Φρ), where translate(Gi, Φi)→ Gi+1 and thus each Φi describes
an isomorphism between Gi and Gi+1, then we can generate a graph translation Φ∆

providing translate(G1, Φ∆)→ Gρ. We build this graph translation with the function
layer(Φα, Φβ)→ Φα◦β by rewriting each path translation ϕi ∈ Φα so that its pt refers to
Gβ. We do so by projecting the pt through Φβ, and finally adding any ϕj ∈ Φβ for which
pf = ∅, as these represent insertions of new sequence in Gβ relative to Gα.

2.1.5 Genotypes

As path to path relationships can provide descriptions of allelic diversity, they form
the basis for a graph-relative genotype encoding. To represent the exact genotype of
a particular sample with ploidy ν at a given locus ι we can simply collect the multiset
of alleles πι = (p1 . . . pν). We could alternatively build a probabilistic model ϖ of
an unphased genotype by using a set of µ alleles {p1 . . . pµ}. To do so, we associate
likelihoods γξ for each possible genotype πιξ

that could be sampled from the alleles such

2.2 Variation graph construction 49

that ϖ = γ1 . . . γ µ!
ν!(µ−ν)!

. In practice, we develop our γξ out of quality information from
the reads and a sampling model related to ν [88, 144]. Existing genotyping models can
be applied to drive genotyping using read sets aligned to the graph, and the output of
the genotyper is defined fully in the space of the graph.

2.1.6 Extending the graph

Given an alignment ai, we can edit the graph G so that it includes the alignment and
the sequence it represents as an embedded path, augment(G, ai)→ (G′, Φ), such that
translate(pi, Φ) ∈ G′. To update the path space of the graph we project all paths,
including that of ai, through the translation implied by the augmentation of the graph
with pi. Any other alignment aj whose path pj overlaps pi would no longer be valid,
although it could be projected through the graph translation Φ as well to express it in
the space of the new graph G′. Updating the graph one alignment at a time is inefficient
as we need to build and layer a new translation for each alignment. It is simpler to edit
the graph in a single step, taking a collection of alignments and including them in the
graph, edit(G, A)→ (G′, Φ).

One way to accomplish this is to first take the set of unique mappings represented
in the paths of A, Ω = {m1 . . . m|Ω|}, and for each mi cut ni at the breakpoints where
any new variation would need to be added in, adding new nodes to represent the cut
portions. Then, walking through each alignment we add in unique novel sequences and
their linkages to the preexisting nodes or new breakpoints to the graph. This process
will disrupt the identifier space of the nodes and edges of the graph, but it naturally
yields a translation that can be used as described in section 2.1.4. Both alignments and
genotypes are based on paths, so this mechanism can be used to extend the graph based
on any sequence level differences observed through alignment or variant calling.

2.2 Variation graph construction
We will use variation graphs as the core model for a number of essential processes in
genome inference. This model can represent many graphical sequence models used in
genomics. Each one necessitates conversion into the variation graph model. Here I describe
the transformation of a number of graphical models into variation graphs, including
MSAs, assembly graphs, and alignment graphs induced from pairwise alignments. In
some cases the conversion is direct, but in others it requires the addition of new labels to

50 Variation graphs

our model. Variation graphs may also be built from first principles, provided a function
that aligns a sequence into the graph and the editing operations described in 2.1.6.

2.2.1 Progressive alignment

If we have a series of k queries q1 . . . qk, then we can build a progressive alignment by a
series of edit and alignment operations applied to the variation graph. First, take the
empty graph G∅, to which any alignment will yield a path p1 that has no mappings and
which encodes the query sequence q1 as a replacement sequence in the path. We then
edit the graph to add the sequence using edit(G∅, p1)→ G1. For each subsequent qj we
obtain the next graph by finding the alignment align(qj, Gj)→ pj and editing the graph
with it to yield the next graph edit(Gj, pj)→ Gj+1 until j = k and we obtain our final
graph. This simple approach is attractive as it allows the variation graphs to be built
from whole sequences using only techniques that are native to the variation graph model
itself. However, it is obviously order dependent, with potentially different results if the
set of input sequences are presented in different orders. I later presents results based on
this multiple sequence to graph alignment process, vg msga.

2.2.2 Using variants in VCF format

As discussed in section 1.4.3.4, the VCF format that is popular in resequencing implies
a sequence DAG. We can consider how to build a trivial variation graph using the
core operation edit. First, we build a variation graph from the reference genome Qref

: Gref. This graph contains one path pref : seq(pref) = Qref. As described in section
2.1.5 each locus reported in VCF can be encoded as a set of paths Pvcf = p1 . . . pV ,
each representing a different allele. We now edit the graph to embed these allele paths,
edit(Gref, Pvcf) → Gvcf. It is possible to regenerate the VCF file input by walking the
positions of pref and enumerating the overlapping paths as alleles in VCF format.

For efficiency, we have not implemented VCF to variation graph conversion with
specifically this algorithm, but instead build up Gvcf by walking along the reference
genome Qref and processing each locus sequentially. This exploits the partially ordered
property of the VCF to limit memory requirements. For regions before, after, and
between variant records at reference offsets i and j we add a node ncurr : seq(ncurr) =
substr(Qref, i, j), linking these by edges to those nodes ending at position i of the
reference and adding corresponding mappings for the reference path to pref. At simple
variant sites we add each of the alleles as a new node nvari

, including an edge for each

2.2 Variation graph construction 51

ecurr≺vari
. Here we also handle the reference allele differently in that we append a

mapping mref = ((nref, 0), ∅) to pref.
As long as the VCF records are ordered, this process allows for streaming conversion

of the VCF format into a variation graph. However, VCFs used to represent structural
variation often do not describe a fully-ordered series of loci. For instance, a large deletion
may be described in one record, and followed by a number of records describing variation
on the reference within the scope of the deletion. In the graph, this results in the nesting
of bubbles, and requires a deviation from a simple streaming algorithm in order to be
handled. Deletions must be recorded and linked into the downstream portion of the
graph as it is later generated.

VCFs may also encode phased haplotypes, which, like the reference, have a natural
representation in the graph as paths. Parsing these may require multiple passes over
the VCF due to the memory requirements for storing large numbers of haplotypes
uncompressed and cross-indexed to allow traversal in RAM. To prevent O(H|Gvcf|)
growth of the required memory to store these, we implement compression strategies on
the haplotype set that exploit their repetitiveness. The VCF format does not impose
a semantic requirement that the encoded haplotypes are valid, which introduces some
complexity in the implementation of this method. We must break haplotypes where they
are found to be invalid in order to record them in VG format. For instance, a phased VCF
may report more than ν (expected ploidy) alleles for a given individual, such as when
deletion and SNP variants overlap. We expect these haplotype paths to be embedded
in the graph. Although haplotype sets are equivalent to large collections of paths, we
term their components threads to indicate that they have a simpler representation than
arbitrary paths.

2.2.3 From gene models

A reference-based RNA splicing graph is usually expressed as a set of named intervals
in BED or the General Feature Format (GFF). As with the generic VCF generation
algorithm, we can convert the transcripts to alignments A relative to the graph. Then we
can then embed the transcript paths in the graph edit(Gref, A)→ Gsplice. Any transcript
in our set is thus encoded by the graph, and can be matched to it directly with alignment.
The resulting structure will also support novel isoforms built with splices from the known
set.

52 Variation graphs

2.2.4 From multiple sequence alignments

A multiple sequence alignment in matrix form has a simple translation into a sequence
DAG and thus a VG [140]. Given a set of sequences Q = q1 . . . qκ their υ-long mutual align-
ment may be described in a κυ matrix X designed to maximize ∑υ

i=1
∑κ

j=1
∑κ

k=1 δXijXik
,

where δ is the Kronecker delta, or some generalization of this. The alphabet used to
encode the matrix is the same as the input sequences with the addition of a special gap
character □ which does not match itself, and gaps thus do not contribute positively
to the matrix score. To build a variation graph Gmsa from the MSA we proceed from
i = 1→ υ through X. For each unique character B in the query alphabet Σ \□ found
in each row i, we create a node nB in Gmsa and append a mapping to each path pi for
which nB ∈ qi. We construct the edges of Gmsa by taking the distinct pairs of consecutive
node traversals found in the path set Pmsa produced after the generation of the nodes
in MSA traversal. Adding add an edge eij for each pair of nodes (ni, nj) consecutively
traversed in Pmsa ensures that our sequences are present as walks through the graph.
We can optionally compact series of nodes (which represent single characters) where no
furcations occur to obtain a simpler graph.

Instead of a matrix, we can formulate the multiple alignment as an alignment graph
(described in section 1.4.2.5). By making this graph bidirectional, and thus equivalent in
information content with the Enredo graph, it becomes equivalent to a variation graph.
Aligners that produce data formats of this type, such as Cactus [205], can thus be used
to produce VGs, so long as the relationship between the input sequences and the graph is
recorded and can be converted into a path description. In section 3.1.2 I discuss the use
of this method to build a pangenomic reference system for a diverse set of yeast strains.

2.2.5 From overlap assembly and deBruijn graphs

Overlap-based sequence graphs used in assembly, described in sections 1.4.2.1, 1.4.2.2,
and 1.4.2.3, are nearly identical to variation graphs. The critical difference between these
models and the variation graph is that they attach a label to each edge (or node) describing
the alignment between the pair of nodes (or edges) which they connect. Variation graphs
do not support such a feature in their basic definition, as it is unimportant for any use
besides temporarily representing overlap graphs. We call the process of transferring
sequence information from the edges to the nodes bluntification.

We start by assigning the sequence of each node to be the sequence of the corresponding
read. If we shorten the sequence of a node to reduce an overlap between a pair of
nodes, it will render other overlaps on the same nodes incorrect. Thus, it is essential

2.2 Variation graph construction 53

that the bluntification algorithm work by the reduction of sets of overlaps on edges
which are transitively closed by connection to the same ends of each node, net(eij)→
∀ei∗ ∈ G ∪ ∀e∗j ∈ G, considering both strands of the graph when doing so. For each net
we apply a function pinch(net(eij))→ Gpinchij

, which reduces the overlaps between the
nodes in the net into a blunt-edged variation graph. We then link Gpinchij

back into the
rest of the graph by connecting with the inbound links to each node involved in the net.

In a de Bruijn graph or string graph as generated by SGA or Fermi2, overlaps are exact
matches and so are defined given only a length. This simplifies the implementation of
pinch, as no further computation is required to correctly determine the mutual alignment
of overlapping sequences. In contrast, overlaps in a generic string or overlap graph are
correctly defined as alignments. Resolving a single pairwise alignment into structures in
the graph is trivial, but it becomes considerably more complex when many sequences
map into a transitively closed set of overlaps. These nets can then be resolved into an
alignment graph by an algorithm similar to that given in section 2.2.6, but in practice,
vg implements bluntification using a pinch graph library developed for whole genome
alignment [205].

2.2.6 From pairwise alignments

A set of pairwise alignments imply a variation graph, however I know of no contained
method that will generate the variation graph or lossless string graph from these align-
ments. To explore this, I developed an algorithm to do so that operates in external
memory, which I here present in detail. It operates by conversion of the alignment set
into an alignment graph and the subsequent use of this graph in the elaboration of the
variation graph including paths representing the input sequences. The resulting graph is
a lossless representation of the input and the alignments between them. To distinguish
the approach from string graphs, which imply error correction, I call this variation graph
induction model the squish graph.

seqwish3 implements a lossless conversion from pairwise alignments between sequences
to a variation graph encoding the sequences and their alignments. As input, we typically
take all-versus-all alignments, but the exact structure of the alignment set may be defined
in an application specific way. seqwish uses a series of disk-backed sorts and passes
over the alignment and sequence inputs to allow the graph to be constructed in low
memory relative to the size of the input sequence set. Memory usage during construction

3https://github.com/ekg/seqwish

https://github.com/ekg/seqwish

54 Variation graphs

and traversal is limited by the use of sorted disk-backed arrays and succinct rank/select
dictionaries to record a queryable version of the graph.

As input, we have Q, which is a concatenation of the sequences from which we will
build the graph. We build a compressed suffix array (CSA) mapping sequence names to
offsets in Q, and also the inverse using a rank/select dictionary on a bitvector marking
the starts of sequences in Q. This allows us to map between positions in the sequences of
Q, which is the format in which alignment algorithms typically express alignments, and
positions in Q itself, which is the coordinate space we will use as a basis for the generation
of our graph. We encode the set of input pairwise alignments between sequences in Q

as object A. Although these alignments tend to be represented using oriented interval
pairs in Q, for simplicity and robustness to graph complexity, we describe A as a set of
pairs of bidirectional positions (sequence offsets and strands) [1 . . . |Q1 . . . Q|Q||] , such
that A = {(bq, br), . . .}. We sort A by the first member (bq) of each pair, ensuring that
the entries in A are ordered according to their order in Q.

To query the induced graph we build a rank/select dictionary allowing efficient
traversal of A, based on a bit vector Abv of the same length as A such that we record a 1
at those positions which correspond to the first instance of a given bq and record a 0 in
Abv otherwise. We record which bq we have processed in the bitvector Qseen which is of
the same length as Q. This allows us to avoid a quadratic penalty in the order of the
size of the transitive closures in Q generated by pairs in A.

Now we inductively derive the graph implied by the alignments. For each base bq

in Q not already marked in Qseen, we find its transitive closure cq := {bq, br1 , . . .} by
traversing aligned base pairs recorded in A. We write the character of the base bq to
an entry si in a vector S, then for each bc in cq we record a pair (si, bc) into N and its
reverse, (bc, si) into P . We mark Qseen for each base in each emitted cluster, so that we
will not consider these bases in subsequent transitive closures. By sorting N and P by
their first entries, we can build rank/select dictionaries on them akin to that we built on
A that allow random access by graph base (as given in S) or input base (as given in Q).

To fully induce the variation graph we need to establish the links between bases in S

that would be required for us to find any sequence in the input as a walk through the
graph. We do so by rewriting Q (in both the forward and reverse orientation) in terms
of pairs of bases in S, then sorting the resulting pairs by their first element, which yields
L = [(ba, bb), . . .]. These pairs record the links and their frequencies, which we can emit
or filter (such as by frequency) as needed in particular applications. In typical use we
take the graph to be given by the unique elements of L.

2.3 Data interchange 55

Our data model encodes the graph using single-base nodes, but often downstream use
requires identifying nodes and thus we benefit from compressing the unitigs of the graph
into single nodes, which reduces memory used by identifiers in analysis. We can compress
the node space of the graph by traversing S, and for each base querying the inbound
links. Maintaining a bitvector Sid of length equal to S we mark each base at which we
see any link other than one from or to the previous base on the forward or reverse strand,
or at bases where we have no incoming links. By building a rank/select dictionary on Sid

we can assign a smaller set of node ids to the sequence space of the graph.
Given the id space encoded by Sid we can materialize the graph in a variety of

interchange formats, or provide id-based interfaces to the indexed squish graph. To
generate graphs in vg or GFA format, we want to decompose the graph into its nodes
(S), edges (L) and paths (P). The nodes are given by S and Sid, and similarly we project
L and P through Sid to obtain a compressed variation graph.

2.3 Data interchange
In vg, a schema language, Google Protocol Buffers (Protobuf), is used to define a
compact description of data structures sufficient for the representation of all the required
components. One cause of this pattern was my involvement in the GA4GH-DWG at
the beginning of my thesis, which was then seeking a coherent way of describing graph
genomes4 to support pangenomic resequencing and related information exchange across
the internet. I implemented the schema for vg in the popular Protobuf schema language.
This provided a core API on which to build vg. It also implied a set of streaming data
formats, which I implemented as a template library capable of serializing any stream of
Protobuf objects. Due to the reliance on Protobuf, the only code needed to implement
reading and writing of these formats is vg schema and the stream library5. This greatly
simplified the process of developing libraries for working with the variation graph data
models. Although in practice the Protobuf data structures are slower to parse than
handmade C-struct serializations like BAM, the amount of effort required to begin writing
efficient and structured binary data formats was considerably less with the schema based
approach. Most importantly, the schema based definition of the core data types in vg
helped new developers and researchers using the system quickly appreciate the basic
concepts.

4https://github.com/ga4gh/ga4gh-schemas
5At the time of writing the schema, https://github.com/vgteam/vg/blob/master/src/vg.proto and

stream parsing library https://github.com/vgteam/vg/blob/master/src/stream.hpp total around 1000 lines
of code, and are sufficient to link any C++ program into the vg ecosystem.

https://github.com/ga4gh/ga4gh-schemas
https://github.com/vgteam/vg/blob/master/src/vg.proto
https://github.com/vgteam/vg/blob/master/src/stream.hpp

56 Variation graphs

Several data formats are important to vg. In .vg format, the graph itself is serialized
in non-overlapping chunks, where each edge eij is stored once in the chunk Gchunk : ni ∈
Gchunk. Path mappings must have a rank that identifies their position in the path in
order to be subdivided in this way. This allows them to be read in and rebuilt even if
they have been serialized out of order. A series of alignment objects is a sensible output
of the mapping algorithm vg map. The file format produced by writing out a series of
Protobuf alignment object serializations using the stream.hpp library is called GAM,
for Graphical Alignment/Map, in analogy to SAM (Sequence Alignment/Map format).

These data models have various other equivalent serializations. The GFA format can
be used to directly encode VGs. However, GFA lacks a representation of an alignment
with the semantics required by vg. VGs that are partially ordered can be deconstructed
into VCF files. As paths in variation graphs can be used to represent any kind of existing
annotations, data providers who represent annotations across many genomes (such as
ENSEMBL Genomes) can build their annotation sets which were previously spread across
many genomes into a single one embedded in a VG. To enable this several collaborators6

have developed a Resource Description Framework (RDF) compatible version of the core
VG model.

2.4 Index structures
As described in section 1.2.2, the large collections of read data produced by current
sequencing methods require efficient read alignment to support downstream analysis.
Typically, these methods develop indexes of their reference genome, using k-mer hash
tables or FM-index/CSA based data structures that support efficient arbitrary-length
exact matching. These indexes remain static during the resequencing analysis, and can
thus be designed to be very compact and to support efficient queries.

When the genome is just a linear string, distances between locations may be computed
trivially, and subsets of the sequence are simply substring operations on the vector
representing the genome, so no additional structure beyond a full text index is required
to seed the alignment of reads to the genome. However, this situation changes in graphs,
where the computation of distances is more complex and particular topologies of the
graph must be recorded and reproduced. Graph distances may be estimated using an
approximate sort and the paths embedded in the graph. However, to do so requires
efficient indexes of the path structure in the graph. Furthermore, loading the entire
graph into memory in a naïve manner can be very expensive, and effort is required to

6Jerven Bolleman and Toshiaki Katayama among others.

2.4 Index structures 57

minimize the runtime costs to enable resequencing even on lower-memory commodity
compute servers.

2.4.1 Dynamic in-memory graph model

Serialized in .vg or compressed GFA format, the graph of the 1000GP is not much larger
than the uncompressed human reference genome. However, the performance-oriented
implementation of the dynamic variation graph which I developed at the beginning of
my studies can use a hundred times this much memory when the entire graph is loaded
into RAM. In this scheme implemented in vg, indexes on the node identifier space of
the graph allow for fast traversal and query of nodes by identity and neighborhood, as
well as insertion or deletion of nodes and edges and associated editing of paths. Various
inefficiencies are accepted, such as on the hash table occupancies used to build these
indexes, in the pursuit of higher performance during dynamic modification of the graph.
I now believe that it should be easy to provide a dynamic VG in low memory by using a
succinct encoding, but I have not yet completed any work on this issue. Operating on
graphs of hundreds of millions of nodes with annotations like paths remains a difficult
problem. In most cases the graph can be subdivided (as with map/reduce processing
patterns [59] which underpin most industrial operation on large graphs [44]). This is
particularly easy to implement for sequence DAG VGs, allowing for us to work on graphs
of arbitrary sizes if they are approximately linear.

2.4.2 Graph topology index

The graph is unlikely to be changed during many kinds of analysis, and so we have the
opportunity to compress it into static data structures that provide efficient access to
important aspects of the graph with low memory overhead. Specifically, we care about
the node and edge structure of the graph and queries that allow us to extract and seek
to positions in embedded paths. We would like to be able to query a part of the graph
corresponding to a particular region of a chromosome in a reference path embedded in
the graph. Similarly, if we find an exact match on the graph using GCSA2, we would
like to load that region of the graph into memory for efficient local alignment.

We implement a succinct representation of variation graphs in the XG7 library, using
data structures from the C++ toolkit SDSL-lite [92]. Node labels and node ids are stored
in a collection of succinct vectors, augmented by rank/select dictionaries that allow the
lookup of node sequences and node ids. An internal node rank is given for each node, and

7“X” implies compression and “G” refers to the graph that is compressed.

https://github.com/simongog/sdsl-lite

58 Variation graphs

we map from and to this internal coordinate system using a compressed integer vector of
the same order as the node id range of the graph we have indexed. To allow efficient
exploration of the graph, we store each node’s edge context in a structured manner in an
integer vector, into which we can jump via a rank/select dictionary keyed by node rank
in the graph. Efficient traversal of the graph’s topology via this structure is enabled by
storing edges as relative offsets to the nodes to which they connect, which obviates the
need for secondary lookups and reduces the cost of traversal. Paths provided to XG are
used to induce alternative coordinate systems over the graph. We store them using a
collection of integer vectors and rank/select dictionaries that allow for efficient queries of
the paths at or near a given graph position, as well as queries that give us the graph
context near a given path position.

An XG index of G = (N, E, P) is composed primarily of the backing graph vector
Giv = g1 . . . g|N |, with each gi recording the edge context for node ni in the graph:
gi = (ηi, Ξi), a sequence vector Siv recording the sequences labels of the nodes in a
bitcompressed form, and a path membership mapping Npath. Each pi ∈ P is encoded
with a set of structures that allow random access to the graph by path position, which is
important for the use of paths as reference coordinate systems in the graph. A visual
sketch of this model is provided in figure 2.1.

To enable better compression, the node sequence space is recorded as a concatenation
of node labels Siv = seq(ni) . . . seq(n|N |), in which each node has an offset in this
sequence space defined by seqoffset(ni). In bitvector Sbv : |Sbv| = |Siv| we set 1 at each
first character in a node label, and 0 otherwise: Sbv[i] = 1 ⇐⇒ ∃j : seqoffset(nj) = i∨ 0.
Random access by node rank i is provided by function Sselect1

bv , allowing us to find the
sequence given a node rank in Giv.

Each ηi records node contextual information, including an external id, its offset in
the sequence vector, and the degree of ni in terms of inbound and outbound nodes:
ηi = [id(i), seqoffset(ni), |seq(ni)|, in(ni), out(ni)]. The use of an external identifier allows
the index to work on subsets of larger graphs, and the information about node degree
allows us to parse the edge records and efficiently traverse Giv.

The edge context Ξi enumerates the set of edges that connect to this node in a
structured way that allows for oriented traversals across the two strands of the graph.
To enable fast traversal we rewrite the edges in terms of relative positions in the encoded
Giv vector, which is stored as a bitcompressed integer vector using SDSL-lite’s template
primitives. Each node record is stored contiguously. We delimit the records by a secondary
bitvector Gbv, for which we build supports for functions Grank1

bv and Gselect1
bv , which allow

random access of Giv by node id. Previous designs decomposed the graph structure into

2.4 Index structures 59

CAAAAGTCTTGAGTAAG

10001111100111000

Siv
Sbv

Giv

Srank1bv 11112345666789999

Sselect1bv

1:CAAA

2:A

3:G

4:T

5:C

6:TTG

7:A

8:G
9:TAAG

🔷 path 1
🔷 3 🔷 5

🔷 6

🔷 8
🔷 9

1 56789 12 13 14

η5 =(5,8,1,2,1)

Ξ5 =(1,2,1)
... (ηi,Ξi) ...

p1offset

p1pos

p1ids

Npath 101011011

p1offset
rank1

p1offset
select1

1 3 5 6 8 9

1 5 6 7 10 11
10001110011000

11112344456666

1 567 10 11

Fig. 2.1 A visual presentation of the key elements of the XG index for the given graph.

a set of parallel vectors, but this required multiple select queries during traversal and
provided poor cache locality and performance.

Node to path membership is recorded in an integer vector Npath, which contains a
contiguous record of path ids that cross each node. Random access to Npath is provided by
a rank/select dictionary built on a bitvector delimiting the various node path membership
lists. Nodes with no path membership are marked in Npath with a 0.

Each path is represented in a set of succinct data structures that let us walk the path
by starting at a particular node, query the path position of a given node, or find the
node at a particular path position. We store the path pi = m1 . . . m|pi| by decomposing
its mappings into the nodes (id and orientation) it traverses piids = id(nj)∀nj ∈ pi and
pidir such that pidir [j] = 0 ⇐⇒ mj = (nj, . . .) ∨ 1 ⇐⇒ mj = (nj, . . .). To allow
rank and select queries on the node ids, we can store piids in a wavelet tree, although in
practice performance is greatly improved by also recording a minimum node id, which
decreases the alphabet size and thus memory and runtime costs of the wavelet tree. So
that we may transform nodes to path positions, we use an integer vector to store a
path position for each node traversal in the path, pipos . To go from path offset to node,
we build a bitvector that marks the beginning of each node traversal in the path in a

60 Variation graphs

manner similar to that used to mark the sequence beginning of each node in Siv, such
that pioffset is a bitvector of length ∑|pi|

j=1 |seq(pi[j])| where we have marked 1 for each
node start in the path, pioffset [j] =

(
1 ⇐⇒ ∃nk ∈ p : j = ∑k

m=1 |seq(pi[m])|
)
∨ 0. By

implementing prank1
ioffset

we can find the node at a given path position Q by prank1
ioffset

(Q) →
j :
(∑j

k=1 |seq(pi[k])| ≤ Q ∧∑j+1
k=1 |seq(pi[k])| > Q

)
. We can also find the position of the

jth node in a path as pselect1
ioffset

(j). A compressed suffix array (CSA) and rank dictionary
Pcsa and P rank1

name map from path name to internal rank of the path in P .
A number of compression techniques can be applied to the data models in XG to

reduce the size of the overall index without any loss in functionality. However, many of
these compression methods producing compressed bitvectors, integer vectors, and wavelet
trees, will result in slower access. In the context of read alignment, such losses may be
undesirable as long as there is sufficient memory to load the entire index into system
memory, and so I have tuned the index by choosing compression strategies appropriate
for its use on current datasets.

2.4.3 Graph sequence indexes

Indexing the sequence space of a variation graph can be achieved using the same k-mer
based techniques frequently used in pairwise alignment. In the early stages of this
project, I implemented a k-mer based index using a disk-backed system (see section
2.4.5). An efficiently-built in-memory index of k-mers, perhaps sampled and possibly
w, k-minimizers [170, 150], appears to be a reasonable basis for a sequence to graph
aligner, but I did not explore this beyond these initial experiments. Our research focus
on the replication of results of the short read mapper bwa mem, which seeds alignments
with maximal exact matches (MEMs), encouraged a similar approach for vg. MEMs are
found using a suffix tree related data structure, which provides access to a wide range of
efficient sequence matching and inference algorithms, and a strong basis for a sensitive
read aligner.

On seeing my early experiments, Jouni Sirén, who had recently joined our lab,
suggested that there might be a way to adjust his GCSA index model for partially
ordered graphs to work on arbitrary graphs. He proposed a de Bruijn graph (DBG)
transformation of the graph as input to the indexing process. The resulting indexing
model is similar to both GCSA, in its encoding of the graph topology, and succinct DBGs
[23], which are also developed from BWTs based on a k-mer set. Sirén’s design allows
for the use of much longer k-mers than are typically considered in DBGs, with the final
DBG to be indexed having k = 256. As few contemporary reads are likely to generate

2.4 Index structures 61

256bp-long sequences with no mismatch from the reference8, this approach effectively
allows us to find all the exact matches for a typical sequencing read. To be more precise,
we find supermaximal exact matches (SMEMs) as defined in [146]. The addition of the
longest common prefix (LCP) array alongside GCSA2’s BWT effectively generalizes all
essential operations on a suffix tree to the GCSA2, and enables us to find SMEMs and
develop sensitive MEM-based seeding heuristics using the index. The design of GCSA2
is wholly Sirén’s work [247], and it forms one of the core components of the vg mapper
paper, which we coauthored. I present it here because the mapping algorithm I developed
for vg relies on it heavily.

To reduce redundancy, GCSA2 uses a pruned DBG whose nodes may have labels
shorter than k where these shorter strings still uniquely identify the beginning of their
corresponding paths in the unpruned DBG.

0:# 1:G 2:C

3:A

4:T

5:T

6:C 7:A

8:G

9:T 10:A 11:$
###
0 : 2

##G

0 : 1
#GC

0

GCA

1

GCT

1

CAT
2, 6

CTT

2

ATC

3

ATG

3

TTC

4

TTG

4

TCA

5

TGT

5

ATA

7

GTA

8

TA$
9

A$$
10

$$$
11

Figure 2: Left: Input graph G = (V,E), with each node v ∈ V labeled with v : G.label(v). Right: The order-3
de Bruijn graph G′ = (V ′, E′) of graph G, with each node v′ ∈ V ′ labeled with G′.key(v′) and G′.value(v′). Both:
Edges (t, s) are not shown. The highlighted path in the de Bruijn graph is a false positive, as it consists of two
disjoint paths in the input graph.

Lemma 3.4. (No short false positives)
Let G = (V,E) be a graph, let G′ = (V ′, E′) be an
order-k pruned de Bruijn graph of graph G, and let
X ∈ (Σ \ {#, $})∗ be a pattern with 1 ≤ |X| ≤ k. Then
G′.locate(X) is a set of start nodes v ∈ V of paths
matching the pattern in graph G.

Lemma 3.5. (Pruning) Let G = (V,E) be a graph, let
G′ = (V ′, E′) be the order-k pruned de Bruijn graph
of G with key set K, let K ∈ Σ∗ be a string of length
|K| > 0, and let V ′K be the set of nodes v′ ∈ V ′ having
string K as a proper prefix of G′.key(v′). If |V ′K | > 0 and
G′.value(u′) = G′.value(v′) for all u′, v′ ∈ V ′K , the path
graph with key set (K \ {G′.key(v′) | v′ ∈ V ′K}) ∪ {K} is
an order-k pruned de Bruijn graph of G.

We can compress a de Bruijn graph structurally
by merging sets of nodes sharing a common prefix of
their keys, as long as the conditions of Lemma 3.5
hold. Let G′ = (V ′, E′) be an order-k pruned de Bruijn
graph, and let G′′ = (V ′′, E′′) be the same graph after
further pruning. Each node v′′ ∈ V ′′ is an equivalence
class of nodes V ′(v′′) ⊆ V ′ corresponding to a shared
prefix G′′.key(v′′) of keys. For all v′ ∈ V ′(v′′), we have
G′.value(v′) = G′′.value(v′′). See Figure 3 for an example
of a pruned de Bruijn graph.

Definition 3.6. (Maximally pruned graph)
Let G′ be a a pruned de Bruijn graph of graph G. We
say that G′ is maximally pruned, if we cannot prune it
any further using Lemma 3.5.

Lemma 3.6. (Maximal pruning) Let G′ = (V ′, E′)
be a maximally pruned de Bruijn graph of G = (V,E).
Then |G′.key(u′)| ≤ |G′.key(v′)|+ 1 for all (u′, v′) ∈ E′.

4 GCSA2
As in the original GCSA, we sort the nodes of the
path graph in lexicographic order, encode the indegrees

and outdegrees in bitvectors IN and OUT, and store
the predecessor labels in BWT. See Figure 3 for an
example. If lexicographic range [spi+1, epi+1] matches
suffix X[i + 1, |X| − 1] of pattern X, we can find the
range [spi, epi] matching suffix X[i, |X| − 1] as

[spin, epin] = [IN.select(spi+1, 1) + 1,

IN.select(epi+1 + 1, 1)];

[spout, epout] = [LF(spin, X[i]),

LF(epin + 1, X[i])− 1];

[spi, epi] = [OUT.rank(spout, 1),

OUT.rank(epout, 1)].

In order to support locate queries, we sample the
values of a node, if the node has multiple incoming edges
or the values cannot be derived from the predecessor.
We may also sample other values to improve query
performance. The sampled nodes are marked in bitvector
BS , the number of values in each sample is encoded in
unary in bitvector BV , and the sampled values are stored
in integer array VS . A detailed description of the data
structure can be found in Appendix B.

GCSA2 construction starts from paths of length k in
the input graph. We build a maximally pruned order-2k,
order-4k, or order-8k de Bruijn graph using a similar
prefix-doubling algorithm as in the original GCSA [43],
and encode the result as a GCSA. To avoid excessive
memory usage, we keep the paths and the graphs on
disk, and read only a single chromosome at a time into
memory. The details of the construction algorithm can
be found in Appendix C.

We can improve the query performance with (max-
imally pruned) de Bruijn graphs by using a simplified
encoding (Appendix D). We replace BWT and IN with
bitvectors Bc for all c ∈ Σ, where Bc[j] = 1 if and only
if node j in lexicographic order has a predecessor with

Fig. 2.2 A sequence graph and its de Bruijn transformation. Reprinted from [247].

This pruned graph is then encoded in a generalization of the FM-index built on a
BWT of the k-mers in the pruned DBG. The FM-index is extended to support search over
the DBG by adding auxiliary bitvectors which record the indegree and outdegree of nodes
in the pruned DBG. These are used in backwards search to adjust the suffix array ranges
that are considered, expanding them when the indegree is greater than 1 and contracting
them when the out degree is greater than 1, in effect encoding the graph structure into
the index in a space efficient manner optimized for traversal. This technique is the same
as that used in GCSA, although GCSA indexes a reverse deterministic automaton rather
than a DBG. Impressively, GCSA2 uses around 1 bit per k-mer in indexes of the 1000GP
pangenome graph for k = 128, which is favorable with comparison to true DBG indexes.

As an FM-index like structure, GCSA2 supports queries for a pattern X that
yield the suffix array interval matching a given pattern: find(X) = (spX , epX), and
locate(spX , epX) = {b1 . . . bcount(spX ,epX)} which yields the positions in the input VG
where the given patterns occur. The LCP array allows the index to support several

8Illumina’s reads rarely reach 256bp, and when they do they tend to have higher error rates in the
later cycles. The 10-15% error rate of PacBio and ONT sequencing mean that a 256bp exact match is
extremely unlikely, although PacBio circular consensus reads (CCR) may approach this level of accuracy.

62 Variation graphs

operations that require a suffix tree, including count(spi, epi), which returns the number
of matches for a given suffix array range, and parent(spi, epi) = (spj, epj), which allows
us to traverse the suffix links embedded in the suffix tree and forms the basis of maximal
exact match (MEM) inference using GCSA2.

###
0 : 2

##G

0 : 1
#G

0

CA
2, 6

CT

2

ATC

3

ATG

3

TT

4

TC

5

TG

5

ATA

7

GT

8

TA

9
A$
10

$$$
11

GC

1

key OUT BWT IN key BS BV VS

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1

0

1
1
1
1

1
1
1
1
0
1
0
1
0
1
1
1
1
1

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1
1
1
1
1
0
0
1
1
0
1

1
1
1

1

0
1
1
1
1

A
T
C
C
C
G

T
#

A

A

A

G

T

G
T

T
C
#
#
$

0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
1

1
1
1

1
1
1
1
1
1

0

7
3
3
2

8
9
5
5
4

0 : 2

1 6

Figure 3: Left: An order-3 pruned de Bruijn graph G′′ 3-equivalent to the de Bruijn graph in Figure 2. Right:
GCSA for graph G′′. Leftward arrows illustrate backward searching, with the red arrows showing it from T to AT.
Rightward arrows mark the samples belonging to each node, with the blue ones showing them for node CAT.

label c. This simplifies backward searching to

spout = C[X[i]] +BX[i].rank(spi+1, 1);

epout = C[X[i]] +BX[i].rank(epi+1 + 1, 1)− 1;

[spi, epi] = [OUT.rank(spout, 1),OUT.rank(epout, 1)].

The compacted trie of keys resembles a suffix tree.
We can simulate it space-efficiently by using the LCP
array [1, 11], and thus extend GCSA2 to support many
suffix tree operations. For example, we can search for
maximal exact matches by using LF-mapping and parent
queries [35], and use that as a basis for a read aligner
similar to BWA-MEM [21]. We can also use document
counting techniques [41] to quickly count the number
of distinct matches in a lexicographic range. Further
details of these extensions can be found in Appendix E.

5 Implementation and Experiments
GCSA2 is the path indexing library of vg [14]. The
implementation is written in C++, and the source code
is available on GitHub.3 It depends on SDSL [15] and
libstdc++ parallel mode. We use the simplified encoding
(Appendix D) with fast non-compressed bitvectors
in most index components. Bitvectors Bc for rare
characters (N, #, and $) are compressed as sparse
bitvectors [36].

We used a system with two 16-core AMD Opteron
6378 processors and 256 gigabytes of memory for the
experiments, and stored all files on a distributed Lustre
file system. The system was running Ubuntu 12.04
on Linux kernel 3.2.0. We used vg version 1.3.0 for
processing the graphs and GCSA2 version 0.8 using
SDSL version 2.1.1 for the benchmarks. All code was
compiled with gcc/g++ version 4.9.2.

3https://github.com/jltsiren/gcsa2

5.1 Construction Variation graphs, as defined in vg,
use strings as node labels. A node can be traversed
in both forward and reverse complement orientations,
and edges may cross between the orientations. For
indexing, the graph is implicitly converted into an input
graph with single-character labels. We always sample
the input graph nodes corresponding to the initial offsets
of variation graph node labels.

We built vg graphs from the human reference genome
(GRCh37) and 1000 Genomes Project variation [45]. To
avoid excessive growth, we removed paths where 16-mers
crossed more than 4 nontrivial edges with vg mod -p
-l -e 4, and subgraphs shorter than 100 bases with vg
mod -S -l 100. We extracted all paths of length 16
from the forward strand of the graph. There were a total
of 4.80 billion paths with 1.53 billion distinct labels. We
then built GCSA with 1–3 doubling steps, producing
order-32, order-64, and order-128 indexes.

Tables 1 and 2 show construction requirements
and index sizes, respectively. We can build a whole-
genome index overnight using less than 96 gigabytes
of memory, including disk cache. The index contains
1.031k ·2.348 billion k-mers, but the path graph only uses
4.4–5.7 billion nodes to represent them. For k = 128,
GCSA2 requires 0.63 bits per k-mer, out of which
0.28 bits is used for the path graph. Extensions based
on suffix trees increase the size to 1.08 bits per k-mer.

Index construction uses more memory with k = 32
than with larger values of k. The order-32 path graph
has more nodes, where we cannot derive the values from
the predecessor node. As we sample more values, we
need more memory in the final phase of construction.
With larger values of k, the path graph resembles the
input graph better, and we sample less values. For the
same reason, index size decreases with larger values of
k, even though the graph requires more space.

Fig. 2.3 Left: An order-3 pruned de Bruijn graph 3-equivalent to the de Bruijn graph in
figure 2.2. Right: GCSA for the graph. Leftward arrows illustrate backward searching,
with the red arrows showing it from T to AT. Rightward arrows mark the samples belonging
to each node, with the blue ones showing them for node CAT. Reprinted from [247].

GCSA2 resolves a number of problems that limit the utility of other graph path
indexing schemes. Indexing a pruned DBG allows GCSA2 to be applied to arbitrary
bidirectional string graphs that include reversals and loops. It avoids exponential costs
during backwards search. However, it does incur exponential costs in construction of
the index. To mitigate the affects of these it may be constructed mostly in external
memory, and furthermore construction may be broken into pieces by chromosome or
some other subdivision of the graph. Its external memory construction algorithm uses a
prefix doubling approach to transform an input DBG of order k to a pruned one of order
2mk through m doubling steps. The high-order DBG need never be loaded into RAM but
is induced from a lower-order DBG augmented with sufficient positional context on its
nodes to support the disk-backed prefix doubling process. In order to further reduce the
complexity of the final index, the DBG input to GCSA2 may be constructed from a VG
in which complex regions have been masked or reduced in local complexity using prior
information such as a haplotype panel. By default, vg runs GCSA2 with initial k = 16
and m = 4, yielding a final DBG with k = 256. Because it is based on a DBG, GCSA2
limits the maximum length query for which no false-positive results will be returned to
the order k of the DBG.

To appreciate the costs of indexing a human genome sized graph9, the order-256
GCSA2 index of the 1000GP variation graph may be constructed using less than 500GB

9Precise sizes are given later in the discussion of results.

2.4 Index structures 63

of scratch space, to and from which are written approximately 3TB during construction,
all while requiring less than 50GB of RAM. This puts GCSA2’s indexing resource
requirements well within the specifications of standard commodity compute servers. The
resulting index occupies between five and ten times the input graph’s serialized size, no
more than 50GB for a human genome.

2.4.4 Haplotype indexes

Recording the path set of a graph in XG (described in section 2.4.2) requires O(NP +L|P |)
space where L is the average haplotype length in terms of nodes it crosses, N is the
number of nodes in the graph, |P | is the number of paths in the graph, and P the average
number of paths crossing each node. Although, such a representation can be compressed,
the size of this representation will grow linearly with the addition of new paths, making
it impractical as a means to record very large numbers of genomes.

Recording collections of paths is an important requirement for the use of VG in
resequencing, as the Markovian property of the bare sequence graph G = (N, E, P = ∅)
means it can encode exponentially many paths relative to the true input path set used
to build the graph. This introduces significant issues during read mapping and genome
inference. With increasing variant density the number of possible sequence paths of a
given length grows exponentially, and this can lead to spurious mismapping (section
3.2.2). The exponential growth of the path space of the graph has relevance for sequence
indexing with GCSA2, and as described in 2.4.3, simplification of the graph in complex
regions prior to GCSA2 indexing is required to build indexes in practice. A haplotype
index allows the pruning operation to preserve known haplotypes, rather than defaulting
to the reference genome in such cases. Efficient path indexes could be used for many
operations in variant calling and phasing, and may have utility in assembly problems, for
instance to losslessly record a read set embedded in a squish graph representing their
mutual alignment (section 2.2.6).

Haplotype sequences from the genomes of the same species often share extensive
regions, which suggests that they may be very efficiently compressed. This property was
used to store large haplotype sets in the positional BWT (PBWT) [65]. As input, the
PBWT assumes a set of haplotype strings S1 . . . Sm of the same length which describe a
set of haplotypes relative to a set of variable loci. Sj[i] records the allele in haplotype
j found at locus i. We set Sj[i] = 0 when haplotype j has the reference allele at locus
i, and Sj[i] > 0 if it encodes one of possibly several alternate alleles. The PBWT can
be understood as an FM-index of texts T1 . . . Tm : Tj[i] = (i, Sj[i]) [84]. To search for
a haplotype of h in the range [i, j] we look for pattern h′ = (i, h[1]) . . . (j, h[|h|]). The

64 Variation graphs

alphabet size of this FM-index is large, but the matrix like structure of the haplotype
set means that we can implicitly encode the array indexes by building a separate sub
index for each position. Applying run length encoding to the BWT allows extremely
good compression of real haplotype sets.

With the graph positional Burrows–Wheeler transform (gPBWT) [195], we extended
this model to work on variation graphs. The basic model is the same as the generic
PBWT except that instead of variant matrix positions we consider haplotype traversals
of oriented nodes10 ni or ni, and rather than a local alphabet of variant alleles we encode
a local alphabet Σni

= {j ∈ N |eij ∈ E} which describes the set of nodes n{j∈N |eij∈E} to
which haplotypes go after the current node ni. As in the generic PBWT we build an
FM-index of T1 . . . Tm, encoded in what we call the Bs arrays, which provide the local
description of prefix sorted haplotypes (equivalently, threads) traversing each node ns.
To deal with the bidirectionality of paths in variation graphs, each haplotype must be
encoded in its forward and reverse orientation. In [195] we demonstrated the expected
sublinear scaling of the gPBWT by building an index for chr22 with increasing numbers
of samples. Constructing the gPBWT for haplotype sets representing more than a few
hundred samples proved difficult when using our particular implementation. Progressive
construction of the gPBWT in generic graphs was enabled by encoding the gPBWT into
dynamic succinct data structures and adding a single haplotype thread and its inverse one
at a time. While functional, we found this to be untenable for large graphs and haplotype
sets. Overheads associated with the dynamic data structures it uses were significant, but
the most-difficult issue was the serial nature of the progressive construction algorithm,
which gives the algorithm O(m) runtime. Consequently, all our large-scale experiments
were carried out using a partially ordered construction algorithm that worked using a
VCF file as input.

The graph Burrows-Wheeler transform (GBWT) [250] simplifies the data model used
by gPBWT so that it is independent of vg. The GBWT can be understood as the
FM-index of a transformation of the graph’s paths p1 . . . pm ∪ p1 . . . pm into the text
T = $(p1 = ni . . . nj) . . . $(pm = nj . . . ni) wherein the paths are rewritten as a series of
characters representing node traversals in a large alphabet and delimited by a marker $.
This approach is challenging due to the large size of T for moderately-sized haplotype
sets embedded in variation graphs, e.g. |T | ≈ 1012 for the 1000GP [250]. Serializing the
path set during construction is not feasible, which suggests a dynamic version of the
model is required.

10These are described as “sides” in [195].

2.4 Index structures 65

In the GBWT we break the full FM-index into per-node records, each of which
encodes a header defining an alphabet Σni

of all the nodes that follow ni in any path,
and a body BWTni

which is the subset of the full BWT specifying which node follows ni

in each path that passes through ni, with the paths sorted in reverse sequence order up
until ni. Since paths that are similar before ni tend to be similar after it, this sequence
of next node values run length compresses well.

The GBWT supports essential FM-index operations including: find(X)→ [sp, ep]
yielding the lexicographic range of suffixes starting with pattern X; locate(sp, ep) →
paths occurring in SA[sp, ep]; and extract(j) → pj which returns the jth path in the
graph. By encoding all paths in both orientations, the GBWT can be treated as a kind
of FMD-index for haplotypes, allowing bidirectional search. This means that the GBWT
in turn supports MEM-based haplotype matching, which has potential uses in genotype
imputation, phasing, association mapping, and other population genetic and evolutionary
assays.

The GBWT representation reflects a number of assumptions that tend to hold for
most DNA sequence graphs. Nodes tend to have low degree, which means the local
alphabet size |Σni

| is small, and we can afford to decompress a small local alphabet
encoding efficiently. Most nodes are not traversed more than once by each path, so
the BWTni

remains small and can be accessed and modified in bounded time. Due to
relatedness among individuals in many species, it is sensible to assume that haplotypes
will be highly repetitive, which allows for efficient RLE encoding of BWTni

. The graph
is sorted, and its identifier space has been compacted, which allows us to store the same
information for the entire range of node identifiers in bounded memory with respect to
|N |. The graph tends to be locally ordered in most places, which decreases the complexity
of construction.

1
3 6

5
7

2

4

Node $
|Σ$| = 1
0 : (1, 0)

0
0
0

Node 1
|Σ1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|Σ2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|Σ3| = 1
0 : (4, 1)

0

Node 4
|Σ4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|Σ5| = 1
0 : (7, 0)

0
0

Node 6
|Σ6| = 1
0 : (7, 2)

0

Node 7
|Σ7| = 1
0 : ($, 0)

0
0
0

Fig. 2.4 Left: A graph with three paths. Right: GBWT of the paths. Reprinted from
[250].

66 Variation graphs

A dynamic GBWT implementation presents the node records through an index over
the range of [min(i : ni ∈ N), max(i : ni ∈ N)], for each linking to its header, body,
incoming edges, and haplotype identifiers. Construction employs this model in a manner
similar to RopeBWT2 [147], where batches of paths are insert into the index in a single
step following the BCR construction algorithm [14]. This process includes the new paths
in the dynamic GBWT by rebuilding each node record affected by the extension. When
constructed, the GBWT may be encoded in a compacted but immutable form that uses
less memory. By breaking the construction process apart for each chromosome and finally
merging the compressed GBWTs, it is possible to build the GBWT for the entire 1000GP
haplotype set in around 30 hours. The resulting GBWT requires ≈ 15 GB, with around
half allocated to the GBWT structure itself and half to haplotype identifiers. The index
consumes less than 0.1 bit per node in the stored paths, and we should expect this to
improve when we build the GBWT for larger haplotype panels.

2.4.5 Generic disk backed indexes

I began the development of vg alone, starting with schemas for the data models, then
building an index of the graph using the disk-backed key/value store RocksDB11. I
transcribed the data model into namespaces and sorted arrays written into the key/value
store. As compressors of various types could be applied to the sorted arrays backing
RocksDB, the memory required for this approach was ultimately similar to that for the
final indexing models that I present here. However, performance was far worse, and the
initial version of the aligner based on these systems could not achieve correct results
using reasonable amounts of time for large graphs. Ultimately, this flexible database
model has remained important for some pipelines, in particular as a technique to organize
alignments against the graph. Other workloads such as sequence queries were untenable
for large genomes, with reliable performance only possible if the entire index of spaced
27-mers was cached in RAM, requiring nearly 200G in the case of the 1000GP variation
graph. The sorted disk-backed array does have the useful property of allowing prefix
queries of the k-mer set, but this can easily be attained with GCSA2. On the networked
storage available in my institutional setting, the construction costs for disk-backed index
models were usually much worse than those of the XG and GCSA2 models.

11https://github.com/vgteam/vg/blob/master/src/index.hpp

https://github.com/vgteam/vg/blob/master/src/index.hpp

2.5 Sequence alignment to the graph 67

2.4.6 Coverage index

A coverage map, of the alignments to a VG is similar to the labeling required to implement
“colors” on a DBG [112]. The coverage map loses information about the edge traversals
and the paths taken through the graph, which could reduce the visibility of some kinds of
variation within it. But in benefit, this simple model is efficient to use. The complexity
of computing the coverage map is linear in the number of the input alignment set, and it
requires O(∑∀ni∈N |ni|) space to store once built.

I developed an compact coverage index by mapping the sequence space of the graph
into a vector and recording coverage across it for a GAM read set. During construction,
a succinct format is employed to store each base’s coverage in a single byte as long as
it is below 255, and in a secondary hash table if it reaches or exceeds 255. Finally, a
compressed integer vector is generated, which can be queried by graph position computed
from the XG index of the graph. I extended this concept with a succinct “pileup” format
[154] generated from the edits against the graph. In this model edits in mappings which
don’t match the reference were serialized into a byte alphabet using Protobuf, such that
each non-reference edit ej at position bi was recorded as a string $biej , with the idea that
by building a CSA/FM-index from these I could obtain the set of edits at each graph
position through pattern matching. However, I found it impossible to construct this for a
large high-coverage sequencing sample, and have not continued this line of investigation.

2.5 Sequence alignment to the graph
To align sequences to a VG, we use the graph and sequences indexes described in the
previous section (2.4) to derive MEMs between a query and the graph. A Markovian
chaining model is built from the MEMs which respects their relative positions in the
graph and the read, favoring collinear mappings of MEMs, and Viterbi is used to extract
likely mappings based on the MEMs. We then align the sequence locally to the graph
at each of the high scoring chains using various sensitive alignment algorithms that use
various kinds of dynamic programming.

To detect structural variation and align long reads without incurring quadratically-
scaling computational penalties, we apply a kind of banding and a second layer of chaining.
In chunked alignment, large sequences are broken up into overlapping segments, each of
which is aligned individually in any order or orientation. This subdivision provides a
kind of banding to the alignment algorithm, preventing the evaluation of the full DP
matrix, but more importantly it also allows alignments that are generated to represent
any kind of variation. Each chunk is aligned independently. The same collinear chaining

68 Variation graphs

model, with different parameters, is used to establish the optimal global chain through
the alignment chunks, thus yielding a full alignment for an input sequence of any size.
Where our reads are shorter than the standard chunk size (256bp), the alignment behaves
exactly as in bwa mem. Figure 2.5 illustrates the alignment of a long read against a
complex graph.

Unfolding and DAGification transform a cyclic bidirectional sequence graph with
inversions to an acyclic simple sequence graph one in which all k-paths in the first graph
are represented. Any alignment algorithm that may be implemented on a sequence DAG
can thus be used. Optionally, other alternative DP alignment algorithms implementing a
banded global alignment can be applied, and I describe one of these that I implemented
to surject alignments into a particular reference path.

2.5.1 MEM finding

First, a set of super-maximal exact matches (SMEMs) of a query sequence are generated
by traversing the suffix tree encoded in the GCSA2 index until the count of matching
strings drops to 0, then backing off one step to find all longest exact matches. A recursive
series of “reseed” passes through the traversal can then identify distinct next-longest
matches which are used both to improve sensitivity. These are not super-maximal, thus
we tend to call these heuristically derived exact matches “MEMs”. Then, chains of MEMs
that are consistent with the query sequence are found using a Markov model in which
the optimal alignment is likely to form a Viterbi path. For each candidate chain, we then
locally align the read against the graph. Scoring results from the local alignment are
used to rank the candidate alignments. We then return the best alignment, or multiple
candidates if multiple mappings are required.

2.5.2 Distance estimation

To cluster our MEMs we require a distance function that returns the minimum distance
between any two positions dist(bi, bj). Distance measurement between nodes in a vari-
ation graph is non-trivial, with exact solutions to the problem theoretically requiring
O(E log log L) where L = max∀ni∈N |ni| is the maximum node length [120]. Precompu-
tation of the full set of distances would thus require O(N2E log log L) time and O(N2)
space, which is infeasible for any large graph. Many variation graphs are mostly linear,
which we can exploit to build an approximate distance metric. Provided we have applied
a partial sort to the graph, in the partially ordered regions we can use the offset of each
node in the XG sequence vector Siv as an approximate 1D coordinate, which we query

2.5 Sequence alignment to the graph 69

A

B

C

Fig. 2.5 Aligning a 32,737bp PacBio read from the SK1 strain to a yeast pangenome
graph (section 3.1.2). Red nodes contain initial MEM hits, while other nodes are colored
if they were matched during local alignment. (A) The nodes found in the best alignment
are labeled in blue. (B) A much smaller secondary alignment is shown in green. (C)
MEM hits for this read cluster in chromosome ends, which are seen as tips in the graph
visualization.

70 Variation graphs

using the corresponding rank/select dictionary Sbv. We expect that in much of the graph
Sselect1

bv (id(bj)) + offset(bj) − Sselect1
bv (id(bi)) + offset(bi) ∝ dist(bi, bj), where id(b) is the

function that returns the rank of position b’s node in the XG index, and offset(b) returns
the position’s offset inside the sequence label of the node.

Nonlinearities in the graph will frustrate this metric, and to manage these we rely on
the positional index provided by the positional paths given in the XG index. In these, we
can query the relative positions of nodes in the path in O(1) time. Where both positions
are not on the same path, we can use local exploration of the graph near our positions bi

and bj to attempt to find anchoring nodes on the same path. In our clustering step we
can consider the multiple coordinate systems to develop a global pseudoalignment.

2.5.3 Collinear chaining

If the MEMs do not cover the full read length, then we attempt to link them together into
chains by building a Markov model in which the best possible chains form high-scoring
paths. In this model the nodes correspond to the reference graph positions where MEMs
in the read occur and the transitions between nodes correspond to a weight that is
proportional to the indel size implied by the difference in distance between the positions
of the MEMs in the read and their distances in the graph. To allow us to consider
different distances calculated from different positional paths, we record one node per
positional path that each MEM touches. If we are aligning a read pair, the weight
between MEMs on different fragments is proportional to the probability of that distance
under a learned model of the fragment insert size distribution. Once we establish this
model, we take the Viterbi path through it as our first candidate alignment. By masking
out the states in this path and re-running the Viterbi algorithm on the model, we can
extract a series of candidate alignments in descending order of goodness. Although the
exact algorithm is different, in spirit our implementation is similar to that developed
in [136], which extends collinear chaining to DAGs by running a similar model over a
minimal set of paths covering the graph.

2.5.4 Unfolding

Every node has an implicit default orientation so that it is possible to determine edges that
cause an inversion, i.e. those which connect between a forward and a reverse complement
node orientation. When unfolding the graph, we use a breadth first search starting at
every inverting edge in the graph to explore the reverse complemented portions of the
graph that we can reach within length k from the inverting edge. We then copy this

2.5 Sequence alignment to the graph 71

subgraph, take its reverse complement, and replace the inverting edges connecting it to
the forward strand of the graph with non-inverting ones.

2.5.5 DAGification

Variation graphs may have cycles. These are useful as compact representations of copy
number variable regions, and arise naturally in the process of genome assembly. However,
partial order alignment algorithms do not handle these structures, and so we convert
cyclic graphs into k-path equivalent acyclic form in order to apply DAG-based alignment
algorithms to them. To do so, we unroll cyclic structures by copying their internal
nodes an appropriate number of times to allow a given query length to align through the
unrolled version of the component. If our query is shorter than this limit, k ≥ |Q|, then
we are guaranteed to find the optimal alignment in the original graph by aligning against
the DAGified one.

We first detect all strongly connected components by using a recursion-free imple-
mentation of Tarjan’s strongly connected components algorithm [261]. Then, we copy
each strongly connected component and its internal edges into a new graph. We greedily
break edges in this graph that introduce cycles. Next we k-DAGify the component
progressively copying the base component and, for each edge between nodes in the
component, connecting from the source node in the previous copy to the target node in
the current copy.

We use dynamic programming to track the minimum distance back through the graph
to a root node outside the component at each step. When this reaches our target k, we
stop unrolling, and add the expanded component back into the graph by reconnecting it
with its original neighborhood. For each copy of a node in the DAGified component we
copy all its inbound and outbound edges where the other end of the edge lies outside the
strongly connected component. The resulting graph is acyclic and supports queries up to
length k on the original graph using the translation that we maintain between the new
graph and the source one.

2.5.6 POA and GSSW

Graph striped Smith-Waterman (GSSW)12 generalizes an implementation [286] of Farrar’s
SIMD-accelerated striped Smith Waterman (SSW) algorithm [76] to enable string to
graph alignment. Single-Input Multiple-Data (SIMD) instructions allow vectorized

12https://github.com/vgteam/gssw

https://github.com/vgteam/gssw

72 Variation graphs

1:A

2:T

5:A

3:G 4:C

(a) k = 0

1:A

5:A
6:T

2:T

7:G

3:G
8:C

4:C

(b) k = 1

1:A

5:A

6:T

9:T
12:T

2:T
7:G

3:G

8:C

4:C
10:G

11:C
13:G14:C

(c) k = 4

1:A

5:A

6:T

9:T 12:T 15:T
18:T

21:T

24:T

27:T

30:T2:T

7:G

3:G

8:C
4:C

10:G

11:C

13:G

14:C

16:G

17:C

19:G

20:C

22:G

23:C
25:G

26:C
28:G

29:C

31:G32:C

(d) k = 10

1:A

5:A

6:T

9:T

12:T
15:T

18:T
21:T

24:T
27:T

30:T
33:T

36:T
39:T

42:T

45:T

48:T

51:T

2:T 7:G3:G

8:C
4:C 10:G

11:C 13:G

14:C 16:G

17:C
19:G

20:C
22:G

23:C
25:G

26:C
28:G

29:C
31:G

32:C
34:G

35:C
37:G

38:C
40:G

41:C
43:G

44:C
46:G

47:C
49:G

50:C
52:G53:C

(e) k = 17

1:A

5:A

6:T

9:T

12:T

15:T

18:T

21:T

24:T

27:T

30:T

33:T

36:T

39:T

42:T

45:T

48:T

51:T

54:T

57:T

60:T

63:T

66:T

69:T

72:T

75:T

2:T

7:G

3:G

8:C
4:C

10:G

11:C

13:G

14:C
16:G

17:C

19:G

20:C

22:G

23:C

25:G

26:C

28:G

29:C

31:G

32:C

34:G

35:C

37:G

38:C

40:G

41:C

43:G

44:C

46:G

47:C

49:G

50:C

52:G

53:C

55:G

56:C

58:G

59:C

61:G

62:C
64:G

65:C

67:G

68:C

70:G

71:C

73:G

74:C

76:G

77:C

(f) k = 25

Fig. 2.6 DAGification of a small graph, as seen in 2.6a, with the k unrolling parameter
given below each graph.

2.5 Sequence alignment to the graph 73

mathematical operations in a single machine instruction, and can be used to greatly
speed up algorithms which can be implemented in terms of operations on vectors.

GSSW generalizes all aspects of SSW to operate over sequence directed acyclic graphs,
including affine gap penalties, and retains its matrices for traceback13. This is simple
to accomplish if the reference is a graph, as the striping of SIMD calculations in SSW
across the reference is done by a single character at a time, and thus boundaries between
nodes do not split the SIMD embedded variables. We can generalize SSW to GSSW by
extending the recurrence relation that defines the scores in the DP matrices to consider
all previous positions on all nodes that connect to the current one.

Given a query Q and a sequence graph G = (N, E) with sequence length L =∑|N |
i |seq(ni)|. We record the maximum scores of partial alignments between Q and G in

the set of matrices H = H1 . . .H|N | : each Hi is a |seq(ni)| × |Q| matrix. H thus contains
|Q| × L cells. When we have completed the scoring phase of alignment each Hi[x, y] will
record the maximum score of an alignment between Q and G ending at (ni[x], Q[y])14.
To develop our scores, we use a scoring function score(a, b), which in the case of DNA
returns the value of a match (typically a positive integer) when a = b ∨ a = N ∨ b = N

and the value of mismatch when a ̸= b (typically a negative integer). We score a gap
beginning with ωopen and a gap extension as ωextend. We record the score of a gap along
G in matrices E = E1 . . . E|N | and a gap along Q in matrices F = F1 . . .F|N |.

Gaps in Ê extend across the graph, and so we need to consider all the inbound edges
when we are at the beginning of a node:

Ei[x, y] = max



Ei[x, y − 1]− ωextend

Hi[x, y − 1]− ωopen

max∀j:∃eji∈E Ej[|nj|, y − 1]− ωextend if x = 1
max∀j:∃eji∈EHj[|nj|, y − 1]− ωopen if x = 1

(2.1)

However, this is not the case for F̂ , whose data dependencies flow vertically over the
query Q:

Fi[x, y] = max

Fi[x− 1, y]− ωextend

Hi[x− 1, y]− ωopen
(2.2)

13SSW discards these matrices for performance reasons, instead establishing the traceback later with
local banded DP.

14Here I will use brackets [. . .] to identify the cells in 2-dimensional arrays.

74 Variation graphs

The score in Ĥ combines the affine gap calculations in Ê and F̂ . As with Ê , we here
we also must consider the inbound nodes:

Hi[x, y] = max



0
Ei[x, y]
Fi[x, y]
Hi[x− 1, y − 1]− score(Q[x], ni[y])
max∀j:eji∈EHj[|nj|, y − 1]− score(Q[x], nj[y]) if x = 1

(2.3)

The values of Hi, Ei, and Fi are 0 when x = 0 or y = 0 and node ni has no inbound
edges. Note that this is the initial condition provided by Gotoh to improve the algorithm
of Smith and Waterman.

We fill the matrices using Farrar’s SSW algorithm [76], based on Zhao’s implementation
[286]. By storing the full score matrices we can then trace back from the maximum score
in Ĥ to obtain the optimal alignments under our scoring parameters. The traceback can
be represented as moves in the matrix, or equivalently as the alignment object model
described in section 2.1.3.

2.5.7 Banded global alignment and multipath mapping

By modifying equation 2.3 so that it is no longer lower-bounded at 0 and changing the
traceback so that it goes from beginning to end of query Q and graph G, we obtain a
“global” alignment algorithm with the same properties as Needleman-Wunsch. To reduce
computational costs, we can band the algorithm to limit the region of the DP tables which
needs to be explored. This approach, as implemented in vg by Jordan Eizenga, forms
the basis for multipath mapping, in which alignments are represented probabilistically
as DAGs rather than linear series of node traversals and edits. In multipath mapping,
regions between MEMs in a particular cluster are aligned using global alignment. The use
of global alignment ensures that the alignment fully covers the gap between the MEMs.
Multiple traceback allows for alternatives to be included, and each of these may be scored
on the basis of both alignment score and haplotype matching score. His implementation
is key to the development of haplotype aware mapping, which is the subject of a paper
currently in preparation by myself and collaborators on the vg project. In the case of
low-error reads, this limited exploration of the DP problem allows for fast derivation
of the optimal alignments, and so the multipath mapper in vg mpmap achieves runtime

2.5 Sequence alignment to the graph 75

comparable to or exceeding vg map. Multipath mapping concepts also form the basis
for alignment surjection, in which an alignment to the graph is projected into the linear
reference.

2.5.8 X-drop DP

As our query length |Q| increases, so does the practical complexity of deriving the
alignment using POA/GSSW. We align longer queries against larger graphs, and so we
effectively face a quadratic penalty with increasing alignment length, |Q| ∝ |L| =⇒
GSSW is O(|Q|2). The most direct solution to this is to use a banded alignment method
like banded global alignment, as described in section 2.5.7. However, this method cannot
exploit data parallel operations that allow dramatic speedups on modern processors.

In the course of our work on vg, Eizenga and I explored the application of Hajime
Suzuki’s adaptive banded global alignment (libgaba)15 [259], which has been used in
minimap2 to greatly improve alignment speed with long single-molecule reads [150]. In
this approach, an antidiagonal band of cells is computed at each step, of a predetermined
width designed to fit into the word sizes of SIMD instructions. The band can move
either “right” or “down” at each step, depending on where the highest score is found. A
termination criterion is given, so that alignment stops when the maximum score falls a
given amount. This is similar to the X-drop parameter used in BLAST to stop alignment
extension. Although it improves performance, it can hurt sensitivity to indels.

Suzki had already implemented a version of alignment over graphs by transforming
the graph into a tree through a dynamic unrolling process akin to that described in 2.5.5
and aligning to the tree using libgaba16. His implementation supports graph to graph
alignment as described in section 2.1.4, but the exponential expansion of the alignment
problem on trees is fundamentally limiting. Eizenga, Suzuki and I discussed methods
to merge the bands together after traversal of unifications in the graph, but we could
not establish a safe generic method to merge them. Furcated bands may only be merged
directly if they map to the same query coordinate. This is unlikely to happen if the
different paths in the graph that they have traversed have different lengths or if there
are indels in the alignment.

During a biohackathon meeting in Kyoto, Suzuki presented an alternative banding
model based on the “X-drop DP” algorithm from BLAST. In this model, the alignment
is matrix broken into vertical non-striped windows that tile across the DP matrices over
fixed subsequences in the query. To efficiently resolve the data dependencies between

15https://github.com/ocxtal/libgaba
16https://github.com/ocxtal/comb

https://github.com/ocxtal/libgaba
https://github.com/ocxtal/comb

76 Variation graphs

successive steps, a SIMD shuffle operation is applied to the cell values stored in each
window. Forward progression of each window stops when the highest score in the forefront
cells drops X below the previously-observed maximum. This approach thus allows the
band to spread as wide as needed to accommodate larger insertions, while being bounded
by the X-drop parameter. The result is an approach that is more sensitive than the
antidiagonal banded alignment in libgaba, but runs a factor of 2 slower for equivalent
band sizes.

Fig. 2.7 The dozeu X-drop alignment algorithm. Black rectangles represent the evaluated
region of the score matrix, which each box corresponding to a SIMD vector value. Grey
cells represent the part of the score matrix for which our X-drop parameter would allow
evaluation if we were calculating the matrix one cell at a time. Reprinted with permission
from https://github.com/ocxtal/dozeu.

I have since worked with Suzuki to integrate his implementation of this algorithm
dozeu17 into vg. Due to difficulties in handling paired end rescue, the approach is not
yet performing as well as GSSW for vg map. This remains a work in progress, but is a
promising approach to enable the direct alignment of long sequences against the graph.
It is orthogonal to the “chunked” alignment approach, and in principle, they can be
applied together to build a SV-aware, chunked and banded alignment process. Future
work in this direction may yield a new VG alignment algorithm, but this lies outside the
scope of this thesis.

2.5.9 Chunked alignment

For long reads, where in the worst case the local dynamic programming can become
prohibitively expensive, we break the reads into “bands” of a fixed width w (default

17https://github.com/ocxtal/dozeu

https://github.com/ocxtal/dozeu
https://github.com/ocxtal/dozeu

2.5 Sequence alignment to the graph 77

256 base pairs) with overlap between successive bands of w/8. We align these bands
independently, trim the overlaps from the alignments, and build a Markov model from
them similar to that built for MEM chaining, only that here we consider sub alignments
as nodes in the model rather than MEMs. In this model we put weights on transitions
between alignments that relate to the estimated distance between the alignments in the
graph versus their distance in the read, with the objective of making long co-linear chains
be the highest-scoring walks through the Markov model. We take the Viterbi path through
the model to be the best alignment. Then, to obtain multiple alignments, we mask
out this path, re-score, and take the Viterbi path to get the 2nd-, 3rd-, and ultimately
Nth-best alignment. After they have been extracted from the model, alignments are
“patched” using local alignment of unaligned regions anchored in the graph near the end
of previous mapped regions, so that sub-alignments which may have been misaligned
due to repeats may be locally aligned correctly. Although this sounds complex, in a very
high fraction of cases neighboring alignments overlap exactly in the overlap region of size
w/8, and chaining is trivial. This model allows vg to map noisy reads of arbitrary length,
and is used as a core component in the long read progressive assembler vg msga.

2.5.10 Alignment surjection

Alignments to graphs that include linear reference sequences as paths can be transformed
into alignments against those paths. To be well-defined, this lossy transformation,
surjection, requires that the alignment path matches the reference path for some portion
of its length. The simplest surjection technique extracts the reference path region matching
an alignment and realigns the read against it. Doing so without global alignment will
often result in soft clipping, such as where non-reference alleles in the graph have allowed
full length alignment. This can be resolved to some extent by applying global alignment
of the alignment query sequence against the reference. But a more rigorous approach
rebuilds the alignment in parts. For each piece that is not aligned to the reference, we
extract the intervening reference sequence and align only the subset of the query that is
no longer matching to this region. A kind of anchored semi-global alignment may be
used on the ends of the reads, where the opposite reference-matching end is not defined.
The resulting alignment may easily be expressed in the BAM format and thus be used
by standard downstream variant calling and analysis methods.

78 Variation graphs

2.5.11 Base quality adjusted alignment

Base qualities are typically reported on the Phred scale so that the probability of error
for a given quality Q is ϵ = 10−Q/10. Assuming no bias in which bases are mistaken for
each other, this defines a posterior distribution over bases b for a base call x.

P (b|x, ϵ) =

1− ϵ b = x

1
3ϵ b ̸= x

(2.4)

We use this distribution to derive an adjusted score function. Normally, the match
score for two bases is defined as the logarithm of the likelihood ratio between seeing two
bases x and y aligned and seeing them occur at random according to their background
frequencies.

sx,y = log
(

px,y

qyqx

)
(2.5)

Next we marginalize over bases from the posterior distribution to obtain a quality
adjusted match score.

s̃x,y(ϵ) = log
 (1− ϵ)px,y + ϵ

3
∑

b ̸=x pb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b̸=x qb

)
 (2.6)

vg works backwards from integer scoring functions to the probabilistic alignment
parameters in this equation. After doing so, the match scores are given by

s̃x,y(ϵ) = 1
λ

log
(1− ϵ)qxqyeλsx,y + ϵ

3
∑

b ̸=x qbqyeλsb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b ̸=x qb

)
 . (2.7)

Here, λ is a scale factor that can be computed from the scoring parameters, and the
background frequencies qx are estimated by their frequency in the reference graph. Since
base quality scores are already discretized, the adjusted scores can be precomputed and
cached for all reasonable values of ϵ.

2.6 Visualization 79

2.5.12 Mapping qualities

The algorithm for mapping qualities in vg is also motivated by a probabilistic inter-
pretation of alignment scores. The score of an alignment A of two sequences X and
Y is the sum of scores given in equation 2.5. This makes it a logarithm of a joint
likelihood ratio across bases, where the bases are assumed independent (a more complete
justification including gap penalties involves a hidden Markov model, but it can be
shown to approximate this formula). We denote this score S(A|X, Y). Thus, assuming
a uniform prior over alignments, we can use Bayes’ Rule to motivate a formula for the
Phred scaled quality of the optimal alignment, Â.

Q(Â|X, Y) = −10 log10(1− P (Â|X, Y))

= −10 log10

(
1− P (X, Y |Â)∑

A P (X, Y |A)

)

= −10 log10

1− eλS(Â|X,Y)∑
A eλS(A|X,Y)


(2.8)

Using the close approximation of the LogSumExp function by element-wise maximum,
there is a fast approximation to this formula that does not involve transcendental
functions.

Q(Â|X, Y) ≈ 10λ

log 10

(
S(Â|X, Y)−max

A ̸=Â
S(A|X, Y)

)
(2.9)

In practice, we do not compare the optimal alignment to all possible alignments, but
to the optimal alignments from other seeds. Thus, the mapping quality indicates the
confidence that we have aligned the read to approximately the correct part of the graph
rather than that the fine-grained alignment in that part of the graph is correct. Since
this formula is based on alignment scores, it can incorporate base quality information
through the base quality adjusted alignment scores.

2.6 Visualization
Visualization helps enormously to understand variation graphs and algorithms on them.
While text-mode renderings are sufficient for evaluating results in resequencing against
the linear reference, they are simply impractical when the reference is a graph. A set of

80 Variation graphs

dotplots can allow us to understand the relationship between many paths embedded in a
graph. But this scales quadratically with the number of embedded paths and quickly
becomes impossible to interpret. The alternative is to render graphs visually using a
coherent set of visual motifs.

Here I describe several such techniques designed specifically for variation graphs.
The simplest leverage standard utilities for graph drawing, and the most performant of
these are hierarchical models that benefit from linear ordering which is often available
in reference-ordered variation graphs. Force-directed layouts techniques developed for
assembly graph interpretation allow us to interrogate larger-scale graphs. While it may
be topologically complex, any graph is composed of sets which can be ordered linearly.
By exploiting a linear sort of the graph I provide a linear-time layout algorithm that will
scale to arbitrary data scales, allowing the visualization of both paths and read coverage
against any graph.

2.6.1 Hierarchical layout

To develop a visualization method quickly, I relied most heavily on the four-phase
hierarchical graph layout algorithm dot [86] that is part of the Graphviz package [85, 73].
This approach tries to generate a layout in which hierarchical structures in the graph
are exposed, visual anomalies such as edge crossings and sharp edge bends are avoided,
edges are short, and the layout is overall balanced or symmetric. It first uses a partial
sort on the graph to derive a rank for each node. This aspect of the algorithm means it
is best suited for DAGs. Then the unordered regions of the partially sorted graph are
ordered to reduce edge crossings. Finally, the actual layout is derived and splines are
drawn to show edges. The output of dot as well as other tools in Graphviz is a vector
graphic, so the resulting renderings may be viewed in a number of ways.

To generate a visualization that captures the structure of the variation graph, I
transform the graph into a visualization oriented structure in which the graph paths are
rendered as nodes and edges. The layout is then driven entirely by the chosen algorithm
in Graphviz, which is typically dot. This approach allows us to view rather large chunks
of graphs, up to tens of kilobases, provided the graph is partially orderable.

The set of nodes may be rendered as boxes labeled by id(ni) and seq(ni). Edges have
four types, and to indicate these we use the top and bottom of the node boxes. The top
left corner of each node ni receives incoming edges eji∀j : eji ∈ E. While the bottom
right corner of each node box represents edges arriving at ni and thus eji∀j : eji ∈ E.
Similarly, the top right corner of each node box represents edges leaving ni, and we add
an edge for each eij∀j : eij ∈ E. Finally, the bottom left corner represents the “end” of

2.6 Visualization 81

the reverse complement of the node ni, and, so we add edges for eij∀j : eij ∈ E. As each
edge implies its own reverse complement, we tend to replace edges eij with eji, and this
is done both in normalization as in Graphviz based rendering.

Paths are not naturally supported in the Graphviz data model, and must be added
as subgraphs with a different rendering style to identify them. In order to achieve a
visually meaningful layout, these subgraphs must be also anchored appropriately into the
graph. For each path, I hash the path name name(pi) into a set of colors and Unicode
emoji, yielding 8 × 766 = 6128 possible color/symbol combinations. This generates a
symbol for each path that is unlikely to collide with another given the typical application
rendering a graph with tens of embedded paths. The hashing process also ensures the
same rendering is returned as long as the same path names are given. For each mapping
mi . . . m|pj | ∈ pj I add invisible edges to the graph that link the mapping to the particular
node it maps to as well as a visible edge in the path color from mi−1 → mi when i > 1
and from mi → mi+1 when i < |pj|. A hint is given to dot to force the rank of each
mapping to be the same as the node it maps to. Otherwise, the invisible edges encourage
dot to render the path mappings close to the node they refer to. The resulting layout
tends to look like a kind of multiple alignment matrix, as can be seen in figure 2.8.

2.6.2 Force directed models

Not all graphs yield easily to hierarchical layout algorithms. Graphviz also includes
a force-directed layout algorithm neato that simulates the layout which would occur
if connected nodes “pull” each other together and non-connected nodes “repel” each
other apart. While the same input to dot may be used with neato, in practice the
node labels become impossible to read and the edge types are confusing to infer, so a
simplified rendering is produced without specific sequence labels on the nodes. This can
still capture the overall structure of the graph as seen in figure 2.9.

While this rendering captures the path space of the graph even in arbitrary graphs, it
cannot scale to graphs of significant size due to its approximately O(|N |3) scaling. The
largest graphs I have visualized using this method contain tens of kilobases of sequence.
Bandage [280] is an alternative method which is oriented towards visualizing assembly
graphs. It reads GFA as input and provides an interactive rendering of the graph topology.
This approach can render graphs of up to tens of megabases. Figure 2.10 shows the
properties of this technique using the same region of H-3136.

82 Variation graphs

1:TCATGGCGCCCCGAACCCTCCTCCTGCTGCTC 2:TCAGGGGC
3:CCTGG

6:CCTGACCCAGACCTGGGC

4:CCCTGA

5:C

🏁 gi|157734152:29655387-29658695 1 🏁 2

🏁 3 🏁 5
🏁 6

🖔 gi|528476637:29857650-29860980 1 🖔 2

🖔 3 🖔 5
🖔 6

👔 gi|568815454:1147498-1150806 1 👔 2

👔 3 👔 5
👔 6

💧 gi|568815529:1369172-1372480 1 💧 2

💧 3 💧 5
💧 6

💄 gi|568815551:1144967-1148275 1 💄 2

💄 3 💄 5
💄 6

🖰 gi|568815561:1144211-1147513 1 🖰 2
🖰 6

🐨 gi|568815564:1144604-1147912 1 🐨 2

🐨 3 🐨 5 🐨 6

🖋 gi|568815567:1144633-1147940 1 🖋 2

🖋 3 🖋 5 🖋 6

📹 gi|568815569:1187595-1190897 1 📹 2
📹 6

🌞 gi|568815592:29887759-29891079 1
🌞 2 🌞 3 🌞 4 🌞 5 🌞 6

Fig. 2.8 The beginning of a variation graph built by progressive assembly of the GRCh38
haplotypes in HLA gene H-3136 visualized using dot.

1

2

3

6

4

5

7

8
9

10
11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

🏁 gi|157734152:29655387-29658695 1

🏁 2

🏁 3
🏁 5

🏁 6

🏁 7

🏁 8

🏁 10
🏁 11

🏁 12

🏁 13

🏁 15

🏁 16

🏁 18

🏁 19

🏁 20

🏁 22

🏁 23

🏁 24

🏁 25

🏁 26

🏁 28
🏁 29

🏁 31

🏁 32 🏁 34

🏁 35

🏁 37
🏁 38

🏁 40

🏁 41

🏁 42

🏁 43

🏁 44
🏁 46

🏁 47

🏁 49

🏁 50

🏁 52

🖔 gi|528476637:29857650-29860980 1

🖔 2

🖔 3

🖔 5

🖔 6

🖔 7

🖔 8
🖔 9

🖔 11

🖔 12

🖔 13

🖔 15

🖔 16

🖔 18

🖔 19

🖔 20

🖔 22

🖔 23

🖔 24

🖔 25

🖔 26

🖔 28

🖔 29

🖔 30

🖔 32

🖔 33

🖔 35

🖔 36 🖔 38

🖔 39

🖔 40

🖔 42

🖔 43

🖔 44
🖔 46

🖔 47

🖔 48

🖔 50

🖔 51

👔 gi|568815454:1147498-1150806 1

👔 2

👔 3
👔 5

👔 6

👔 7

👔 8

👔 10

👔 11

👔 12

👔 13

👔 15

👔 16

👔 18

👔 19

👔 20

👔 22

👔 23

👔 24
👔 25

👔 26

👔 28

👔 29

👔 30 👔 32

👔 33
👔 35

👔 36
👔 38

👔 39

👔 40

👔 42

👔 43

👔 44

👔 46
👔 47

👔 48

👔 50

👔 51

💧 gi|568815529:1369172-1372480 1

💧 2

💧 3

💧 5

💧 6

💧 7

💧 8

💧 10 💧 11 💧 12 💧 13

💧 15

💧 16

💧 18

💧 19

💧 20

💧 22

💧 23

💧 24

💧 25

💧 26

💧 28

💧 29

💧 30 💧 32

💧 33
💧 35

💧 36

💧 38

💧 39

💧 40

💧 42

💧 43

💧 44 💧 46 💧 47

💧 48
💧 50

💧 51

💄 gi|568815551:1144967-1148275 1

💄 2

💄 3 💄 5

💄 6

💄 7

💄 8

💄 10

💄 11
💄 12

💄 13

💄 15

💄 16

💄 18

💄 19

💄 20

💄 22

💄 23

💄 24

💄 25
💄 26

💄 28

💄 29 💄 31

💄 32
💄 34

💄 35

💄 37

💄 38 💄 40
💄 41

💄 42

💄 43

💄 44

💄 46

💄 47

💄 49

💄 50

💄 52

🖰 gi|568815561:1144211-1147513 1

🖰 2
🖰 6

🖰 7
🖰 8

🖰 10

🖰 11

🖰 12

🖰 13

🖰 15

🖰 16

🖰 18

🖰 19

🖰 20

🖰 22

🖰 23

🖰 24

🖰 25

🖰 27

🖰 28

🖰 29

🖰 30 🖰 32

🖰 33
🖰 35

🖰 36
🖰 38

🖰 39

🖰 40

🖰 42

🖰 43

🖰 44 🖰 46
🖰 47

🖰 48

🖰 50

🖰 51

🐨 gi|568815564:1144604-1147912 1

🐨 2

🐨 3

🐨 5

🐨 6

🐨 7

🐨 8

🐨 10
🐨 11 🐨 12

🐨 13

🐨 15

🐨 16

🐨 18

🐨 19

🐨 20

🐨 22

🐨 23

🐨 24

🐨 25

🐨 26
🐨 28

🐨 29

🐨 31

🐨 32

🐨 34

🐨 35

🐨 37

🐨 38
🐨 40

🐨 41

🐨 42

🐨 43

🐨 44 🐨 46 🐨 47

🐨 49

🐨 50

🐨 52

🖋 gi|568815567:1144633-1147940 1

🖋 2

🖋 3
🖋 5

🖋 6

🖋 7

🖋 8

🖋 10
🖋 11

🖋 12

🖋 13
🖋 15

🖋 16

🖋 18

🖋 19

🖋 20

🖋 22

🖋 23

🖋 24

🖋 25 🖋 26 🖋 28 🖋 29

🖋 31

🖋 32

🖋 34

🖋 35

🖋 37

🖋 38
🖋 40

🖋 41

🖋 42

🖋 43

🖋 44 🖋 46
🖋 47

🖋 49

🖋 50

🖋 52

📹 gi|568815569:1187595-1190897 1

📹 2 📹 6

📹 7

📹 8
📹 10

📹 11
📹 12

📹 13

📹 15

📹 16

📹 18

📹 19

📹 20

📹 22

📹 23

📹 24

📹 25

📹 26

📹 28

📹 29

📹 30 📹 32

📹 33

📹 35 📹 36
📹 38

📹 39

📹 40 📹 42

📹 43

📹 44

📹 46

📹 47

📹 48

📹 50

📹 51

🌞 gi|568815592:29887759-29891079 1

🌞 2

🌞 3

🌞 4

🌞 5

🌞 6

🌞 7

🌞 8

🌞 10
🌞 11

🌞 12

🌞 14

🌞 15

🌞 17

🌞 18

🌞 19

🌞 21

🌞 22

🌞 23

🌞 24

🌞 25

🌞 26

🌞 28

🌞 29

🌞 30
🌞 32

🌞 33

🌞 35 🌞 36
🌞 38

🌞 39

🌞 40 🌞 42

🌞 43

🌞 45

🌞 46

🌞 47

🌞 49
🌞 50

🌞 52

Fig. 2.9 A larger region of the same variation graph in figure 2.8 rendered using neato.

2.6 Visualization 83

Fig. 2.10 The graph from figure 2.9 rendered using Bandage.

2.6.3 Linear time visualization

Graph layout algorithms are computationally complex due to their need to iteratively
relate all components of the graph to all others. In these layouts, we can observe large
scale features about the topology and organization of the graph. These views are helpful
in many contexts, but the computational complexity of obtaining them prevents us from
quickly visualizing larger graphs. Also, they do not scale efficiently to large path sets,
and it is often difficult to understand alignments or other path-related on the graph using
them.

To resolve these issues I developed a linear time rendering algorithm that projects a
given VG, as indexed by XG, into a vector graphics format using the widely-available
graphics library libcairo. This visualization algorithm uses the sequence basis vector
Siv as a coordinate system to position all elements of the graph. The graph topology
itself is laid out in accordance with the node representation in Siv, flowing from left to
right at the top of the rendering. Node lengths are shown using a black bar, with the
sequence labels given below. The graph topology is rendered above the node set, and
layout of these edges can be completed in linear time as they are rendered as simple
splines connecting node ends. Paths, or other annotations such as coverage per read set,
are displayed below as colored bars matching the subset of the node space that they
cover. Where paths traverse a given node multiple times, an annotation is added to
indicate the copy number. This technique is implemented as vg viz, and an example
rendering is given in figure 2.11.

It is important to recognize that this approach is lossy. Path ordering is not clearly
represented, as the paths are treated like masks over the sequence space of the graph.
Furthermore, it can be difficult to interpret complex graphs as the topology of the graph
is obscured in the simplistic rendering. vg viz’s linear layout treats the graph sequences
as a basis space in which other paths or alignments may be interpreted. This simplistic

84 Variation graphs

Fig. 2.11 The same variation graph in figure 2.8 rendered using vg viz.

view is central to many potential applications of vg, which I further discuss in section
2.8. The linear scaling of the algorithm should allow it to be applied to whole genomes,
provided suitable front-end visualization software can be built, such as in a web interface.

2.7 Graph mutating algorithms
To use variation graphs as reference systems, we need to be able to modify them.
Algorithms in graph theory are frequently based on graph transformations, and I have
discussed some of them in the context of assembly and whole genome alignment. vg
implements many algorithms that alter the graph, but a number are of importance to its
development as a system for resequencing, and I detail them here.

2.7.1 Edit

As discussed in section 2.1.6, the extension of a variation graph to include new sequences
and paths can be thought of as a transformation yielding a bijection between the new
and old graphs edit(G, A) → (G′, Φ). The main issue which adds complexity to this
process is that nodes represent more than a single character.

If nodes did represent a single character, then they would remain atomic through
graph extension. It is simple to edit a “basepair” graph of this type: G = (N, E, P),
where ∀n∈N |seq(n)| = 1. We walk through the alignments to it A = a1 . . . a|A|, adding
novel bases represented in them (seq(A) /∈ G = NA) as new nodes. Then for each
alignment ai, we add edges connecting nodes in the order they would be traversed by
the path of the alignment embedded in the graph pai

∈ G′, yielding EA. Finally, we

2.7 Graph mutating algorithms 85

add paths representing the embedded alignments PA. The resulting graph unifies these
additions G′ = (N ∪NA, E ∪ EA, P ∪ PA).

To achieve lower representation costs in graphs with sparse variation, we usually
compress the graph so that nodes cover multiple bases and thus we must consider
the editing process in multiple phases. We first modify graph G so that every novel
sequence will be added at the start or end of a node. We do this by breaking nodes into
multiple derivative nodes when they overlap mappings that do not match the graph using
break(G, A)→ (G′, Φ). For instance, if seq(ni) = GATTACA and we have a SNP T→ C at
offset 4, we would obtain ni → n′

i, n′′
i , n′′′

i : seq(n′
i) = GAT, seq(n′′

i) = T, seq(n′′
i) = ACA.

We can then apply translate(A, Φ)→ A′, and add edges to G′ implied by the alignments
as we would when editing a graph with single character nodes.

2.7.2 Pruning

The number of paths in a sequence graph grows exponentially with the number of
variable sites. As I have discussed, this causes problems for alignment algorithms and
graph sequence indexing. While we can use efficient disk-backed index construction
algorithms like GCSA2 to mitigate the effects of this exponential scaling, only a handful
of dense clusters of variation in the graph can increase the memory requirements of path
enumeration beyond any reasonable level. To control this we restructure the graph to
limit recombinations in the global sequence index.

We have explored two main techniques for the reduction of graph complexity. In the
first, we prune regions of the graph which have high path complexity using a depth-first
search (DFS). We can optionally add back known haplotypes, in order to mitigate the
loss of information from the index. For VCF-based VGs, where we have haplotype panels,
the performance of local alignment is unaffected by the topological complexity, so we
only need to apply this pruning to the graph input to GCSA2 indexing. In assembly
graphs, we find that nodes which represent repeats can sometimes have extremely high
degree, which causes problems both for indexing and local alignment to the graph. There,
we must remove these nodes in order to use the graph even for local alignment.

2.7.2.1 k-mer m-edge crossing complexity reduction

In k-mer complexity reduction, we enumerate the k-mers of the graph, removing edges
when a given k-mer crossing them would cross > m edges. We implement this filter,
prune(G, k, m)→ Gsimple, using the k-mer enumeration algorithm that generates a DBG
from the variation graph, only that our walks through the graph are bounded at m edge

86 Variation graphs

crossings. For each offset in each node ni and ni, we run a DFS forward until we have
read k characters of the graph. During the pruning operation, instead of emitting the
k-mers with their contexts, we stop the DFS when we have crossed m edges. We record
the edge in Ecomplex. We thus derive the subgraph from the current graph by removing
the complexity-inducing edges: (N, E \ Ecomplex, P) → Gsimple. It can be helpful to
remove any small isolated components that result from this pruning, which can be done
with a linear subgraph enumeration algorithm and the measurement of the sequence
length of each. A disjoint component Gsub ∈ Gsimple : ∀eij∈Nsubni ∈ Nsub ∧ nj ∈ Nsub

must have length ∑∀n∈Nsub |seq(n)| ≥ J . By default, we use k = 24, m = 3, and J = 33.

2.7.2.2 Filling gaps with haplotypes

Although removing complex regions will reduce the number of recombinant haplotypes
represented by the graph, it is likely to also remove sections of known haplotypes. We
can retain the complexity reduction without losing sequences in known haplotypes by
replacing the pruned regions in Gsimple with unfolded copies of each haplotype sequence.
When we have a single reference path in Gref, we can accomplish this by overlaying Gsimple

and Gref. However, this will not achieve the desired result with even two overlapping
paths, as where these differ they would reintroduce the re-combinatorial explosion that
we hope to resolve with pruning. An alternative is to copy the haplotypes in the GBWT
index that stretch from one border to the other of each removed region into the removed
subgraphs in Gsimple. Doing so, we must preserve a mapping between the new nodes and
the previous underlying ones in G. This allows matches to the haplotypes to be converted
into matches in the base graph. The exact method by which this filling implemented is
described in [250].

2.7.2.3 High degree filter

Because they separate dense variation into heterozygous bubbles, assembly graphs may
feature greater “smoothness” than VCF-based graphs locally. But, in the context of
repeats, they can contain nodes with exceptionally high degree. If these cluster together
then they generate highly-connected regions that introduce degeneracy in the path space of
the graph, and cause problems for k-mer enumeration and GCSA2 indexing. Furthermore,
the local alignment methods in VG do not support efficient alignment through such dense
regions. Preventing this is relatively simple, in that we remove nodes with more than D
edges linking them to the graph, yielding Gprune : ∀ni∈NpruneD ≥ |{e∗i ∪ ei∗ ∪ ei∗ ∪ e∗i}|.

It is not necessary that our local alignment suffers from high-degree nodes. The
problem is that GSSW is provided an alignable graph that is an extracted subset of

2.7 Graph mutating algorithms 87

the full graph. If this subgraph is extracted using context expansion in the graph, then
high-degree nodes will generate extremely large subgraphs. One solution would be to
use the bit-parallel string to graph alignment approach in [219], as this achieves optimal
bounds in the size of transformed graph to which we align. Alternatively, the graph
exploration should be more directly linked to the alignment process. The X-drop aligner
dozeu could be adapted to this approach, as the X-drop parameter would provide a
natural limit to the graph exploration. Such approaches may allow us to tolerate a
larger D, but it seems unlikely that they will allow alignment to be driven through the
most-tangled areas of the graph without a large performance penalty relative to graphs
with lower maximum degree.

2.7.3 Graph sorting

To achieve as much partial ordering as possible, we order and orient the nodes in the
graph using a topological sort. The sort is guaranteed to be machine-independent given
the initial graph’s node and edge ordering. The algorithm is well-defined on non-DAG
graphs, but in these cases the order is necessarily not a topological order. Our approach
is a bidirected adaptation of Kahn’s topological sort [119], which is extended to handle
graph components with no heads or tails. This algorithm can be understood as a kind of
seeded depth first search through the graph. Where the graph has nodes which are pure
heads, it begins there. Otherwise, a set of seed nodes which are stably selected given a
particular graph are used to begin the sort. The details of this procedure are provided in
algorithm 1.

Sorting can provide a simple optimization during read alignment. If the reference
graph has been sorted, then we can use the given order to generate node identifiers,
embedding the rank of each node in its id. We can detect if a given subgraph is possibly
non-acyclic if ∃eij ∈ E : i > j, and if so submit the graph to sorting, unfolding, and
DAGification before applying local alignment.

Similarly, the sort allows us to project data in the context of the graph into a
single dimension. Provided the graph is regionally partially ordered, this projection
preserves local structures, which is a desirable property. This makes the sort applicable
to visualization techniques as in figure 2.11.

2.7.4 Graph simplification

Assembly algorithms often employ a bubble popping phase, in which small bubbles, which
are graph components connected to the rest of the graph through a single source and

88 Variation graphs

Algorithm 1 Pseudo-topological sort
G = (N, E, P) ▷ A copy of our input graph which we will destructively modify
L← [. . .] ▷ Stores the pseudo-topological order
S ← ∅ ▷ Set of nodes which have been oriented but not yet traversed
V ← {ni} ∈ N : ̸ ∃eji∀nj ∈ N ▷ We start from the head nodes of the graph
if V = ∅ then ▷ If there are no head nodes, we use “seed” nodes

V ← Stably-selected seed nodes ∈ N
end if
while V ̸= ∅ do

n← n ∈ V ▷ Select a seed node
V ← V \ {n} ▷ Remove it from the input node set V
S ← S ∪ {n} ▷ Store it in our working set S
while S ̸= ∅ do

ni ← ni ∈ S ▷ Remove an oriented node from S
S ← S \ {ni}
L← [L[1] . . . L[|L|], ni] ▷ Append it to our output order L
for ∀nj : eij ∈ E do

E ← E \ {eij} ▷ Remove the edge from our edge set
if ̸ ∃ekj∀k ∈ N then ▷ nj has no other edges to that side

if eij then
nj ← nj ▷ Orient nj so the side the edge comes to is first

end if
N ← N \ {nj} ▷ Remove nj from N
S ← S ∪ {nj} ▷ Insert nj into S

else ▷ This helps start at natural entry points to cycles
V ← V ∪ {nj} ▷ Record nj as a place to start when S is empty

end if
end for

end while
end while
return L ▷ Return our pseudo-topologically sorted order and orientation

2.8 Graphs as basis spaces for sequence data 89

sink node, are replaced by linear components representing the most-likely path through
the bubble given the read data. In vg we can carry out a similar operation based on
the bubble decomposition of the graph. Unlike assembly graph bubble popping, we
must retain information about the embedded paths and annotations in the variation
graph. Simplification has a number of potential applications, for instance in reducing the
complexity of visualizations of large variation graphs.

2.8 Graphs as basis spaces for sequence data
If we can construct a graph which embeds all the sequences of all genomes which we
are interested in, we resolves the separation between reference sequence and variation
that is present in standard resequencing. This suggests that the intermediate steps in
resequencing may be made redundant. If variation is already available during alignment
then there is no need for a variant detection phase. However, if the graph does not include
variation in our samples, then variant calling is required. In vg we have implemented
several methods to do so. Similarly, we have implemented coverage summaries of read
sets that may be used directly in downstream analyses.

2.8.1 Coverage maps

Numerous population genetic analyses are based on matrix representations of a collection
of genomes. Such models can be used to infer population structure and phylogeny, as well
as to associate phenotypes to genomic variants. If the variation graph used as a reference
contains all sequences relevant to our analysis, then a matrix of per-base coverage of the
graph by sample will provide highly representative information to downstream analyses.
Exceptions include structural variation that does not result in coverage changes, such as
balanced events like inversions. Also, some local patterns of variation between successive
small variation will not be distinguishable. If we were to annotate edges with their
coverage, this method would produce a result equivalent in information content to a
Markov model. It is thus clear that any coverage based index will be lossy relative to
the full read set. However, the lossiness reduces the information cost of storing and
processing these coverage maps. As I described in section 2.4.6, in vg I developed an
efficient method to accumulate coverage information of this kind across the graph.

90 Variation graphs

2.8.2 Bubbles

In a sequence graph, a bubble is a pair of paths which start and end at the same nodes (s,
t) but are otherwise disjoint in the graph [285]. Bubbles encompass our intuition about
genetic variation in graphs. A homologous sequence corresponding to the common start
and end nodes in the bubble flanks two or more alternative alleles in the middle. These
structures were first considered in the context of finding small variation, and it was only
in recent years that methods were developed to efficiently enumerate all bubbles of any
size in DAGs [19].

Bubbles can nest and contain more complicated internal structures between the paths
through them. The bubble may be generalized to the idea of a superbubble, which is a
directed, acyclic component of a graph with a single head and tail node [200]. As for
bubbles, efficient enumeration of superbubbles is possible in a DAG [24]. The optimal
method relies on a recursive topological sort of the graph to structure the nested bubbles.
Candidate node starts (s) and ends (t) are found following the definition of a superbubble.
The set of candidates is then validated by range min queries (RMQ) to produce the
set of superbubbles. As sort is linear O(|N |+ |E|), and the candidate enumeration and
RMQ may be implemented on the sorted graph in O(1) each, this yields a linear time
algorithm for the enumeration of superbubbles.

The DAG requirement of this method is a significant limitation. In order to apply
the superbubble enumeration to an arbitrary graph we must first DAGify it. In response,
I worked with Benedict Paten and others to generalize the idea of a genetic site to
support arbitrary bidirectional sequence graphs [206]. To formulate a generalization
of superbubbles, we introduce the concept of a snarl, which is any graph component
connected to the rest of the graph by two or fewer bordering nodes18. Snarls whose
internal separated component is acyclic and does not contain any tips are ultrabubbles.

Paten observed that trees embedded in the Cactus graph transformation of a variation
graph corresponded to the standard concept of superbubbles. Specifically, the cactus
graph is transformed into a cactus tree in which each simple cycle in the cactus graph
becomes a special kind of node. Various rootings of this tree may then be used to define
a hierarchy of bubbles. The bidirectional nature of the variation graph mean that snarls
can embed each other in a manner akin to how the twist used to generate an Möbius
strip results in it having a single surface and border. In these cases the resulting cactus
tree will support multiple alternative ultrabubble tree rootings, and so unlike the bubble
and superbubble decompositions for DAGs the ultrabubble decomposition is not unique.

18In the paper the formulation is based on a bi-edged graph akin to the Enredo graph, but we note
that a node-based formulation is equivalent and matches the other models in this section.

2.8 Graphs as basis spaces for sequence data 91

We can enumerate a subset of these by identifying bridge edges (typically representing
tips) in the “bridge forest”, which is the result of a contraction of the cycles in the cactus
graph into a set of top-level cycle representing nodes, and then use them to produce
various rootings of the cactus tree.

Ultrabubbles and superbubbles provide a natural framework in which to reason about
the hierarchy of variable genetic sites embedded in a graph. As such they provide the
basis for generic models of genotype inference based on variation graphs which are capable
of genotyping any kind of genetic variation, including structural variation as well as
nested variation, in the same model as SNPs and indels.

2.8.3 Variant calling and genotyping

Given a definition of variable genetic loci in the graph, we can build a genotyping system
capable of generating genotype calls in the context of the graph. In vg we have explored
two such methods. The first, originally implemented in vg call, generalizes the concepts
first implemented in samtools mpileup to work on the graph. A set of alignments are
first reduced to pointwise edits against the graph and per base coverage of the graph.
This graph “pileup” is then processed by a genotyping algorithm that considers genetic
sites using the ultrabubble model. A schematic overview of the method is shown in figure
2.12.

a
a
a
c
a
c
c a

Read alignment Graph pileup Variant calls Augmented graph

Sample graph

Fig. 2.12 Pileup variant calling with vg call

The second model, implemented in vg genotype, embeds the alignments in the
variation graph using edit(A, Gbase)→ (Gaug, Φaug→base), and then genotypes across the
ultrabubbles of Gaug which are supported by reference paths in Gbase or reads. As the
resulting genotypes are represented as unordered sets of paths in Gaug, they are projected
back into the coordinate space of Gbase using the translation Φaug→base. An overview of
the process is shown in figure 2.13.

While principled, the full augmentation model in vg genotype is very expensive
to compute. The pileup model has proven to be more efficient. Over time vg call
has been adjusted to implement some features of the full graph augmentation model

92 Variation graphs

Reference
Graph

Augmented
Graph

Allele
Supports

Ultrabubbles

Genotype
Likelihoods Genotypes

Aligned
Reads

Translation
Updated

Reference
Graph

Fig. 2.13 Graph augmentation-based variant calling in vg genotype
.

in vg genotype where the graph is augmented only with sequences supported by some
number of alignments at a given quality threshold. Both methods employ a diploid
specification of the genotyping model in freebayes [88] to develop their posterior estimates
of variant quality. The generalization of SNP and indel calling to haplotype calling
implemented in freebayes corresponds to the same allele model used in both vg variant
calling methods. Alleles correspond to DNA sequences of arbitrary length, anchored at
the ends to the reference genome (in the case of freebayes) or to the rest of the graph (as
in the ultrabubbles used in vg).

The complexity of running and evaluating genotyping in the graph has slowed
development of these methods. Currently they are still outperformed by standard
variant calling methods based on the linear reference, as indicated by our results in the
PrecisionFDA variant calling challenge that I will describe in the next chapter.

Chapter 3

Applications

In the first two chapters I have provided an overview of the theoretical basis of my work
and placed it within the history of related approaches. Here, I will demonstrate how the
methods I develop can aid biological insight in a number of species domains. To do so, I
will use methods described in chapter 2 as implemented in vg.

The small genome of Saccharomyces cerevisiae and ready availability of sources for
pangenomic data models made it very useful to my development of vg. I begin by
illustrating this for a variety of pangenome constructions and also a variety of read
lengths.

However, much interest in bioinformatics is with larger genomes, specifically human.
I use evaluations based on the human genome to validate the ability of vg to scale to
large genomes. Through simulation and the analysis of real genomes, I show that the
aligner I implement, vg map, yields the same quality of alignment as bwa mem against
linear genomes. Although vg map’s runtime is between five to ten-fold slower than bwa
mem, it provides improved, less biased alignment against variation graphs. I develop a
variation graph for the reference-guided genome assemblies from the HGSVC project and
demonstrate the strong effect of reference bias in ChIP-seq data.

One context where reference bias has very significant effects is in the analysis of
ancient DNA (aDNA). Here short reads and high intrinsic error rates encourage a high
rate of reference bias. I show that alignment against a pangenome graph ameliorates this
issue.

vg can be applied to any kind of variation graph. To demonstrate the utility of this,
I use de Bruijn assemblers to generate reference variation graphs from collections of raw
sequencing reads in the absence of a prior reference. I recreate a classical pangenomic
analysis of core and accessory pangenome by analyzing the coverage of alignments mapped
to an assembly graph built from 10 Escheria coli strains. To illustrate the application of

94 Applications

vg to metagenomic data containing unknown source genomes, I show that vg enables
the full length alignment of reads to a complex assembly graph built from an arctic
viral metagenome, and similarly improves alignment to an assembly graph built from a
human gut microbiome. Finally, I demonstrate that the data models and indexes in vg
are capable of encoding splicing graphs, and that aligning to these splicing graphs allows
the direct observation of the transcriptome.

3.1 Yeast
Saccharomyces cerevisiae, commonly known as baker’s or brewer’s yeast due to its
gastronomic applications, has long been among the most important model organisms in
biology, and its small genome attracted some of the first population scale whole genome
surveys of variation to be undertaken using low-cost sequencing. The genome of S.
cerevisiae was the first eukaryotic genome sequenced, in 1996 [91]. Resequencing studies
followed that used cerevisiae as a model system to understand genome evolution. The
Saccharomyces Genome Resequencing Project (SGRP) [162], which used low-coverage
capillary Sanger sequencing to generate a population survey for cerevisiae can be seen
as a precursor to the 1000GP, in its use of low-coverage sequencing and imputation
to establish the panel1. A followup project, the SGRP2, used resequencing and whole
genome assembly of high coverage, low cost Illumina sequencing to establish that the
greater phenotypic diversity in S. cerevisiae relative to its wild relative S. paradoxus is
likely due to structural variation (as measured by presence/absence and copy number)
rather than SNP diversity [17]. Recently, whole genome de novo assembly with long
single-molecule reads has further refined this conclusion by demonstrating that the
structural diversity is non-uniformly distributed throughout the genomes of S. cerevisiae,
concentrating in subtelomeric regions [283]. In this section, I use data from independent
sequencing of the UK’s National Center for Yeast Collections (NCYC) as well as long
reads from [283] to demonstrate the capabilities of vg and compare the utility of various
variation graph models built from these population surveys.

3.1.1 A SNP-based SGRP2 graph

The earliest rigorous testing of vg’s alignment method was against a variation graph
constructed from the SGRP2’s released VCF for S. cerevisiae2. This early population
resequencing project produced a VCF including only SNPs, yet using it already presented

1https://www.sanger.ac.uk/research/projects/genomeinformatics/assets/sgrp_manual.pdf
2http://www.moseslab.csb.utoronto.ca/sgrp/data/SGRP2-cerevisiae-freebayes-snps-Q30-GQ30.vcf.gz

https://www.sanger.ac.uk/research/projects/genomeinformatics/assets/sgrp_manual.pdf
http://www.moseslab.csb.utoronto.ca/sgrp/data/SGRP2-cerevisiae-freebayes-snps-Q30-GQ30.vcf.gz

3.1 Yeast 95

problems typical even when working with larger scale genomes. The transposable elements
in the genome generate rich patterns of repeats which make alignment difficult and require
the development of mapping quality. Dense variation is also present in the results and
this necessitates the application of pruning strategies to the graph to mask out high-
complexity regions for indexing. Mistakes in the mapper could be readily observed and
testing could easily be done on a laptop, whereas larger genomes require longer runtimes
for indexing and larger servers in order to support the indexes during alignment.

The SGRP2 graph can be built and indexed in around 10 minutes on a commodity
compute server, including the construction of the GBWT index and the generation
of an order-256 GCSA2 index using a pruned and refilled version of the graph. It
contains exactly the number of bases in the SGD_2010 reference plus the number of
SNP alternate alleles in the SGRP2 VCF: 12163423 + 243629 = 12407052. The graph
itself uses 23MB on disk, in contrast to that of the SGD_2010 reference, which takes
only 7.6MB. Much of this difference is due to the larger number of entities required by
to represent the variation-containing graph. The SGD_2010 graph is linear, with a gap
for each chromosome, and contains 380,115 nodes and 380,097 edges after splitting into
nodes of typical size 32bp, while the SGRP2 graph contains SNPs and is represented
with 714,533 nodes and 969,690 edges. Note that by default, GCSA2 indexing works
on nodes with a maximum length less than 1024, and vg map performs better if the
maximum node size is limited further, with 32bp usually the standard maximum length
in experiments I will present here. The resulting indexes also differ in size, with the
SGRP2 graph’s xg index requiring 71MB, while the SGD_2010 graph’s only 38MB. The
full GCSA index for the SGRP2 graph is substantially larger, at 220MB, in contrast
to only 50MB for the linear reference, which reflects the greater complexity required
to include all the recombination in the pruned and haplotype re-filled graph used for
indexing.

To validate that the SGRP2 reference is a closer match to real read sets, I then
mapped subsets of reads from cerevisiae samples that were in the NCYC collection but
were not part of SGRP2. I aligned 100K read pairs from each of 12 samples (N = 2.4M
total reads) to both the SGD_2010 reference graph and the SGRP2 pangenome graph.
For each read, we can compare the alignment score and identity between the two graphs
to evaluate the gain provided by using the pangenome as a reference. When we map
the real reads from new strains not used to build the graph, 24.5% of the reads map
better to the pangenome than to the linear reference (figure 3.1). A small fraction of
reads (0.46%) map better to the linear than to the pangenome graph, which could result

96 Applications

from changes in paired alignment rescue, the effects of the pruning process, the slightly
different minimum MEM size calculated for the two graphs, or errors in the SGRP2.

3.1.2 Cactus progressive assembly

Variation graphs are generic objects capable of representing any kind of alignment between
genomes or assembly of read data from them. To test the ability of vg to use graphs of
complex topology, we constructed a whole genome alignment graph of de novo assemblies
produced from PacBio sequencing of seven strains of S. cerevisiae. In this assembly each
chromosome of each assembly in [283] was progressively aligned using the phylogenetic
guide tree methodology implemented in Cactus [205]. As illustrated in figure 3.2, this
graph encodes a complex global topology that captures the structural variation between
the species also reported in [283] as well as a local DAG-like topology which we expect
when homologous sequences are represented compactly in a graph. This illustrates the
ability of vg to represent paths corresponding to both collinear (inset) and structurally
rearranged (main figure) regions of genomic variation.

A simulation study based on the SK1 strain provides some insight into the capabilities
of vg and tradeoffs inherent in different graph designs. I compared four vg graphs: a
linear reference graph from the standard S288c strain, a linear reference from the SK1
strain, a pangenome graph of all seven strains, and a “drop SK1” variation graph in
which all sequence private to the strain SK1 was removed from the pangenome graph.
The multiple genome graphs were constructed with the Cactus progressive aligner, which
generates graphs that typically contain cycles and are not partially ordered, and then
filtered down to the various subgraphs using path subsetting facilities in vg mod.

We simulated 100,000 150-bp paired-end reads from the SK1 reference, modeling
sequencing errors, and mapped them to the four references (ROC curves, Figure 3.3).
Not surprisingly, the best performance was obtained by mapping to a linear reference of
the SK1 strain from which the data were simulated, with substantially higher sensitivity
and specificity compared to mapping to the standard linear reference from the strain
S288c with either vg or bwa mem. Mapping to the variation graphs gave intermediate
performance, with >1% more sensitivity and lower false-positive rates than mapping
to the standard reference. There was surprisingly little difference between mapping to
graphs with and without the SK1 private variation, probably because much of what
is novel in SK1 compared to the reference is also seen in other strains. Mapping to
either graph had lower sensitivity compared to mapping just to the SK1 sequence, likely
because of suppression of GCSA2 index k-mers in complex or duplicated regions, which
our indexing strategy was not designed to address.

3.1 Yeast 97

(a) Alignment score (b) Alignment identity

1e+11

1e+26

1e+41

1e+56

−100 −50 0 50 100

score.SGRP2 − score.SGD

st
ac

ke
d

lo
g

co
un

ts

name

NCYC1006

NCYC1026

NCYC1187

NCYC1228

NCYC1245

NCYC1681

NCYC78

NCYC84

NCYC88

NCYC92

NCYC93

NCYC97

(c) Difference in alignment score

1e+11

1e+26

1e+41

1e+56

−1.0 −0.5 0.0 0.5 1.0

id.SGRP2 − id.SGD

st
ac

ke
d

lo
g

co
un

ts

name

NCYC1006

NCYC1026

NCYC1187

NCYC1228

NCYC1245

NCYC1681

NCYC78

NCYC84

NCYC88

NCYC92

NCYC93

NCYC97

(d) Difference in alignment identity

Fig. 3.1 Alignment of 100k read pairs from 12 NCYC S. cerevisiae strains against the
reference genome (SGD) or the pangenome (SGRP2). In (3.1a) alignment scores are
plotted for each read. The shift in density to the right relative to y = x indicates
improved alignments to the pangenome. In (3.1b) we observe the same pattern when
using alignment identity rather than score. Subfigures 3.1c and 3.1d provide a stacked
log-scaled histogram of the difference in score and identity between the two graphs.

98 Applications

568371

568372

568373
568374

568347

568375

568376568377

568378

568338

568335
568337

568334

568336
568339

568341

568342

568340

568348568349

568343 568344

568345

568346

568350

568351568352

568353

568354

568355

568356568357
568358
568359

568360

568361

568362

568363

568364

568365

568314

568313
568312

568315568316 568320

568321
568317

568326

568327

568318568319

568322

487

568324
568323

568325

568328

568331568329

568330

568333

568332

DBVPG6044.chrII 568378

568376

568375

568374

568372

568347

568345

568344

568342

568341

568338

568337

568334

568333

568332

568331

568327

568326

568325 568323

568322

568321

568320

568314

568313
568312

 DBVPG6044.chrIX 568365

 568363

 568362

 568360
 568359

 568357

 568356
 568353

 568352  568351

 568349

 568348

 568339

 568338

 568337

 568334

 568329

 568328
 568327

 568318
 568317

 568315

 568314

 568313

DBVPG6044.chrVII 568378

568376

568375

568374

568372

568347

568345

568344

568342

568341

568338

568337

568334

568333

568332

568331

568327

568326

568325
568324

568322

568321

568320

568314

568313

568312

DBVPG6765.chrIX 568364

568363

568361

568360

568358 568357 568355

568353
568352 568350

568349

568340

568339 568338

568335

568334

568329

568328

568327

568318

568317

568315

568314

568313

S288c.chrIX 568364

568363 568361

568360
568358

568357

568355

568353

568352

568350

568349

568340 568339
568338

568335

568334

568329

568328

568327

568318

568317

568315

568314

568313

SK1.chrII 568378

568376

568375

568374

568372

568347

568345

568344

568342

568341

568338

568337

568334

568333
568332

568331

568327

568326

568325 568323

568322

568321

568320
568314

568313
568312

SK1.chrIX 568365 568363

568362
568360

568359

568357

568356

568353
568352 568351

568349
568348

568339

568338

568337

568334

568329

568328

568327

568318

568317

568315

568314

568313

SK1.chrVII 568378

568376

568375

568374

568372

568347

568345

568344

568342

568341

568338

568337

568334

568333
568332

568331

568327

568326

568325

568322

568321

568320

568314

568313

568312

UWOPS034614.chrIX 568364

568363

568361

568360

568358
568357

568355

568354
568352

568350
568349

568340

568339
568338

568335

568334

568329

568328
568327

568318

568317

568315

568314

568313

UWOPS034614.chrVIII 568312
568313

568314

568316

568317

568319

568327

568328

568330

568333

568336
568337

568338

568341

568342

568343

568345

568346

568347

568372

568373

568375

568376

568378

UWOPS034614.chrXI 568312
568313

568314

568316

568317

568319

568327

568328

568330

568333

568336
568337

568338

568341

568342

568343

568345

568346

568347

568372

568373

568375

568376

568378 UWOPS034614.chrXIV 568378

568376

568375

568373

568372

568347

568346

568345

568343

568342

568341

568338

568337
568336

568333

568330

568328

568327

568319

568317

568316

568314

568313 568312

Y12.chrIX 568364

568363 568361

568360

568358

568357

568355
568353

568352

568350 568349 568340 568339
568338

568335

568334

568329

568328

568327

568318

568317

568315

568314

568313

Y12.chrVII 568378

568377

568375

568373

568372

568371

568347

568345

568344

568342

568341

568338

568337 568336

568333

568330

568328

568327

568326

568317

568316

568314

568312

YPS128.chrIX 568364

568363 568361

568360
568358

568357

568355 568353

568352

568350

568349

568340
568339

568338

568335

568334

568329

568328
568327

568318

568317

568315

568314

568313

C

ACTC

A

G

CCAAAGGCGTGCCTTTGTTGA

G

T

C

ATCCATT

G

TGCTACGTTAGAAAGGCCCACAGTATTCTTC

Fig. 3.2 A region of a yeast genome variation graph. This displays the start of the
subtelomeric region on the left arm of chromosome 9 in a multiple alignment of the
strains sequenced in [283] as assembled by Cactus [205]. The inset shows a subregion of
the alignment at single-base level. The colored paths correspond to separate contiguous
chromosomal segments of these strains. Reprinted from [89].

3.1 Yeast 99

60

60

60

60

6060

60

60

60

60

50

50

50

50

5050

50

50 50

50

40

40

40

40

4040

40
40

40

40

30

30

30

30

30

30

30

30

30

30 2020

20

20

2020

20

20

20

20

10

10

10
10

1010

10

10

10

10

0

0

0

0

0

0

0 0

0

0

0.92

0.94

0.96

0.98

0.001 0.010
FPR

TP
R

25000

50000

75000

aligner
a
a
a
a
a
a
a
a
a
a

bwa-mem-pe

bwa-mem-se

cactus-pe

cactus-se

cactus_S288c-pe

cactus_S288c-se

cactus_SK1-pe

cactus_SK1-se

cactus_drop_SK1-pe

cactus_drop_SK1-se

number

Fig. 3.3 Mapping short reads with vg to yeast genome references. ROC curves obtained
by mapping 100,000 simulated SK1 yeast strain 150-bp paired-end reads against a variety
of references described in the text. Reprinted from [89].

100 Applications

3.1.3 Constructing diverse cerevisiae variation graphs

With vg, our goal is to build a toolkit that allows the use of any genome graph as a
reference. To validate this capability, I used data sources for S. cerevisiae to build seven
variation graphs, whose dimensions are listed in table 3.1. In the next section (3.1.4) I
present an evaluation of these graphs using long reads from the SK1 strain.

name size (MB) length nodes edges subgraphs
SGD_2010 7.3 12163423 380115 380097 18
S288c 7.3 12249246 382797 382781 18
SGRP2 21 12407052 714533 969690 18
minia unitigs 15 14419206 1232804 1332994 46131
minia contigs 6.4 12233279 421125 425683 2961
Cactus 31 13243056 1059173 1304205 580
vg msga 42 13793955 1156295 1387903 2

Table 3.1 A summary of seven different variation graphs constructed to represent variation
in S. cerevisiae. As described in section 3.1.1, the SGD_2010 graph is built from the
reference, while SGRP2 adds SNPs in the SGRP2 population survey. The Illumina data
from [283] was used to build the minia unitigs and minia contigs graphs, while the whole
genome, chromosome-resolved PacBio assemblies from the same work were used to build
the Cactus and vg msga progressive assemblies. S288c is the de novo assembly of the
reference strain produced in [283].

Three of the graphs are effectively linear or DAG-like, except for their mitochondria
and plasmid chromosomes, which are included as circular components. SGD_2010 and
S288c represent two assemblies of the reference genome, the former from the SGD genome
sequencing project, and the latter is a de novo assembly from [283]. The difference in
quality between the two approaches will be made apparent in the subsequent section. As
described in section 3.1.1, the SGRP2 graph adds SNP variation from the population
survey in [17] to build a pangenome reference. The SGD_2010 reference contains the
mitochondria and 6 kbp plasmid sequence, while the S288c assembly excludes them due
to the sequencing protocol, where size selection in the library preparation stage removed
these short sequences, so to enable direct comparison in later tests these were added to
the S288c graph.

The remaining four graphs are different forms of assembly graph. Using the Illumina
data published in [283], I build two assemblies with minia3, using a k-mer size of 51
and a high abundance threshold (50) to limit the resulting graph complexity. In the
first, I take the unitig graph that represents all non-branching paths in the compacted
DBG as nodes. The second is the result of the minia contigification process that pops

3.1 Yeast 101

bubbles and cleans the graph to attempt to arrive at longer contigs. Both results are
expressed as overlap graphs in GFA, and I can import them as variation graphs using
bluntification and graph pseudotopological sorting. As shown in table 3.1, the unitig
graph is considerably more complex in terms of node density than the contig graph. It
also contains more sequence, presumably because some regions that are separated in the
unitig graph are collapsed in the contig graph. The number of disjoint components in
these graphs is very high (2961 for the contig graph and 46131 for the unitig graph),
suggesting that pruning of the assembly graph has yielded a greatly fragmented result.
The resulting graphs are difficult to align long reads to. I conclude that further tuning of
the parameters used during de novo assembly from short reads will be required to use
assemblies like this as reference graphs.

Finally, I used the whole genome de novo assemblies of long read data from [283] to
build whole genome alignment graphs using Cactus (as described in section 3.1.2) and
vg msga. The multiple sequence to graph alignment (MSGA) process implemented in
vg msga is akin to the progressive POA method, but generalized to arbitrary graphs of
any size. Rather than using a local alignment algorithm to expand the graph, the long
read alignment algorithm described in section 2.5.9 allows the direct alignment of whole
chromosomes to the graph. Where the Cactus progressive assembly uses a phylogenetic
guide tree to structure its construction, vg msga simply aligns the chromosomes in
order from longest to shortest to the growing graph. The long read alignment in vg is
structured to enforce long range synteny, and the resulting graph is substantially different
in structure than that of Cactus. I find that vg msga is less likely to collapse repeats than
Cactus, at least in the configuration used for this assembly. We can see this in figure 3.4,
where the Cactus graph (3.4a) shows two dense repeat structures in its core connected by
loops of unique sequence, while the vg msga graph appears to have much longer loops,
with collapsed repeats embedded in these loops. This observation is supported by the
length statistics in table 3.1, with vg msga producing a graph that is 550,899bp longer
than that of Cactus. At the same time, the node count of the vg msga graph is higher,
which perhaps reflects a different local alignment result.

3.1.4 Using long read mapping to evaluate cerevisiae graphs

In this section I evaluate the graphs I constructed in section 3.1.3 and simultaneously
demonstrate the ability of vg to align long reads to graphs of any type. For each of the
seven graphs I aligned a set of 43,337 Pacific Biosciences SK1 reads (mean length 4.7
kbp) from [283] to the graph. We can then compare the alignment identity for each read
across the various graphs. I do so using the same dot plot technique used to demonstrate

102 Applications

(a) Cactus assembly

(b) vg msga assembly

Fig. 3.4 Whole genome alignment graphs for S. cerevisiae visualized using Bandage.

3.2 Human 103

alignment quality improvement using the Illumina data from the NCYC strains. In figure
3.5 I present a number of pairwise comparisons based on this read set.

I find that the SGD_2010 reference provides a better match for the SK1 PacBio reads
than the S288c assembly (top left), which can be seen in a subset of reads that map
nearly perfectly to the SGD_2010 graph but not to the S288c one. This may be due to
the higher quality and curation of the SGD reference, which was initially based on BACs
and capillary sequencing, but I have not determined the exact cause of this discrepancy.
This same effect is clear in the comparison of S288c and the SGRP2 (top middle, figure
3.5), although there the SNPs in the SGRP2 graph tend to improve the overall match
between the SK1 reads and the graph, which can be seen in a shift in density upwards
from the diagonal. For other comparisons I focused on using the S288c reference, as it
forms a part of the progressive alignments and the source data for the minia assemblies
comes from the same paper.

The minia graphs appear to provide very low quality as a reference for the alignment of
long reads (bottom left and middle, figure 3.5). The minia unitig graph is too fragmented
for any practical use. In almost no case does it provide a better match for the long reads.
However, while the minia contig graph is also outperformed by the S288c graph, for a
notable subset of the reads it provides a perfect match, while the S288c graph fails to
match them at all. This suggests that some contigs in the Illumina assembly match the
SK1 strain, which is to be expected and demonstrates that in principle this kind of graph
can represent multiple genomes.

Finally, the whole genome alignment graphs are notable in their similarity. Despite
the fact that they were constructed using different algorithms, both provide a similar
basis for alignment of the SK1 reads. It is notable that alignment time against the vg
msga graph was the highest of the tested graphs, and significantly higher than that for
the Cactus graph. This may relate to the un-collapsed state of the repeats in the graph.
The alignment algorithm will attempt more alignments for each band where there is
ambiguity, and the “patching” at the end of the alignment process will be more intensive.

3.2 Human
For a species such as human, with only 0.1% nucleotide divergence on average between
individual genome sequences, over 90% of 100-bp reads will derive from sequence exactly
matching the reference. Therefore, new mappers should perform at least as well for linear
reference mapping as the current standard, which we take to be bwa mem with default

104 Applications

Fig. 3.5 Density plots of alignment identity when mapping 43,337 Pacific Biosciences
long reads from the SK1 strain to different variation graphs. Linear assemblies: (Top
left) the SGD_2010 reference vs. the S288c assembly from [283]. (Top middle) the
S288c assembly vs. the SGRP2 SNP pangenome. Assembly graphs from Illumina data:
(Bottom left) the minia contig graph vs. the S288c assembly. (Bottom middle) the minia
unitig graph vs. the S288c assembly. Whole genome alignment graphs: (Top right) the
Cactus alignment vs. the S288c assembly. (Bottom right) the vg msga alignment vs. the
S288c assembly.

3.2 Human 105

parameters. We show that vg does this, and then that vg maps more informatively
around divergent sites.

3.2.1 1000GP graph construction and indexing

The final phase of the 1000 Genomes Project (1000GP) produced a data set of ∼80
million variants in 2,504 humans [45]. We made a series of vg graphs containing all
variants or those above minor allele frequency thresholds of 0.1%, 1%, or 10%, as well as
a graph corresponding to the standard GRCh37 linear reference sequence without any
variation. The full vg graph uses 3.92 GB when serialized to disk, and contains 3.181
Gbp of sequence, which is exactly equivalent to the length of the input reference plus the
length of the novel alleles in the VCF file. Complete file sizes including indices range
from 25 GB to 63 GB, with details including build and mapping times given in table 3.2.

Reference set N vars vg index search time
(M) time size time size PE SE

GRCh37 0 1:09:54 1.76 23:30:41 25.11 33:34 28:33
1000GP AF0 84.8 3:42:01 3.92 51:05:07 63.28 45:10 39:46
1000GP AF0.001 30.2 2:00:08 2.58 31:45:12 38.10 39:33 32:53
1000GP AF0.01 14.3 1:35:02 2.17 27:18:53 30.94 33:13 27:09
1000GP AF0.1 6.8 1:23:04 1.97 26:06:38 27.79 32:35 28:43

Table 3.2 Numbers of variants, file sizes in gigabytes (GB) and build and search times in
hours:minutes:seconds for various human vg graphs and associated indexes. Reference
sets are the linear reference GRCh37, the full 1000 Genomes Project set 1000GP AF0,
and subsets of 1000GP AF0 including only variants with allele frequency above thresholds
0.001 (0.1%), 0.01 (1%) and 0.1 (10%) respectively. The number of variants in millions
for each of these data sets is shown. Search times are for 10 million 150+150bp read
pairs simulated from NA24385. Reprinted from [89].

3.2.2 Simulations based on phased HG002

We next aligned ten million 150-bp paired-end reads simulated with errors3 from the
parentally phased haplotypes of an Ashkenazim male NA24385, sequenced by the Genome
in a Bottle (GIAB) Consortium [291] and not included in the 1000GP sample set, to
each of these graphs as well as to the linear reference using bwa mem. Figure 3.6 shows
the accuracy of these alignments compared with bwa mem for the full range of frequency
thresholded graphs, in terms of receiver operating characteristic (ROC) curves.

3SNP errors are introduced at a rate of 0.01 per base and indels at a rate of 0.002 per base.

106 Applications

Reads that come from parts of the sequence without differences from the reference
(middle panels of Figure 3.6) mapped slightly better to the reference sequence (green)
than to the 1000GP graph (red), which we attribute to a combination of the increase in
options for alternative places to map reads provided by the variation graph, and the fact
that we needed to prune some search index k-mers in the most complex regions of the
graph. The best balance of performance appears at the threshold of 0.01. As expected,
this difference increased as the allele frequency threshold was lowered and more variants
were included in the graph.

For reads that were simulated from segments containing non-reference alleles (∼10%
of reads), which are the reads relevant to variant calling, vg mapping to the 1000GP
graph (red) gave better performance than either vg (green) or bwa mem (blue) mapping
to the linear reference (right panels of Figure 3.6), because many variants present in
NA24385 are already represented in the 1000GP graph. This is particularly clear for
single-end mapping, since many paired-end reads are rescued by the mate read mapping.
Overall, vg performed at least as well as bwa mem, even on reference-derived reads, and
substantially better on reads containing non-reference variants.

3.2.3 Aligning and analyzing a real genome

We also mapped a real human genome read set with ∼50× coverage of Illumina 150-bp
paired-end reads from the NA24385 sample to the 1000GP graph. vg produced mappings
for 98.7% of the reads, 88.7% with reported mapping quality score 30 on the Phred scale,
and 76.8% with perfect, full-length sequence identity to the reported path on the graph.
For comparison, we also used vg to map these reads to the linear reference. Similar
proportions of reads mapped (98.7%) and with reported quality score 30 (88.8%), but
considerably fewer with perfect identity (67.6%). Markedly different mappings were
found for 1.0% of reads (0.9% mapping to widely separated positions on the two graphs,
and 0.1% mapping to one graph but not the other). The reads mapping to widely
separated positions were strongly enriched for repetitive DNA. For example, the linear
reference mappings for 27.5% of these read pairs overlapped various types of satellite
DNA identified by RepeatMasker, compared to 3.0% of all read pairs.

To illustrate the consequences of mapping to a reference graph rather than a linear
reference, we stratified the sites independently called as heterozygous in NA24385 by
deletion or insertion length (0 for single-nucleotide variants) and by whether the site was
present in 1000GP, and measured the fraction of reads mapped to the alternate allele for
each category. The results show that mapping with vg to the population graph when
the variant was present in 1000GP (95.4% of sites) gave nearly balanced coverage of

3.2 Human 107
a
ll

v
a
ri

a
n
ts

A
F

>
 0

.0
1

A
F

>
 0

.0
0

1
A

F
>

 0
.1

all reads reference-matching alternate-matching

Fig. 3.6 ROC curves parameterized by mapping quality for 10M read pairs simulated from
NA24385 as mapped by bwa mem, vg to various 1000GP pangenome references, and vg
with a linear reference, using single end (se) or paired end (pe) mapping. Allele frequency
thresholds are given to the left of each row. Within each panel, the left subpanel is based
on all reads, middle on reads simulated from segments with no genetic variants from
the linear reference, and the right on reads simulated from segments containing variants.
Reprinted from [89].

108 Applications

alternate and reference alleles independent of variant size, whereas mapping to the linear
reference either with vg or bwa mem led to a progressively increasing bias with increasing
deletion and (especially) insertion length (Figure 3.7), so that for insertions around 30
bp, a majority of insertions containing reads were missing (there were over twice as many
reference reads as alternate reads).

●

●
●

●

●

●

●

●

●
● ● ●

●
●

●

● ● ●
●

●

● ● ● ●
●

●

● ●
● ●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ●
● ●

● ●

●

●

●
●

●

●
● ● ●

●
● ● ●

● ● ●
● ● ●

●
●

● ● ●
●

●
●

●

●

●
●

●
●

● ●
●

●

●
●

●

● ● ● ●
● ●

●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

● ●
●

●
● ●

●
●

● ● ●
●

● ●
● ● ●

● ●
●

●
●

● ●
●

● ●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
●

● ●
●

●

● ●

●

●
●

●
●

● ●
●

●
● ●

●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

0.2

0.3

0.4

0.5

0.6

<
=

−
40

−
39

−
38

−
37

−
36

−
35

−
34

−
33

−
32

−
31

−
30

−
29

−
28

−
27

−
26

−
25

−
24

−
23

−
22

−
21

−
20

−
19

−
18

−
17

−
16

−
15

−
14

−
13

−
12

−
11

−
10 −

9
−

8
−

7
−

6
−

5
−

4
−

3
−

2
−

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
>

=
40

Size of deletion (negative) or insertion (positive)

F
ra

ct
io

n
of

 a
lte

rn
at

e
al

le
le

method
●

●

●

bwa.fb

vg.in1000GP

vg.not1000GP

Fig. 3.7 The mean alternate allele fraction at heterozygous variants previously called in
HG002/NA24385 as a function of deletion or insertion size (SNPs at 0). Error bars are ±
1 s.e.m. Reprinted from [89].

3.2.4 Whole genome variant calling experiments

During the development phase of vg, we explored its application to whole genome
alignment and variant calling in the PrecisionFDA Truth Challenge, in which the team
which developed the Genome in a Bottle truth set developed and held out a new sample.
Methods were first tested against publicly available truth sets on NA12878 in the
“consistency” challenge, in which the vg development team received a star for “heroic
effort” in completing the first whole-genome graph based alignment and variant calling
analysis. The results for this first iteration were very poor, with F-scores for indels and
SNPs around 95%. The computational costs were high, with the run consuming around
$1000 in resources on Amazon’s Elastic Compute cloud (AWS EC2).

In the final round of the challenge, we obtained results as described in table 3.3.
We find that the vg pipeline had similar performance to the de novo assembly pipeline
fermikit for SNPs. Methods that are not explicitly based on the GATK indel calling
method perform notably worse on indels, including egarrison-hhga4, which used Platypus,
fermikit, and freebayes to generate candidate variants and implemented a genotyper
using a machine learning method, and mlin-fermikit, which was a direct application of

4This was my work along with Nicolas Della Penna, https://github.com/ekg/hhga. Unfortunately, it
remains unpublished.

https://github.com/ekg/hhga

3.2 Human 109

fermikit’s standard pipeline to the data for HG002. However, vg call’s indel calling
results were very poor, and likely caused by bugs in the variant caller and aligner at this
stage rather than conceptual problems with graph based variant calling.

Submission SNPs indels
F-score recall precision F-score recall precision

anovak-vg 98.4545 98.3357 98.5736 70.4960 69.7491 71.2591
astatham-gatk 99.5934 99.2091 99.9807 99.3424 99.2404 99.4446
bgallagher-sentieon 99.9296 99.9673 99.8919 99.2678 99.2143 99.3213
dgrover-gatk 99.9456 99.9631 99.9282 99.4009 99.3458 99.4561
egarrison-hhga 99.8985 99.8365 99.9607 97.4253 97.1646 97.6874
hfeng-pmm3 99.9548 99.9339 99.9756 99.3628 99.0161 99.7120
mlin-fermikit 98.8629 98.2311 99.5029 95.5997 94.8918 96.3183
rpoplin-dv42 99.9587 99.9447 99.9728 98.9802 98.7882 99.1728

Table 3.3 A selected subset of PrecisionFDA Truth Challenge results showing the best-
performing methods as well as a number of other notable submissions.

We also explored integration of vg with the recently published GraphTyper [71]
method, which calls genotypes by remapping reads to a local, partially ordered variation
graph built from a VCF file, relying on initial global assignment to a region of the genome
by mapping with bwa to a linear reference. Therefore, although GraphTyper also scales
to the whole human genome because it is essentially a local method, its functionality
is complementary to that of vg, which maps to a global variation graph and does not
directly call genotypes. In experiments where we used vg rather than bwa as the primary
mapper for GraphTyper, true positives increased marginally (0.02% for single-nucleotide
polymorphisms (SNPs) and 0.06% for indels) while false positives increased for SNPs
by 0.15% and decreased for indels by 0.03%. We note, however, that GraphTyper was
developed by its authors for bwa mem mapping.

3.2.5 A graph of structural variation in humans

The Human Genome Structural Variation Consortium (HGSVC)5 has continued the
difficult process of cataloging structural variation in humans. Recently, the group has
developed a set of haplotype-resolved structural variation callsets for the children in three
parent-child trios from diverse populations: NA19240 (Yoruban Nigerian), HG00733
(Puerto Rican), and HG00514 (Han Chinese) [34]. These variant calls are derived from
many sources, and are unified into a common framework in phased VCF files. I built a

5http://www.internationalgenome.org/human-genome-structural-variation-consortium/

http://www.internationalgenome.org/human-genome-structural-variation-consortium/

110 Applications

graph from these variants and the GRCh38 reference against which they are represented,
then used vg map to align short reads from a sample in the HGSVC set (NA19240) as
well as a sample that was not included (HG002/NA24385).

Although I mapped only 1M read pairs, alignments to the HGSVC graph were
significantly better (when measured via the identity metric) than alignments to the
GRCh38 linear reference (figure 3.8). This was much more significant in the case of
NA19240 (two sample T-test p-value = 0.008529) than for NA24385 (p-value = 0.06813).
Presumably the lower number of shared alleles with NA24385 means a larger set of reads
would need to be mapped to obtain a clear result. The HGSVC graph did not significantly
improve alignment scores for 1M random reads (only 2.4% align, with p-value = 0.9889),
or for reads sampled without error (p-value = 0.4665) or with 0.5% SNP error and 0.1%
indel error from GRCh38 (p-value = 0.9106).

These results are statistically significant and our negative controls validate that
the representation in the reference of recurrent SV polymorphisms contributes to the
improvement in alignment performance. However, it would be most interesting to see
that the variant calling process implemented in vg call could genotype the structural
variants in these samples. Investigations into this are ongoing, and although the results
are promising they are not yet complete. As the HGSVC graph is produced from SV calls
in a VCF, we retain the original problems of representing structural variation in VCF.
We cannot represent nested variation, and so alleles that are only marginally different
are represented as completely separate paths in the resulting graph. This adds ambiguity
to the mapping and apparently causes problems when attempting to use the graph for
variant calling.

3.2.6 Progressive alignment of human chromosomes

There are only a few truly de novo human genome assemblies which achieve near-complete
chromosomes, and so a reference-guided variant detection approach has prevailed for
the discovery of novel structural variation [75]. Using vg msga, I explored if it would be
possible to use the HGSVC reference-guided assemblies directly in progressive alignment.
It was possible to produce the progressive alignment of the six haplotypes for chr20
on system I used at the Sanger for most experiments, which has 256 GB of RAM and
32 vCPUs. However, doing so took more than week of wall clock time, suggesting
that this approach is untenable in its current form. I was not able to complete the
progressive alignment of the six haplotypes of chromosome 2. Optimization may improve
the performance of vg msga, but the linear nature of the approach suggests that aligning
more than a handful of sequences will never be feasible.

3.2 Human 111

(a) NA19240 HGSVC vs. GRCh38 (b) NA24385 HGSVC vs. GRCh38

(c) NA19240 HGSVC - GRCh38 (d) NA24385 HGSVC - GRCh38

Fig. 3.8 1M 2x150bp Illumina read pairs from NA19240 (which is in the HGSVC graph)
and NA24385/HG002, which is not, aligned against both the HGSVC graph and the
GRCh38 reference, then compared. In panels 3.8a and 3.8b the difference in performance
is seen by the alignments which have positive identity against the HGSVC graph but 0
identity against the GRCh38 reference. Panels 3.8c and 3.8d are log-scaled histograms of
the difference in alignment score. In these we can observe a small subset of reads which
map to the HGSVC graph but not GRCh38 as increased density at 1.0.

112 Applications

The progressive assembly can be seen to compress the input. The resulting graph
contains 76,875,262bp of sequence, while the input FASTA file of the six haplotypes
contains 386,748,228bp, around a 5-fold compression. This result serves to demonstrate
that the hierarchical alignment process can scale to many tens of megabases. The low
performance of the method prevented its application to the whole genome.

3.2.7 Building graphs from the MHC

In [196] we explored methods to build graphs from the GRCh38’s ALT sequences and
reference genome. One of the most challenging regions is the Major Histocompatibility
Complex (MHC) on chromosome 6. In this ∼5Mb region, balancing selection has
generated a high level of genetic diversity, and today we observe up to 40 million years
of divergence between alternative copies of the locus, dating far back into the primate
lineage. Previous efforts to build reference graphs from this region have often required
hand curation to achieve reliable results [63].

Automatically building a sensible MHC graph with tools in vg requires that the tools
work correctly, and over the course of my work I have used this region as an important
test case. It took nearly a year for vg msga to mature enough to build the MHC graph
without crashing, and another two years before my long read alignment implementation
became capable of developing a sensible result.

My further interest in the problem of building graphs from sequences yielded seqwish
(section 2.2.6). seqwish losslessly induces the variation graph implied by a set of sequence
alignments. It implements a disk-backed bidirectional alignment graph akin to that
described in [124], and with a similar objective as tools developed in [117]. The goal is
to build a pangenome graph in which pairwise alignments between the sequences define
the graph. Unlike vg msga, it is fully dependent on an input alignment set, and is not
progressive.

As an exposition of the differing solutions to this problem offered by these two methods,
I built the MHC graph from the 9 haplotypes overlapping the MHC in GRCh386. To
build the seqwish graph, I used [150] to generate an all versus all alignment7, and induce
the graph from this8. With vg msga I supplied suitable parameters to encourage greater
colliniearity in the alignment, but otherwise used defaults9. seqwish used very little
memory, never more than around a gigabyte, but wrote 12 GB of intermediate files

6These were collected for use in the GA4GH-DWG by the human genome variation map (HGVM)
project [22].

7minimap2 MHC.fa MHC.fa -c -X -x asm20 -t 32 >MHC.paf
8seqwish -s MHC.fa -a MHC.paf -b MHC.seqwish >MHC.gfa
9vg msga -f MHC.fa -w 512 -J 16384 -b ref -D >MHC.vg

3.2 Human 113

to disk during graph induction. vg msga used several times this much RAM at peak,
indicating that it will be difficult to scale its application beyond small genomic regions.
Both processes took around 2 hours to complete on the 256GB/32vCPU server I used
for most of the experiments in this thesis.

(a) The full seqwish MHC graph

353767

353768

353765

353766

389229

353762
353763

389230

389231

353760
353761

353764

353780

389232
492333

353759

354027

389233

389234

492331
492332

353755
353758

354028

389235

492330

353754

354029

389236

389237

492329

353752
353753

354030

389238

492328

353750

353751

354031

389239

389240

492327

353749

492326

📱 GI568335879 353749

📱 353751

📱 353753

📱 353754

📱 353755

📱 353759

📱 353761

📱 353762

📱 353765

📱 353767

📱 353768

📱 389229
📱 389231

📱 389232 📱 389234

📱 389235 📱 389237

📱 389238

📱 389240

🐸 GI568335954 353749

🐸 353750

🐸 353752

🐸 353754

🐸 353755

🐸 353759

🐸 353760

🐸 353762

🐸 353763
🐸 353764

🐸 354027 🐸 354028
🐸 354029

🐸 354030 🐸 354031

🐸 492326

🐸 492327

🐸 492328

🐸 492329

🐸 492330

🐸 492331

🐸 492333

🐸 389229

🐸 389230
🐸 389232

🐸 389233 🐸 389235

🐸 389236
🐸 389238

🐸 389239

🐸 353749

🐸 353751

🐸 353752

🐸 353754

🐸 353758

🐸 353759

🐸 353761

🐸 353762

🐸 353765

🐸 353766

🐸 353768

🐸 389229 🐸 389231

🐸 389232
🐸 389234

🐸 389235
🐸 389237

🐸 389238

🐸 389240

🎆 GI568335976 353749

🎆 353750

🎆 353752

🎆 353754

🎆 353755

🎆 353759

🎆 353760

🎆 353762

🎆 353763
🎆 353764 🎆 354027 🎆 354028

🎆 354029
🎆 354030

🎆 354031

🎆 492326

🎆 492327

🎆 492328

🎆 492329

🎆 492330

🎆 492332

🎆 492333

🎆 389229

🎆 389230
🎆 389232

🎆 389233 🎆 389235

🎆 389236 🎆 389238

🎆 389239

🎆 353749

🎆 353751

🎆 353752

🎆 353754

🎆 353755

🎆 353759

🎆 353761

🎆 353762

🎆 353765

🎆 353766

🎆 353768

🎆 389229

🎆 389231

🎆 389232

🎆 389234

🎆 389235 🎆 389237

🎆 389238
🎆 389240

💦 GI568335986 353749

💦 353750

💦 353752

💦 353754

💦 353755

💦 353759

💦 353760

💦 353762
💦 353763

💦 353780
💦 354027

💦 354028
💦 354029

💦 354030 💦 354031

💦 492326

💦 492327

💦 492328

💦 492329

💦 492330

💦 492332

💦 492333

💦 389229

💦 389230

💦 389232

💦 389233 💦 389235

💦 389236 💦 389238

💦 389239

💦 353749

💦 353751

💦 353752

💦 353754

💦 353755

💦 353759

💦 353761

💦 353762

💦 353765

💦 353766

💦 353768

💦 389229 💦 389231

💦 389232
💦 389234

💦 389235 💦 389237

💦 389238
💦 389240

👯 GI568335989 353749

👯 353750

👯 353752

👯 353754

👯 353755

👯 353759

👯 353760

👯 353762 👯 353763

👯 353764

👯 354027

👯 354028
👯 354029

👯 354030
👯 354031

👯 492326

👯 492327

👯 492328

👯 492329

👯 492330

👯 492332

👯 492333

👯 389229

👯 389230

👯 389232

👯 389233 👯 389235

👯 389236 👯 389238

👯 389239

👯 353749

👯 353751

👯 353752

👯 353754

👯 353755

👯 353759

👯 353761

👯 353762

👯 353765

👯 353766

👯 353768

👯 389229 👯 389231

👯 389232

👯 389234

👯 389235

👯 389237

👯 389238

👯 389240

🎇 GI568335992 353749

🎇 353750

🎇 353752

🎇 353754

🎇 353755

🎇 353759

🎇 353760

🎇 353762

🎇 353763
🎇 353764

🎇 354027

🎇 354028
🎇 354029

🎇 354030

🎇 354031

🎇 492326

🎇 492327

🎇 492328

🎇 492329

🎇 492330

🎇 492331

🎇 492333

🎇 389229

🎇 389230

🎇 389232

🎇 389233 🎇 389235

🎇 389236 🎇 389238

🎇 389239

🎇 353749

🎇 353751

🎇 353752

🎇 353754

🎇 353755

🎇 353759

🎇 353761

🎇 353762

🎇 353765

🎇 353766

🎇 353768

🎇 389229 🎇 389231

🎇 389232
🎇 389234

🎇 389235 🎇 389237

🎇 389238

🎇 389240

🌼 GI568335994 353749

🌼 353750

🌼 353752

🌼 353754

🌼 353755

🌼 353759

🌼 353760

🌼 353762

🌼 353763
🌼 353764

🌼 354027

🌼 354028
🌼 354029

🌼 354030
🌼 354031

🌼 492326

🌼 492327

🌼 492328

🌼 492329

🌼 492330

🌼 492332

🌼 492333

🌼 389229

🌼 389230 🌼 389232

🌼 389233 🌼 389235

🌼 389236 🌼 389238

🌼 389239

🌼 353749

🌼 353751

🌼 353752

🌼 353754

🌼 353755

🌼 353759

🌼 353761

🌼 353762

🌼 353765

🌼 353766

🌼 353768

🌼 389229
🌼 389231

🌼 389232
🌼 389234

🌼 389235 🌼 389237

🌼 389238
🌼 389240

🗟 ref 353749

🗟 353750

🗟 353752

🗟 353754

🗟 353755

🗟 353759

🗟 353760

🗟 353762
🗟 353763 🗟 353764

🗟 354027

🗟 354028

🗟 354029

🗟 354030
🗟 354031

🗟 492326

🗟 492327

🗟 492328

🗟 492329

🗟 492330

🗟 492331

🗟 492333

🗟 389229

🗟 389230 🗟 389232

🗟 389233 🗟 389235

🗟 389236 🗟 389238

🗟 389239

🗟 353749

🗟 353751

🗟 353752

🗟 353754

🗟 353755

🗟 353759

🗟 353761

🗟 353762

🗟 353765

🗟 353766

🗟 353768

🗟 389229
🗟 389231

🗟 389232 🗟 389234

🗟 389235

🗟 389237

🗟 389238

🗟 389240

(b) A repeat in the seqwish MHC graph

(c) A linear component in the seqwish MHC graph

Fig. 3.9 Seqwish assembly of the MHC in GRCh38. In panel 3.9a Bandage was used
to gain a view of the full graph. The fine structure of the graph is similar as for the
earlier yeast assemblies. The core of the graph forms a hairball of repeats, as in panel
3.9b flanked by low-copy loops which are locally directed and acyclic as in panel 3.9c,
which adjoins the subgraph plotted in panel 3.9b.

The seqwish MHC graph contains 9,764,108bp of sequence, in 224,873 nodes and
321,990 edges, while the vg msga assembly is larger, with 10,900,412bp of sequence in
480,734 nodes and 536,592 edges. Unlike the vg msga graph, whose nodes are cut to
be shorter than 32bp to enable GCSA2 indexing during progressive construction, the
seqwish graph is fully compressed by default, and this results in its much lower node
count. We can compare the aggregate results for seqwish (figure 3.9a) to those for vg
msga (figure 3.10). It becomes clear from these visualizations that the seqwish graph
compresses its repeats much more than vg msga (figure 3.9b). However, the alignment in
general is sensible in that unique alignments between the input sequences generate linear

114 Applications

components, as seen in panel 3.9c. This compression tends to confuse operations on the
graph, as it reduces the distance between all positions in the graph and causes overlaps
of many genomic regions in the pangenome graph. A different parameterization of the
aligner might need to be used to reconstruct the approximately nature of this genomic
locus.

Fig. 3.10 vg msga assembly of the MHC in GRCh38 as visualized by Bandage.

To appreciate the effect of repeat collapse on the resulting graph, I applied vg
dotplot, which generates dotplots from indexed variation graphs, to compare the in-
graph alignments of the same pair of sequences in both the seqwish and vg msga graphs.
These results are presented in figure 3.11. It is clear (in 3.11a) that the minimap2 based
alignment process encorages the collapse of repeats, which results in the large off-diagonal
blocks of graph positional matches between the sequences. In contrast, (panel 3.11b)
shows that the sequences can naturally align through the graph in an approximately
linear fashion, with little repeat collapse. This linearity is enforced by setting a high
alignment chain model “bandwidth” parameter (-J 16384) (described in section 2.5.9),
which limits the size of an insertion or deletion that can be tolerated in collinear chaining.
With a primary alignment chunk size of 512 and overlap of 64, this yields an alignment
chain model bandwidth of approximately 6Mb, which roughly covers the entire MHC for
any input sequence. Setting a shorter bandwidth allows repeat collapse to occur in a
manner similar to what occurs when inducing the graph from the minimap2 alignments.

3.2 Human 115

(a) seqwish (b) vg msga

Fig. 3.11 Comparing seqwish and vg msga assemblies of the MHC in GRCh38. In both
panels we see a dotplot between GI568335954 (x-axis) and GI568335994 (y-axis) as they
are embedded in each graph, with 3.11a showing the dotplot for seqwish and 3.11b that
for vg msga.

3.2.8 CHiP-Seq

The removal of mapping bias is important when working with functional genomics data
such as ChIP-seq data, where allele-specific expression analysis can reveal genetic variation
that affects function but is confounded by reference mapping bias [175], especially given
that read lengths are typically shorter for these experiments. We compared mapping
with bwa mem and vg for data set ENCFF000ATK from the ENCODE project [47], which
contains 14.9 million 51-bp ChIP-seq reads for the H3K4me1 histone methylation mark
from the NA12878 cell line. When mapping with bwa the ratio of reference to alternate
allele matches at heterozygous sites was 1.20, whereas with vg to the 1000GP graph the
ratio was 1.01, effectively eliminating reference bias.

The effect is dramatically stronger when using 36-bp reads. To illustrate, I aligned the
ultra-short reads from ENCODE experiment ENCSR290YLQ10 to the full 1000GP graph
using vg map and to the GRCh37 reference genome using bwa mem. To simplify analysis,
the vg mappings were surjected to the GRCh37 reference. This sample came from an
adult donor, and so we have no “truth” set as with NA12878, but we can use a subset of
sites called as variable using freebayes which also are known to be polymorphic in the

10https://www.encodeproject.org/experiments/ENCSR290YLQ/

https://www.encodeproject.org/experiments/ENCSR290YLQ/

116 Applications

(a) Reference observations (b) Alternate observations

Fig. 3.12 Resolving reference bias in 36-bp CHiP-seq data from ENCODE sample
ENCDO115AAA, using CHiP-seq targeting H3K4me1 (experiment ENCFF000ATK).
We compare the counts of reference-supporting (panel 3.12a) or alternate-supporting
(panel 3.12b) alignments between vg map and bwa mem at sites called as heterozygous
in the sample which were also polymorphic in the 1000GP. To shown density we have
jittered the points in the unit square centered on the integral values taken by the counts.

3.3 Ancient DNA 117

1000GP to examine the effect of reference bias. By plotting the reference and alternate
counts obtained from each aligner relative to each other, we can observe the effect of
reference bias on a per-site basis. I find that bwa mem and vg map obtain insignificantly
different counts of reference observations at the heterozygous sites (panel 3.12a), but as
can be seen in panel 3.12b, aligning to the graph uncovers dramatically more alternate
observations at these loci, as is shown by the strong increase in density below the diagonal.
The strength of this effect indicates that small variation will disrupt alignment of very
short reads of relatively high quality and low error rates. The issue becomes even more
dramatic when we consider data sources with higher error.

3.3 Ancient DNA
In suitable conditions, DNA can survive for tens or even hundreds of thousands of years
ex vivo, providing a unique window into the past history of life [52]. However, the
sequencing analysis of Ancient DNA poses several significant challenges. The amount
of DNA available is often limited, and sequencing costs are increased in the presence of
high rates of contamination by organisms that inhabit the sample after its death. Read
lengths are limited by the degradation of DNA due to necrotic processes and subsequent
environmental exposure. Post-mortem damage (PMD) of the DNA occurs at a high
rate, introducing mutations in the tails of the short DNA molecules, which occur in
a single-stranded and relatively unprotected state [160]. This manifests mostly as the
conversion of cytosines to uracil, but also can lead to apurination [52]. Ancient DNA
data is thus often of short length, low coverage, and high intrinsic error rate.

In combination these issues cause a strong bias against non-reference variation, which
can have a significant effect on population genetic inference and implications for many
aDNA studies. Ancient DNA may be treated with uracil-DNA-glycosylase (UDG) and
endonuclease VIII to remove uracil residues and abasic sites, leaving undamaged portions
of the DNA fragments intact [26]. However, this process results in a reduction of read
length and library depth, which is disadvantageous, and it is not guaranteed to proceed
without introducing new bias. There have also been many attempts to mitigate the effects
of reference bias and low coverage, such as by implementing a model of reference bias in
gentoyping [213], or by working with genotype likelihoods throughout all downstream
population genetic analyses [160]. To avoid genotyping or even the generation of genotype
likelihoods, standard practice often involves modeling each genome as a collection of
haploid chromosomes modeled by reads.

118 Applications

Here I report on the results of an ongoing collaboration with Rui Martiniano and
Eppie Jones to explore the use of vg to mitigate reference bias in ancient DNA samples.
They have completed most of the analyses, while I have supported their work and
developed the alignment (and surjection) algorithms that are essential to them.

3.3.1 Evaluating reference bias in aDNA using simulation

Using simulation, Eppie Jones and I completed an exploratory analysis which demon-
strates that the high degree of reference bias inherent in ancient DNA analysis may
be mitigated at known sites by aligning against a pangenome graph. We simulated all
possible 50 bp reads which spanned variant sites on chromosome 11 of the Human Origins
SNP panel [207, 139], which is a set of SNPs designed to be highly informative about
ancient genomes and human ancestors. In half of the simulated reads the SNP position
was mutated to the alternate allele. We then mapped these reads back to the 1000GP
graph or GRCh37 linear genome using vg map and bwa aln respectively, with vg’s sur-
jection process used to produce a BAM file from the alignment for direct comparison.
Different levels of ancient DNA damage estimated using 100 ancient genomes from [5]
were simulated in these data using gargammel [220]. We filtered the resulting alignments
for those above mapping quality 30, which has approximately the same significance in
both vg and bwa. Our results are shown in figure 3.13.

At high levels of error, alignment against the linear reference prevents the observation
of non-reference alleles in a large fraction of cases. This effect is notable at deamination
rates as low as 10%, and with 30% PMD error the rate of alignment to non-reference
alleles is reduced by nearly 15% relative to the total. While bwa aln suffers a significant
reference bias with increasing simulated PMD rates (dashed dark blue versus orange fit
lines representing alternate and reference alleles), we observe no such effect for vg map
(light blue and yellow) (figure 3.13). Most of the alleles in the Human Origins panel are
also in the 1000GP, which suggests that modern sources are useful when constructing a
pangenomic reference for ancient samples.

3.3.2 Aligning ancient samples to the 1000GP pangenome

To evaluate whether pangenomic read mapping techniques could mitigate reference
bias in real samples, we collected data from a number of recently published ancient
DNA studies. This includes Iron Age, Roman, and Anglo-Saxon individuals sequenced
at low coverage in [231] and [174], and high-coverage Yamnaya and Botai individuals
from [55]. We used vg map to align the samples to the 1000GP pangenome of variants

3.3 Ancient DNA 119

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

reference allele
alternate allele

bw
a

vg

●

0.0 0.1 0.2 0.3 0.4

80
85

90
95

10
0

deamination rate at 5' terminal base

%
 re

ad
s

al
ig

ni
ng

Fig. 3.13 Comparing bwa aln and vg map performance when aligning reads simulated
from chromosome 11 of the Human Origins panel. Lines represent OLS regression results
for the allele/aligner conditions corresponding to their colors.

120 Applications

above 0.1% frequency, and bwa aln to align them to the GRCh37 reference plus decoys,
using standard parameters for the analysis of ancient DNA (-l1024 -q15 -n0.02). For
both alignment results we filtered the resulting BAMs using samtools view -q30 to
remove reads with mapping quality less than 30, and removed duplicates using sambamba
markdup [260].

We first considered the high-coverage Yamnaya sample from [55], which provides
approximately 20-fold coverage of the genome. This is very high for ancient samples and
thus allows us to complete some experiments which would be otherwise very difficult. We
called variants on chromosome 21 using bcftools [154] for both vg and bwa alignments. To
evaluate the effect of reference bias with decreasing coverage, we then used these callsets
as ground truth and measured our ability to recover the heterozygous variants in the full
coverage set at coverage levels of 0.1, 0.2, 0.3, 0.4, 0.5 of the original. As seen in figure
3.14, at lower coverages common in ancient DNA sequencing, bwa aln recovers notably
fewer heterozygous SNPs than vg map alignment to the 1000GP graph. At the sampling
rate of 0.2, which corresponds to coverage ≈4, vg map recovers 8% more heterozygotes
as a fraction of the total. vg map recovers more heterozygous SNPs than bwa aln at all
the coverage levels, although at higher levels the difference is less pronounced. We expect
this would have a significant effect on population genetic analyses depending on these
alignments.

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5

Sampling rate

he
te

ro
zy

go
us

 c
al

ls
 r

ec
ov

er
ed

 a
fte

r
do

w
ns

am
pl

in
g

method

vg

bwa

Fig. 3.14 The comparative effect of downsampling of an ancient DNA sample on bwa
aln and vg map alignment.

3.3 Ancient DNA 121

In an illustrative, if less well-controlled experiment, we simply examined the distribu-
tion of the ratio between reference and alternate allele observations in the set of variants
called by freebayes from the surjected vg map Yamnaya alignments. We first subset
the called alleles into heterozygous transversions, and further divided the resulting set of
putative transversions into those alleles in the 1000GP graph, and those which are not.
As shown in figure 3.15, we observe that if the variant is in the graph (N ≈ 1M) we have
effectively removed bias towards the reference allele. This is not the case for those called
alleles (N ≈ 300K) which are not in the graph.

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00

non−reference allele support

co
un

t in 1000GP

FALSE

TRUE

heterozygous transversions in high−cov Yamna

Fig. 3.15 Allele balance in the vg alignment of the Yamnaya sample to the 1000GP graph
versus its presence in the 1000GP graph.

We expect reference bias of the degree demonstrated in these experiments to affect
population genetic inference. To evaluate this, we apply the ABBA BABA test of
phylogenetic tree topology based on Patterson’s D-statistic of population relationship
[98]. To do so, we used the Human Origins dataset distributed with [139]. For each
sample we ran samtools pileup yielding ∼1.2 million SNPs. We converted the pileup
results to plink format, selecting one allele at random from the confidently mapped reads
spanning each site, as is standard in the field. This was done 5 times, generating 5
replicates of randomly selected alleles for each sample. We then filtered by genotyping
rate, excluding poorly genotyped SNPs11, resulting in 1,142,867 SNPs. Finally, we
merged individual plink files with those for GRCh37 and Chimpanzee, converted plink

11We used the plink filter –geno 0.05.

122 Applications

to eigenstrat format using convertf and calculated D-statistics using qpDstat [207] of
the form D(vg, bwa; GRCh37, Chimp) to test for excess of shared alleles between vg and
bwa-aligned samples with the reference.

12880A
12881A
12883A
12884A
12885A

1489
15558A
15569A
15570A
15577A
15579A
15594A
3DT16
3DT26
6DT18
6DT21
6DT22
6DT23
6DT3
Botai

NO3423
Yamnaya

−0
.0

6

−0
.0

4

−0
.0

2

0.
00

0.
02

0.
04

0.
06

D(vg,bwa;GRCh37,Chimp)

●● ●●●

●● ●●●

● ●● ●●

● ●●●●

●●●● ●

●● ●●●

●●● ●●

● ●●● ●

●●● ● ●

● ●●●●

● ●●●●

●●● ● ●

●●● ●●

●●● ●●

● ● ●●●

●● ●●●

●●● ●●

●● ● ●●

●●●●●

●●● ●●

●● ● ●●

● ●●● ●

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

12880A
12881A
12883A
12884A
12885A

1489
15558A
15569A
15570A
15577A
15579A
15594A
3DT16
3DT26
6DT18
6DT21
6DT22
6DT23
6DT3
Botai

NO3423
Yamnaya

−6 −4 −2 0 2 4 6

Z−Score

●● ●●●

●● ●●●

● ●● ●●

● ● ● ●●

●●●● ●

●● ●●●

●● ● ●●

● ●●● ●

●●● ● ●

● ●●●●

● ●●●●

●●● ● ●

●●● ●●

●●● ●●

● ● ●●●

●● ●●●

●●● ●●

●●● ●●

● ● ● ●●

●●● ●●

●● ● ●●

● ●● ● ●

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

vg bwa h37 chimp vg bwa h37 chimp vg bwa h37 chimp vg bwa h37 chimp

(a) D-statistic absolute values

12880A
12881A
12883A
12884A
12885A

1489
15558A
15569A
15570A
15577A
15579A
15594A
3DT16
3DT26
6DT18
6DT21
6DT22
6DT23
6DT3
Botai

NO3423
Yamnaya

−0
.0

6

−0
.0

4

−0
.0

2

0.
00

0.
02

0.
04

0.
06

D(vg,bwa;GRCh37,Chimp)

●● ●●●

●● ●●●

● ●● ●●

● ●●●●

●●●● ●

●● ●●●

●●● ●●

● ●●● ●

●●● ● ●

● ●●●●

● ●●●●

●●● ● ●

●●● ●●

●●● ●●

● ● ●●●

●● ●●●

●●● ●●

●● ● ●●

●●●●●

●●● ●●

●● ● ●●

● ●●● ●

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

12880A
12881A
12883A
12884A
12885A

1489
15558A
15569A
15570A
15577A
15579A
15594A
3DT16
3DT26
6DT18
6DT21
6DT22
6DT23
6DT3
Botai

NO3423
Yamnaya

−6 −4 −2 0 2 4 6
Z−Score

●● ●●●

●● ●●●

● ●● ●●

● ● ● ●●

●●●● ●

●● ●●●

●● ● ●●

● ●●● ●

●●● ● ●

● ●●●●

● ●●●●

●●● ● ●

●●● ●●

●●● ●●

● ● ●●●

●● ●●●

●●● ●●

●●● ●●

● ● ● ●●

●●● ●●

●● ● ●●

● ●● ● ●

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

vg bwa h37 chimp vg bwa h37 chimp vg bwa h37 chimp vg bwa h37 chimp

(b) D-statistic z-scores

Fig. 3.16 D-statistic based ABBA-BABA test of reference bias in aDNA. Panel 3.16a
provides the absolute values for the given D-statistic, calculated as described in the text,
while panel 3.16b shows estimated significance level for the various samples. On both
panels, points to the left of the dashed line at 0 indicate excess allele sharing between bwa
alignments of the samples and GRCh37 (the ABBA pattern), while those to the right
indicate an excess of sharing between vg alignments and GRCh37 (the BABA pattern).
The two patterns are illustrated by the trees above the panels, where A alleles are given
as blue lines on the tree and B alleles that arose between the split with the outgroup
(Chimpanzee) are shown in red.

Our results, summarized in figure 3.16, indicate an excess of allele sharing between
the bwa-aligned samples and GRCh37 relative to the vg-aligned ones and GRCh37. All
but a handful of replicates have negative D-statistics, which implies that alignment

3.4 Neoclassical bacterial pangenomics 123

against GRCh37 makes the samples appear more like the reference (subfigure 3.16a).
We conclude that reference bias is strong enough to affect common population genetic
analysis completed with ancient DNA, and this can be mitigated at least for known
alleles by aligning against a pangenomic reference.

3.4 Neoclassical bacterial pangenomics
As I discussed in the introduction (section 1.3), during much of the past decade pange-
nomic concepts have been employed in microbiology to characterize the relationship
between strains that frequently share DNA through horizontal gene transfer and exhibit
wide variability in gene content. It is often helpful to consider the “core” and “accessory”
pangenome of a given clade, with core genes being those present in all strains and
accessory ones those present in only a subset. Techniques to evaluate these features of a
pangenome are often based on gene counting approaches that can be driven by simple
k-mer matching.

In this section I demonstrate that vg can be applied to derive the same kind of result
by directly working on a pangenome graph reference built from diverse strains of Escheria
coli12. The basic idea is to build a pangenome using a standard DBG assembler, then
align all the strain level data we have available against the resulting assembly graph. The
advance that vg offers is precision. Rather than considering gene-level counts, alignment
with vg provides per-base, per-sample coverage information. The results can be used
as in resequencing to find new variants, and to genotype existing ones in the graph.
This approach is similar to colored de Bruijn graphs [113], but it allows for out-of-core
computation, retains full alignment information, and is consequently (in principle) lossless
with respect to the input reads.

3.4.1 An E. coli pangenome assembly

In line with early work on bacterial pangenomics [176], I used a handful of genomes to
demonstrate the utility of pangenomic approaches in E. coli. I collected Illumina data
from 10 strains published in [68]13. These data total 2.3 GB of compressed FASTQ in
2x151bp paired end format. I built a compressed DBG using minia with k = 51 and an

12I developed this technique during the Computational Pangenomics (CPANG18) course at the Instituto
Gulbenkian de Ciéncia in Oieras, Portugal. See https://gtpb.github.io/CPANG18/. This particular
practical was explored on the third day of the course https://gtpb.github.io/CPANG18/pages/bacteria.html.

13SRA accessions SRR3050857, SRR3050919, SRR3050929, SRR3050978, SRR3050990, SRR3050992,
SRR3050994, SRR3051002, SRR3051049, and SRR3051079.

https://gtpb.github.io/CPANG18/
https://gtpb.github.io/CPANG18/pages/bacteria.html

124 Applications

(a) The full E. coli assembly graph.
298051298050298049

298052
298048

298053

298047

298054

298046

298055

298045

298056

298044

298057

298043

298058

298042

298059 298060

298041

298061

298066

298040
298062

298067

298035

298039

298038

298063

298068

298034

298037

298064

298069

298033

298036

298065

298070

298032

298031

298071

298030

298072

298029

298073

298028

298074

298027

298075

298026

298076

298025

298077

298024

298078

298023

298079

298022

298080

298021

298081

298020

298082

298019

298083

298018

298084

298017

298085

298016

298086

298015

298087

298014

298088

298013

298089

298012
298011

298090

298010

298091

298008

298009

298092

298007

298093

298005

298006

298094

298004

298095

298098

297994

298003

298096

298097

298099

298101

297993

298002

298100

297992

298104

298102

297991

298001

298103

297990

298000 298105

298106

297989

297999 298107

297988

297998

298108

298113

297997

298109

298114

297984

297985

297987

297996

298110

298115

297983

297986

297995

298111

298116

297982

298112

298117

297981297980

298118

297979

298119

298127

297978

298120

298128

297977

298121

298129

297976

298122

298130

297975

298123

298125

298131

297974

298124

298126

298132

297973

298133

297972

298134

298135

297971
297970

298136

297969

298137

297968

298138

297967

298139

298153

297966

298140

298154

297965

298141

298142

298155

297964

298143

298145

298156

297963

298144

298146

298157

297962

298147

298158

297961

298148

298159

297960

298149

297959

298150

298160

297954

297958

298151

298161

297953

297957

298152

298164

298162

297952

297956

298163

298165

297951

297955

298166

297950

298167

298169

297949

298168

298170

297948

298171

297947

298172

297946

298173

298174

297944

297945

298175

297943

298176

297938

297942

298177

297936

297937

297941

298178

297934

297935

297940

298179

298188

297933

297939

298180

297932

298181

298189

297931

297930

298182

298190

298183

298191

297927

297929

298184

298192

297926

297925

297928

298185

298193

298194

297923

297924

297912

298186

298195

297911

297922

298187

298196

298206

297910

297921

298198

298197

297909

297920

298199

298201

298207

297919

298200

298202

298208

297907

297908

297918

298209

(b) A linear region of the assembly graph, with variation.

213909

213908

213910

213907

213911

213900

213906

213913

213912

213899

213905

213914

213917

213898

213904

213915

213918

213897

213903

213916

213924

213919

213896

213902

213920

213925

213895

213901

213921

213926

213894

213891

213922

213927
213890

213892

213893

213923

213928

213929

213930

213889

213931

213888
213932

213936

213887

213933

213886

213934

213937

213885
213935

213938

213939

213884

213940

213883

213941

213882

213942

213943

213881

213944

213880 213879

213945

213878
213877

213946
213947

213948

213875

213876

213950

213949

213951

213874

213952

213870

213872

213873

213953

213869

213871

213954

213868

213955

213958

213867

213959

213866

213956

213960

213865

213957

213961

213864

213962

213863

213963

213862

213964

213965

213861

213966

213860

213967

213858

213859

213857

213968

214025

213852

213856

213969

214049

213851

213855

213970

214026

213850

213854

213971

213983

214027

214050

213849

213853

213972
213973

214028

214051

213848

213974

213984

214029

214052

213847

213975

213977

213985

214030

213988

214053

213976

213989

213978

213986

213987

214031

214054

213846

213981

213979

213980

213990

214032

214055

213845

213982

213991

214033

214035

214056

213844

213992

214034

214036

214057

213843

213993

214058

213842

213994

214037214038

214059

213841

213995

214039

214040

214060

213840

213996

214041

214061

213839

213997

214042

214062

213838

213998

214043

214063

213837

213999

214044

214064

213836

214000

214045

214065

213835

214001

214046

214066

213834

214002

214047

214067

213833

214003

214048

214068

213832

214004

214077

214069

213831

214005

214070

214076

213830

214006

214071

214075

214078

213829

214007

214072

214074

214079

213828

214008

214073

214080

213827

214009

214081

213826

214010

214082

213825

214011

214083

214084

214091

213824

214012

214085

214092

213823

214013

214093

213822

214014

214086
214103

214094

213821

214015

214087

214095

214104

213820

214016

214088

214096

214105

213819

214017

214024

214089

214097

214090

213818

214018

214023

214098

214106

213817

214019

214022

214099

214107

214108

213816

214020

214021

214100

214109

214110

214112

213815

214101

214190

214111

214113

213814

214102

214114

214118

214191

213813

214132

214115

214119

214192

213812

214116

214120

214133

214135

214193

213811

214117

214126

214121

214131

214134

214194

213810

214122

214130

214127

214172

214136

214179

214382

213809

214123

214125

214124

214128
214129

214137

214173

214180

214383

352175

213808

213807

214138

214174

214175

214181

214384

372351

213806

214139

214588

214176

214182

214266

214385

214388

352174

213805

214140

214177

214183

214267

214386

214387

214589

352173

372350

213804

214141

214178

233303

214184

214268

214391
214390

214389

214587

214586

214590

352172

372349

214142

214185

214269

214392

214585

214591

233304

352171

372348

213724

213803

214143

214186

214270

214393

214584

214592

233305

352170

372347

423010

213723

213802

214144

214187

214271

214394

214582

214583

214593

233306

352169
372346

423009

213620 213619

213632

213631

213722

213801

213800

214145

214188

214272

214395

214594

233307

233453

352168
372345

423008

213618

213630

213721

213799

214146

214189

370900

214273

214396

214595

233308

233454

352167 372344

423007

213617

213621

213629

213720

213798

214147

214274

214397

214596

233309

233455

242779

242780

352166

370899370901

372343

213616

213622

213628

213719

213797

214148

214275

214398

214597

233310

233456

242752

242781

352165

370898370902

372342

213615

213623

213627

213718

213796

214149

214276

214399

214598

233311

233457

242751242750

242764

242782

352164

370897370903

372341

213614

213624

213626

213717

213795

214150

214277

214400

214599

233458

242749

242765

242783

242784

352163

370896370904

370917

372340

152463

213613

213625

213716

213794

214151

214278

214401

214600

233312

233459

242748

242766

242794

242785

352162

370895
370905

370916

372339

152462

213612

213715

213793

214152

214279

214402

214601

233313

233460

242747

242767

242786

352161

370894
370906

370915

372338

152461

213611

213714

213792

214153

214280

214403

214602

233314

233461

242768

242787

242795

242796

352160

370893
370907

370914

372337

425941

152460

213610

213713

213791

214154

214281

214404

214603

233315

233462

242746

242753

242769

242788

242797

290373

352159

370892
370908

370913

425942

152459

213712

214155

214282

233316

233433

242745

290372

352158

370912

(c) A semi-tangled region of the assembly graph.

Fig. 3.17 An assembly graph built from 10 E. coli strains using minia. In the full graph
we observe a single giant component (panel 3.17a). The graph is largely linear (3.17b).
However, in some regions it is densely tangled (3.17c).

3.4 Neoclassical bacterial pangenomics 125

abundance minimum of 10, which was selected due to the very high genomic coverage
offered by this data, although I did not observe large changes in assembly structure when
varying it. I then processed the resulting graph with vg to decompress long nodes into
nodes with a maximum length of 32bp, then sort it pseudotopologically and compact its
node identifier space. These steps are required for efficient mapping given the absence of
any annotated reference paths to provide distance estimates. As seen in figure 3.17, the
assembly graph features a giant component representing most of the input sequencing
data. Other fragments could represent plasmids or other contaminating elements. The
normalized graph contains 10,456,557bp of sequence, in 429,377 nodes and 455,892 edges.
The facts that the average node length is over 24bp and that there are only 1.06 edges
per node suggest that despite its tangled appearance, it is mostly composed of linear
components. It took less than an hour to assemble and index the graph, yielding a 6.3MB
vg graph, a 37MB xg index, and a 47MB GCSA2 index.

3.4.2 Evaluating the core and accessory pangenome

The generation of the compressed DBG loses the read-level relationships to the graph,
but these may be obtained trivially with vg by aligning the read set back to the assembly
graph. Doing so required around 5 minutes per sample, yielding 3.3 GB of GAM files in
around an hour. To obtain coverage counts per sample across the graph I then applied
the vg pack utility to project the alignment GAMs into coverage maps for each sample,
which I collated for processing in R.

Figure 3.18a shows the coverage across a typical region of the pangenome. We see
regions shared by all strains, as well as others which are particular to a single or small
number of strains. This is exactly in line with our expectations based on observations
from “classical” bacterial pangenomics. To quantify this over the whole pangenome, I
computed the histogram of graph positions by the number of strains mapping to each
position, as summarized in figure 3.18b. I find that 26.9% of the pangenome is covered
by all ten strains, while 25.6% is covered by only one strain. The remaining 47.5% of the
pangenome has intermediate numbers of strains mapping to it. As such we can conclude
that around 1

4 of the pangenome is the conserved “core,” and 1
4 is purely “accessory,”

occuring in only a single strain.
Virtually all the graph is covered by some strain, with only 80bp receiving no mappings,

which indicates that the pangenome object is complete. However, the read sets are not
equivalently contained in the pangenome, and a significant (p = 0.00534) correlation
exists between the realignment rate of the reads to the pangenome and the number of
raw reads from each strain, as seen in figure 3.18c. This statistic suggests that a few

126 Applications

(a) Per-strain coverage across 100 kbp of the E. coli pangenome

0e+00

1e+06

2e+06

0 1 2 3 4 5 6 7 8 9 10

number of strains mapping to position

nu
m

be
r

of
 g

ra
ph

 p
os

iti
on

s

(b) Genomes per base of the pangenome

●

●

●

●

●

●

●

●

●

●0.995

0.996

0.997

0.998

0.999

2e+06 3e+06 4e+06

number of reads

al
ig

nm
en

t r
at

e

strain

●

●

●

●

●

●

●

●

●

●

SRR3050857

SRR3050919

SRR3050929

SRR3050978

SRR3050990

SRR3050992

SRR3050994

SRR3051002

SRR3051049

SRR3051079

(c) Realignment rate versus input read count

Fig. 3.18 Evaluating alignment to the E. coli pangenome. Panel 3.18a shows per-strain
coverage across a selected region of the ≈10MB pangenome, including several regions
specific to a subset of the strains. Panel 3.18b provides a histogram of the number of
genomes covering each base of the pangenome demonstrates that much of the genome is
in all strains or in single strains. Although the alignment rate of the input reads to the
pangenome graph is in all cases is above 99.5%, we see a significant correlation between
this rate and the number of input reads from each strain used to construct the graph
(panel 3.18c).

3.5 Metagenomics 127

strain-specific regions are not assembled. Naturally, the rate at which this failure occurs
is dependent on read depth. It is possible that this effect is driven by the high abundance
count (10) used in constructing the compressed DBG, and possibly it could be mitigated
by tuning this parameter and the k-mer length.

3.5 Metagenomics
Metagenomics is conceptually close to pangenomics. But, where pangenomics considers
a single clade, metagenomics considers the total DNA in an environmental context. This
adds significant complexity to the analysis of metagenomic data. To obtain high coverage
across all the extant genomes in a sample may be impossible, as many exist at extremely
low copy. Furthermore, doing so could be extremely expensive. In response, reductive
approaches focused on sequencing 16S ribosomal DNA or other conserved gene sequences
have been popular [266]. These methods are only applicable where such homologous
sequences are available, and so cannot be applied to viral contexts [70]. As sequencing
costs have decreased, assembly techniques have become more important to metagenomics
[197]. A typical workflow involves assembling contigs out of a DBG, mapping these
contigs into annotated databases using sensitive alignment with BLAT or BLAST, and
computing abundance by aligning the read set back to the contig set. Contigs, in being
unary, suppress variation that could be useful in analysis. Furthermore, in graphs that
are dense, contigs will be very short, and linear read alignment will fail to completely
capture the set of contigs that a given read maps to. This will result in distortion in
coverage estimates, and at very least loss of information due to the breakage of sequences
that cross contigs boundaries. The information loss suggests that a technique based
on alignment to the assembly graph itself could benefit downstream analysis. In this
section I use analyses of viral and bacterial metagenomes to demonstrate that vg enables
contiguous alignments against topologically complex metagenomic assembly graphs.

3.5.1 Arctic viral metagenome

To explore this issue, I built an assembly graph from a single sequencing data set from a
study of freshwater viruses in Svalbard [57]14 and compared the performance of alignment
against the graph with alignment against the contig set. As with other assembly graph
based variation graphs, I used minia to construct the graph, with k = 51 and a minimum
abundance of 3. To enable efficient alignment against the graph, I chopped its long nodes

14Data from https://www.ebi.ac.uk/ena/data/view/ERS396648

https://www.ebi.ac.uk/ena/data/view/ERS396648

128 Applications

into nodes of a maximum of 32bp. The resulting graph has 39,503,775bp of sequence in
1,387,287 nodes and 1,326,573 edges. The low ratio of edges to nodes suggests a locally
linear structure, which enables direct use of the graph by vg. In fact there are fewer
edges than nodes, which also means the graph contains many isolated components. To
successfully index the graph I found I had to remove complex regions using vg prune,
cutting edges that induced 3 bifurcations in any 16-mer. Indexing yielded a 119MB xg
index and 158MB GCSA2 index.

Fig. 3.19 An arctic freshwater viral metagenome visualized with Bandage.

As expected given the small genome size of most viruses, the graph contains many
small components (figure 3.19). The graph also contains a few large components, and
many of the medium-sized components are circular, which is expected given the nature
of many DNA viruses. Some components are topologically complex, which can be seen
in figure 3.19 as “hairball” like structures. When using k = 31, indexing and alignment
against the graph were impossible without a high-degree filter which removed nodes in

3.5 Metagenomics 129

such regions, however in the case of k = 51 it is possible to index with only standard
pruning of the DBG.

I held out 100,000 reads from the input to the assembly graph. To evaluate the utility
of using this graph as a reference for alignment, I aligned these 100,000 reads using vg
map and bwa mem to the assembly graph and linear contig set respectively. Although both
methods mapped ∼96% of the reads, vg had an average identity score of 95% compared
to 87% for bwa, reflecting that the bwa alignments in many cases are not full length while
those of vg are. Furthermore, many reads mapped with higher scores (longer matches)
to the graph than to the contig set (figure 3.20).

Fig. 3.20 Comparison of alignment score between vg map and bwa mem when aligning
against the pangenome graph or assembled contig set of the graph.

3.5.2 Human gut microbiome

As a counterpoint to the viral metagenomic sample used in the previous section, here I
present a similar analysis based on a predominantly bacterial human gut microbiome

130 Applications

obtained from a stool sample15 as part of the Human Microbiome Project (HMP)
[267, 209].

As with other assembly graph based analyses, I applied minia with k = 51 and a
minimum abundance filter of 3 to the 29 GB of compressed FASTQs from this sample.
The resulting assembly graph is shown in figure 3.21. It contains 144,829,925bp of
sequence in 4,788,652 nodes and 4,665,919 edges, and as with other DBG assemblies I
have discussed is locally linear. Building and indexing the graph took around an hour
on the 32vCPU/256GB server used in other experiments, and yielded a 74MB vg graph
with a 403MB xg index and 606MB GCSA2 index, which was built with pruning with a 3
edge crossing limit in k = 16.

Fig. 3.21 The largest components in a human gut microbiome assembly graph. Node
width shows coverage in the assembly. Nodes that match to RefSeq genomes for nine
given phyla are colored in the graph as described here with abundances: Bacteroides
(red) 34827, Clostridium (green) 9521, Faecalibacterium (blue) 5921, Bifidobacterium
(magenta) 373, Enterococcus (cyan) 73, Enterobacter (orange) 25, Klebsiella (purple) 21,
Escherichia (yellow) 17, and Enterobacteriaceae (brown) 2.

Human gut flora are primarily comprised of two main phyla, the Firmicutes and the
Bacteroidetes [167]. We can observe their presence in this sample in the structure of

15Sample described at https://portal.hmpdacc.org/cases/3674d95cd0d27e1de94ddf4d2e0398c4, with
data from http://downloads.hmpdacc.org/data/Illumina/PHASEII/stool/SRS105153.tar.bz2.

https://portal.hmpdacc.org/cases/3674d95cd0d27e1de94ddf4d2e0398c4
http://downloads.hmpdacc.org/data/Illumina/PHASEII/stool/SRS105153.tar.bz2

3.5 Metagenomics 131

this assembly graph. By aligning the node sequences in the graph against a subset of
RefSeq Genomes which are commonly found in the human git microbiome, I verify that
the two ends of dumbbell-like main component of the graph (figure 3.21) represent these
phyla. The connection between them may be generated by horizontal transfer of genes
or spurious correlation due to recurrent k-mers in the assembly graph, and it is notable
that many of the nodes in the bridge between the two components show a high depth in
the assembly graph, as shown by the node width in the figure. E. coli can be found on a
small component connected to this bridge, shown at the top middle of the rendering.

Fig. 3.22 Comparing alignment performance between vg map and bwa mem to the human
gut microbiome assembly graph or its contigs.

To evaluate the utility of this graph for read alignment, I aligned 100k of the held-out
reads with vg map and bwa mem to the graph and the contig set respectively. This contig
set would appear to be more suited to use as a linear reference and bwa mem alignment
than the viral metagenome in described in the previous section. Alignment to the graph
marginally improves the number of aligned reads, with bwa mem aligning 95.7% of them
and vg map aligning 96.3%. Overall, we can observe a similar level of change in the
alignment score, with vg’s mean score at 92.5 and bwa’s at 92.0, which is a small but

132 Applications

significant difference (two-tailed T -test p = 3.62× 10−7). The longer length of contigs in
this graph and the lack of small circular contigs apparently contribute to the reduction
in relative improvement offered by alignment to the graph in this bacterial context. A
scatterplot of alignment scores between the two methods reveals a slight shift in density
below the diagonal in vg’s favor (figure 3.22). It is possible that an assembly designed
to capture more variation in the strains might benefit more greatly from the use of vg.
A number of issues appear when inspecting these results, for instance that vg does not
align some reads that bwa does. This could represent a bug in the aligner or the effect of
pruning on the gut metagenome graph’s GCSA2 index. We can conclude that while this
method shows promise in a variety of metagenomic applications, improvements may be
required for it to yield benefits in some contexts.

3.6 RNA-seq
As described in section 1.4.2.4, graphs have been used as a description of transcriptomes.
A transcript graph can encode alternatively spliced transcripts in a DAG. By recording
the transcripts as paths in this graph we can build a coherent annotation describing
all the known transcripts and their sequences, and by indexing the graph with vg we
can align RNA-seq reads directly to it. To build a splicing graph in vg requires a linear
reference and a gene model encoded in GFF, and uses the edit function to augment the
graph with alignments representing each gene annotation, thus incorporating edges for
each spliced intron (section 2.2.3).

3.6.1 Yeast transcriptome graph

An obvious application of vg is to the direct alignment of reads to a splicing graph. I
have only begun to explore this at the end of my studentship. Once again, I started
with yeast, which has only a small number (∼280) of spliced genes. I built a gene model
graph (SGD+CDS) using the yeast reference genome from the Saccharomyces Genome
Database (SGD) and its gene annotations16. At 8.8MB, the serialized SGD+CDS vg
graph itself is only slightly larger than the SGD linear reference graph, which is 7.3MB.
However, its xg index is much larger, 642MB, in contrast to the linear index at 38MB.
This index suffers a large penalty for the ∼5000 embedded transcript annotations, as
each becomes a full reference path, usable in alignment for positional inference. To verify

16I used the 20150113 release from https://downloads.yeastgenome.org/sequence/S288C_reference/
genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz.

https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz

3.6 RNA-seq 133

that the splicing graph would allow reads to align full length across splice junctions, I
aligned 100k reads from a yeast mRNA sequencing data set17.

The low rate of alternative splicing in yeast means that only a handful of reads map
across splice junctions encoded in the graph, but those that do now align full length,
as seen in figure 3.23. The difference in aggregate alignment identity is small (0.91 vs
0.912) but marginally significant (two-tailed T -test p = 0.03927). This provides a basic
proof of principle that the splicing graph can be represented as a variation graph and
that vg can align reads to it without any particular RNA-specific considerations. Due
to time constraints I was unable to further explore this topic. One major concern was
the runtime and memory costs to construct the xg index. These suggest that it may not
be possible to build a splicing graph for a large genome with the transcripts encoded as
positional paths, which further implies that improvements in the approximate positional
metric in the graph will be required to scale RNA-seq alignment with vg. Further, the
results shown in figure 3.23 indicate that there may be a positional offset bug in the
conversion of the GFF files representing the transcriptome into the graph. In summary,
future work will be required to explore the use of vg for RNA-seq data.

17SRR2069949 in SRA, https://www.ncbi.nlm.nih.gov/sra/?term=SRR2069949

https://www.ncbi.nlm.nih.gov/sra/?term=SRR2069949

134 Applications

Fig. 3.23 Comparing alignment identity between vg map on the linear SGD reference
(y-axis) and the SGD reference augmented by the transcripts in the annotated CDS
(x-axis).

Chapter 4

Conclusions

Genomics is driven by comparison. It is rare that we have reason to consider a single
genome in isolation. We apply alignment algorithms to infer the sequence-level relation-
ship between genomes, or between additional sequence data and genomes. As data scales
have increased, we have required incomplete methods to determine these relationships
among many individuals. Contemporary resequencing techniques focus on the placement
of new sequencing information into a reference system which is typically linear and
representative of only a single copy of each genomic locus. A pangenomic reference
system allows us to represent multiple versions of each locus, but until recently such
techniques have been difficult to apply at scales commonly reached in current analyses.

I propose the use of variation graphs as reference systems in resequencing. These
path-labeled, bidirectional DNA sequence graphs allow us to represent collections of
genomes in a single, coherent structure which fully capture the sequences and variation
between them. They support the direct representation of all kinds of genomic variation.
By building a software system supporting the construction, manipulation, indexing, and
alignment of new read sets and genomes to variation graphs, I am able to show that this
model reduces bias towards the reference in alignment in a wide array of genomic contexts.
These methods achieve a level of performance that will make them usable for large-scale
resequencing analyses. As I have shown, their modular implementation, based around a
handful of core data models, enables the rapid construction of novel graph-based analysis
processes that provide conceptual unity to alignment, assembly, and variant calling.
Although other methods for aligning sequences against pangenome data structures exist,
vg is the first set of tools that does so in a completely coherent manner against arbitrary
bidirectional sequence graphs. This is also the first framework to provide graph based
analogs of many of the data types standardly used in resequencing.

136 Conclusions

In addition to developing methods to support alignment to variation graphs, we have
explored a variety of related analyses. We developed new techniques for visualizing
variation graphs that will help to build the genome browsers necessary to navigate data
placed in the context of the graph. To record and interface with annotations embedded
in a variation graphs, we have linked the variation graph data model to RDF. To simplify
their construction, I provide a method to losslessly induce variation graphs from a set
of aligned sequences. We built systems that allow for the efficient summarization of
alignment data sets against variation graph. And we worked on methods to support
genotyping known and novel variation in graphs. Throughout my work I have supported
and worked with a growing group of researchers focused on these techniques, collaborating
in the development of graph sequence and haplotype indexing techniques, the evaluation
of diverse variation graph models, and the study of ancient DNA using variation graphs.

Graphical models are often regarded with apprehension by members of the bioin-
formatics community who are accustomed to working with linear reference genomes. I
show that arbitrary variation graphs may be consistently linearized for visualization and
analysis. Variation graphs built from related sequences tend to have a regional linear
property despite the frequent presence of large scale variation. I show that this holds
for graphs constructed from a variety of sources using alignment or assembly techniques.
They retain relatively linear structures locally, and as such can be used for efficient
alignment. The linearization of the graph suggests a projection of sequencing information
in the graph into a basis vector space defined by the graph itself. Such an approach may
greatly simplify genomic analyses by removing the complicated variant calling step. If
the variation we want to consider is already embedded in the graph, we do not need to
genotype novel variation or engage in filtering our results. As variation is now embedded
in the graph, we can perhaps avoid variant calling altogether where downstream it is
possible to work with a normalized coverage model across this graph basis vector. Doing
so practically will require the development of techniques that can scale genetic analyses
to the large matrix representations implied by such maps.

It is not clear how to build the best graph for a given analysis context. The results
I present show that the addition of variation to a graph does not necessarily improve
alignment performance in all contexts. Additional variation increases graph complexity,
and this can make results more ambiguous. One important step is likely to be the use of
haplotype information at the level of alignment. Ongoing work suggests that doing so
may mitigate scaling issues that will occur as we build graphs from tens and hundreds
of thousands of genomes, but there is still much work to be done. We can expect that,
with time, practices will arise that capture the ideal patterns for constructing variation

137

graphs. I found a number of potential input sources unreliable in their current form,
and I hope to explore them as variation graph analysis techniques mature. Progressive
and multiple whole genome alignment algorithms look to be the most promising way to
merge haplotype resolved genome assemblies that new genome inference technologies are
enabling. However, as they have difficulty scaling to more than single human chromosomes,
I am interested in exploring ways of building variation graphs from networks of pairwise
alignments. Given improvement of the input alignment process, this technique could also
serve as a scalable way to construct variation graphs in any context where collections of
sequenced genomes exist.

I believe that reference genomes should be replaced with pangenomic structures.
This is the clearest way to resolve representational issues that arise as we collect large
collections of genomes in the species we examine. The variation graph is a natural
model with which to do this. Its adoption is now a social as well as a technical question.
Can the community generate a unified set of data structures that encapsulate the ideas
I have presented here? Large distributed projects like the 1000GP gave rise to the
current generation of genomic data formats. It seems natural that the next, graphical,
pangenomic phase will require the same. At present, it is not clear what project might
support this. Top-down approaches like that presented by the GA4GH have not proven
as capable of promoting standards as analysis-oriented projects like the 1000GP, although
they have served a coordinating role for the community of researchers interested in these
topics. One obvious target for the widespread introduction of variation graph data models
would be in the generation of a new reference genome system based on a collection of
fully-resolved genomes. Motivation for such an advance increases as evidence mounts
that a substantial and important fraction of genetic variation is neither small nor simple.
I am hopeful that my work may support such an effort, and that the ideas which arise
therein may follow at least in part from the generic graphical pangenomic models I have
proposed and demonstrated here.

References

[1] The 1000 Genomes Project Participants. An integrated map of genetic variation
from 1,092 human genomes. Nature, 491(7422):56–65, 2012.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86,
2004.

[3] JM Adams, PGN Jeppesen, F Sanger, and BG Barrell. Nucleotide sequence from
the coat protein cistron of r17 bacteriophage RNA. Nature, 223(5210):1009–1014,
1969.

[4] Cornelis A Albers, Gerton Lunter, Daniel G MacArthur, Gilean McVean, Willem H
Ouwehand, and Richard Durbin. Dindel: accurate indel calls from short-read data.
Genome Research, 21(6):961–973, 2011.

[5] Morten E Allentoft, Martin Sikora, Karl-Göran Sjögren, Simon Rasmussen, Morten
Rasmussen, Jesper Stenderup, Peter B Damgaard, Hannes Schroeder, Torbjörn
Ahlström, Lasse Vinner, et al. Population genomics of bronze age Eurasia. Nature,
522(7555):167–172, 2015.

[6] Manuel Allhoff, Alexander Schönhuth, Marcel Martin, Ivan G Costa, Sven Rahmann,
and Tobias Marschall. Discovering motifs that induce sequencing errors. BMC
Bioinformatics, 14(5):S1, 2013.

[7] Carlos Alonso-Blanco, Jorge Andrade, Claude Becker, Felix Bemm, Joy Bergelson,
Karsten M Borgwardt, Jun Cao, Eunyoung Chae, Todd M Dezwaan, Wei Ding,
et al. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis
thaliana. Cell, 166(2):481–491, 2016.

[8] Stephen F Altschul and Bruce W Erickson. Optimal sequence alignment using
affine gap costs. Bulletin of Mathematical Biology, 48(5-6):603–616, 1986.

[9] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of Molecular Biology, 215(3):
403–410, 1990.

[10] Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial
algorithms on words, pages 85–96. Springer, 1985.

140 References

[11] Oswald T Avery, Colin M MacLeod, and Maclyn McCarty. Studies on the chemical
nature of the substance inducing transformation of pneumococcal types: induction
of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus
type iii. Journal of Experimental Medicine, 79(2):137–158, 1944.

[12] Shankar Balasubramanian, David Klenerman, and David Bentley. Arrayed
biomolecules and their use in sequencing, 2004. US Patent 6,787,308.

[13] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail
Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham,
Andrey D Prjibelski, et al. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of Computational Biology, 19(5):
455–477, 2012.

[14] Markus J Bauer, Anthony J Cox, and Giovanna Rosone. Lightweight algorithms
for constructing and inverting the BWT of string collections. Theoretical Computer
Science, 483:134–148, 2013.

[15] Richard Bellman. On the theory of dynamic programming. Proceedings of the
National Academy of Sciences, 38(8):716–719, 1952.

[16] David R Bentley, Shankar Balasubramanian, Harold P Swerdlow, Geoffrey P Smith,
John Milton, Clive G Brown, Kevin P Hall, Dirk J Evers, Colin L Barnes, Helen R
Bignell, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. Nature, 456(7218):53–59, 2008.

[17] Anders Bergström, Jared T Simpson, Francisco Salinas, Benjamin Barré, Leopold
Parts, Amin Zia, Alex N Nguyen Ba, Alan M Moses, Edward J Louis, Ville
Mustonen, et al. A high-definition view of functional genetic variation from natural
yeast genomes. Molecular Biology and Evolution, 31(4):872–888, 2014.

[18] Derek M Bickhart, Benjamin D Rosen, Sergey Koren, Brian L Sayre, Alex R
Hastie, Saki Chan, Joyce Lee, Ernest T Lam, Ivan Liachko, Shawn T Sullivan, et al.
Single-molecule sequencing and chromatin conformation capture enable de novo
reference assembly of the domestic goat genome. Nature Genetics, 49(4):643–650,
2017.

[19] Etienne Birmelé, Pierluigi Crescenzi, Rui Ferreira, Roberto Grossi, Vincent Lacroix,
Andrea Marino, Nadia Pisanti, Gustavo Sacomoto, and Marie-France Sagot. Effi-
cient bubble enumeration in directed graphs. In International Symposium on String
Processing and Information Retrieval, pages 118–129. Springer, 2012.

[20] Inanç Birol, Shaun D Jackman, Cydney B Nielsen, Jenny Q Qian, Richard Varhol,
Greg Stazyk, Ryan D Morin, Yongjun Zhao, Martin Hirst, Jacqueline E Schein, et al.
De novo transcriptome assembly with ABySS. Bioinformatics, 25(21):2872–2877,
2009.

[21] Mathieu Blanchette, W James Kent, Cathy Riemer, Laura Elnitski, Arian FA Smit,
Krishna M Roskin, Robert Baertsch, Kate Rosenbloom, Hiram Clawson, Eric D
Green, et al. Aligning multiple genomic sequences with the threaded blockset
aligner. Genome Research, 14(4):708–715, 2004.

References 141

[22] Nathan Blow. Decoding the unsequenceable, 2015. URL https://www.future-science.
com/doi/pdf/10.2144/000114252.

[23] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct
de Bruijn graphs. In International Workshop on Algorithms in Bioinformatics,
pages 225–235. Springer, 2012.

[24] Ljiljana Brankovic, Costas S Iliopoulos, Ritu Kundu, Manal Mohamed, Solon P
Pissis, and Fatima Vayani. Linear-time superbubble identification algorithm for
genome assembly. Theoretical Computer Science, 609:374–383, 2016.

[25] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527, 2016.

[26] Adrian W Briggs, Udo Stenzel, Matthias Meyer, Johannes Krause, Martin Kircher,
and Svante Pääbo. Removal of deaminated cytosines and detection of in vivo
methylation in ancient DNA. Nucleic Acids Research, 38(6):e87–e87, 2009.

[27] S. R. Browning and B. L. Browning. Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genetics, 81(5):1084–1097, 2007.

[28] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm. Digital Equipment Corporation technical reports, 124, 1994.

[29] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter, Matthew K
Belmonte, Eric S Lander, Chad Nusbaum, and David B Jaffe. ALLPATHS: de novo
assembly of whole-genome shotgun microreads. Genome Research, 18(5):810–820,
2008.

[30] Bruno Canard and Robert S Sarfati. DNA polymerase fluorescent substrates with
reversible 3’-tags. Gene, 148(1):1–6, 1994.

[31] Jun Cao, Korbinian Schneeberger, Stephan Ossowski, Torsten Günther, Sebastian
Bender, Joffrey Fitz, Daniel Koenig, Christa Lanz, Oliver Stegle, Christoph Lippert,
et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations.
Nature Genetics, 43(10):956–963, 2011.

[32] Humberto Carrillo and David Lipman. The multiple sequence alignment problem
in biology. SIAM Journal on Applied Mathematics, 48(5):1073–1082, 1988.

[33] John Castiblanco. A primer on current and common sequencing technologies.
El Rosario University Press, 2013. URL https://www.ncbi.nlm.nih.gov/books/
NBK459463/.

[34] Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David
Porubsky, Tobias Rausch, Eugene J Gardner, Oscar Rodriguez, Li Guo, Ryan L
Collins, et al. Multi-platform discovery of haplotype-resolved structural variation
in human genomes. bioRxiv:193144, 2018.

https://www.future-science.com/doi/pdf/10.2144/000114252
https://www.future-science.com/doi/pdf/10.2144/000114252
https://www.ncbi.nlm.nih.gov/books/NBK459463/
https://www.ncbi.nlm.nih.gov/books/NBK459463/

142 References

[35] Mahul Chakraborty, Nicholas W VanKuren, Roy Zhao, Xinwen Zhang, Shannon
Kalsow, and JJ Emerson. Hidden genetic variation shapes the structure of functional
elements in drosophila. Nature Genetics, 50(1):20–25, 2018.

[36] Danny Challis, Lilian Antunes, Erik Garrison, Eric Banks, Uday S Evani, Donna
Muzny, Ryan Poplin, Richard A Gibbs, Gabor Marth, and Fuli Yu. The distribution
and mutagenesis of short coding indels from 1,128 whole exomes. BMC Genomics,
16(1):143, 2015.

[37] Zheng Chang, Guojun Li, Juntao Liu, Yu Zhang, Cody Ashby, Deli Liu, Carole L
Cramer, and Xiuzhen Huang. Bridger: a new framework for de novo transcriptome
assembly using RNA-seq data. Genome Biology, 16(1):30, 2015.

[38] J Michael Cherry, Caroline Adler, Catherine Ball, Stephen A Chervitz, Selina S
Dwight, Erich T Hester, Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder,
et al. SGD: Saccharomyces genome database. Nucleic Acids Research, 26(1):73–79,
1998.

[39] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de Bruijn graph
representation based on a bloom filter. Algorithms for Molecular Biology, 8(1):22,
2013.

[40] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn
graphs from sequencing data quickly and in low memory. Bioinformatics, 32(12):
i201–i208, 2016.

[41] Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, Maria Nattestad, Gregory T
Concepcion, Alicia Clum, Christopher Dunn, Ronan O’Malley, Rosa Figueroa-
Balderas, Abraham Morales-Cruz, et al. Phased diploid genome assembly with
single-molecule real-time sequencing. Nature Methods, 13(12):1050–1054, 2016.

[42] Deanna M Church. Genomes for all. Nature Biotechnology, 36(9):815–816, 2018.

[43] Richard M Clark, Gabriele Schweikert, Christopher Toomajian, Stephan Ossowski,
Georg Zeller, Paul Shinn, Norman Warthmann, Tina T Hu, Glenn Fu, David A
Hinds, et al. Common sequence polymorphisms shaping genetic diversity in
Arabidopsis thaliana. Science, 317(5836):338–342, 2007.

[44] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science &
Engineering, 11(4):29–41, 2009.

[45] 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

[46] Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018.

[47] ENCODE Project Consortium et al. An integrated encyclopedia of DNA elements
in the human genome. Nature, 489(7414):57–74, 2012.

[48] International Human Genome Sequencing Consortium et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

References 143

[49] UK10K Consortium et al. The UK10K project identifies rare variants in health
and disease. Nature, 526(7571):82–90, 2015.

[50] Francis HC Crick. On protein synthesis. Symposia of the Society for Experimental
Biology, 12:138–163, 1958.

[51] Francis HC Crick. Central dogma of molecular biology. Nature, 227(5258):561–563,
1970.

[52] Jesse Dabney, Matthias Meyer, and Svante Pääbo. Ancient DNA damage. Cold
Spring Harbor Perspectives in Biology, page a012567, 2013.

[53] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks,
Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T
Sherry, et al. The variant call format and VCFtools. Bioinformatics, 27(15):
2156–2158, 2011.

[54] Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, and Jared T
Simpson. Nanocall: an open source basecaller for oxford nanopore sequencing data.
Bioinformatics, 33(1):49–55, 2016.

[55] Peter de Barros Damgaard, Rui Martiniano, Jack Kamm, J Víctor Moreno-Mayar,
Guus Kroonen, Michaël Peyrot, Gojko Barjamovic, Simon Rasmussen, Claus Zacho,
Nurbol Baimukhanov, et al. The first horse herders and the impact of early Bronze
Age steppe expansions into Asia. Science, 360(6396):1422–1442, 2018.

[56] Nicolaas Govert De Bruijn. A combinatorial problem. Koninklijke Nederlandse
Akademie v. Wetenschappen, 49(49):758–764, 1946.

[57] Daniel Aguirre de Cárcer, Alberto López-Bueno, David A Pearce, and Antonio
Alcamí. Biodiversity and distribution of polar freshwater DNA viruses. Science
Advances, 1(5):e1400127, 2015.

[58] David Deamer, Mark Akeson, and Daniel Branton. Three decades of nanopore
sequencing. Nature Biotechnology, 34(5):518–524, 2016.

[59] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[60] O. Delaneau, J. Marchini, and J. F. Zagury. A linear complexity phasing method
for thousands of genomes. Nature Methods, 9(2):179–181, 2012.

[61] Arthur L Delcher, Simon Kasif, Robert D Fleischmann, Jeremy Peterson, Owen
White, and Steven L Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27(11):2369–2376, 1999.

[62] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire,
Christopher Hartl, Anthony A Philippakis, Guillermo Del Angel, Manuel A Rivas,
Matt Hanna, et al. A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nature Genetics, 43(5):491–498, 2011.

144 References

[63] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean.
Improved genome inference in the MHC using a population reference graph. Nature
Genetics, 47(6):682–688, 2015.

[64] Olga Dudchenko, Sanjit S Batra, Arina D Omer, Sarah K Nyquist, Marie Hoeger,
Neva C Durand, Muhammad S Shamim, Ido Machol, Eric S Lander, Aviva Presser
Aiden, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields
chromosome-length scaffolds. Science, 356(6333):92–95, 2017.

[65] Richard Durbin. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

[66] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge
University Press, 1998.

[67] Dent A Earl, Keith Bradnam, John St John, Aaron Darling, Dawei Lin, Joseph
Faas, Hung On Ken Yu, Buffalo Vince, Daniel R Zerbino, Mark Diekhans, et al.
Assemblathon 1: a competitive assessment of de novo short read assembly methods.
Genome Research, 21(12):2224–2241, 2011.

[68] Sarah G Earle, Chieh-Hsi Wu, Jane Charlesworth, Nicole Stoesser, N Claire Gordon,
Timothy M Walker, Chris CA Spencer, Zamin Iqbal, David A Clifton, Katie L
Hopkins, et al. Identifying lineage effects when controlling for population structure
improves power in bacterial association studies. Nature Microbiology, 1(5):16041,
2016.

[69] MA Eberle, M Kallberg, HY Chuang, P Tedder, S Humphray, D Bentley, and
E Margulies. Platinum genomes: A systematic assessment of variant accuracy
using a large family pedigree. In 60th Annual Meeting of The American Society of
Human Genetics, pages 22–26, 2013.

[70] Robert A Edwards and Forest Rohwer. Viral metagenomics. Nature Reviews
Microbiology, 3(6):504–510, 2005.

[71] Hannes P Eggertsson, Hakon Jonsson, Snaedis Kristmundsdottir, Eirikur Hjar-
tarson, Birte Kehr, Gisli Masson, Florian Zink, Kristjan E Hjorleifsson, Aslaug
Jonasdottir, Adalbjorg Jonasdottir, et al. Graphtyper enables population-scale
genotyping using pangenome graphs. Nature Genetics, 49(11):1654–1660, 2017.

[72] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, et al. Real-time DNA
sequencing from single polymerase molecules. Science, 323(5910):133–138, 2009.

[73] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz—open source graph drawing tools. In International Symposium
on Graph Drawing, pages 483–484. Springer, 2001.

[74] Ester Falconer, Mark Hills, Ulrike Naumann, Steven SS Poon, Elizabeth A Chavez,
Ashley D Sanders, Yongjun Zhao, Martin Hirst, and Peter M Lansdorp. DNA
template strand sequencing of single-cells maps genomic rearrangements at high
resolution. Nature Methods, 9(11):1107–1112, 2012.

References 145

[75] Xian Fan, Mark Chaisson, Luay Nakhleh, and Ken Chen. HySA: A Hybrid
Structural variant Assembly approach using next generation and single-molecule
sequencing technologies. Genome Research, 27(5):793–800, 2017.

[76] Michael Farrar. Striped Smith–Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics, 23(2):156–161, 2007.

[77] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-
plications. In Proceedings of the 41st Annual Symposium on the Foundations of
Computer Science, pages 390–398. IEEE, 2000.

[78] Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic
index. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
Algorithms, pages 269–278. Society for Industrial and Applied Mathematics, 2001.

[79] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An
alphabet-friendly FM-index. In String Processing and Information Retrieval, pages
150–160. Springer, 2004.

[80] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S Muthukrishnan. Struc-
turing labeled trees for optimal succinctness, and beyond. In Foundations of
Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages
184–193. IEEE, 2005.

[81] Walter Fiers, Roland Contreras, Fred Duerinck, Guy Haegeman, Dirk Iserentant,
Jozef Merregaert, W Min Jou, Francis Molemans, Alex Raeymaekers, A Van den
Berghe, et al. Complete nucleotide sequence of bacteriophage ms2 RNA: primary
and secondary structure of the replicase gene. Nature, 260(5551):500–507, 1976.

[82] Walter M Fitch. An improved method of testing for evolutionary homology. Journal
of Molecular Biology, 16(1):9–16, 1966.

[83] Robert D Fleischmann, Mark D Adams, Owen White, Rebecca A Clayton, Ewen F
Kirkness, Anthony R Kerlavage, Carol J Bult, Jean-Francois Tomb, Brian A
Dougherty, Joseph M Merrick, et al. Whole-genome random sequencing and
assembly of haemophilus influenzae Rd. Science, 269(5223):496–512, 1995.

[84] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework
for BWT-based data structures. Theoretical Computer Science, 698:67–78, 2017.

[85] Emden R Gansner and Stephen C North. An open graph visualization system and
its applications to software engineering. Software: practice and experience, 30(11):
1203–1233, 2000.

[86] Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and K-P Vo. A
technique for drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[87] Richard C Gardner, Alan J Howarth, Peter Hahn, Marianne Brown-Luedi, Robert J
Shepherd, and Joachim Messing. The complete nucleotide sequence of an infectious
clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids
Research, 9(12):2871–2888, 1981.

146 References

[88] Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read
sequencing. arXiv:1207.3907, 2012.

[89] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga,
Eric T Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al.
Variation graph toolkit improves read mapping by representing genetic variation in
the reference. Nature Biotechnology, 36(9):875–879, 2018.

[90] Jay Ghurye, Arang Rhie, Brian P Walenz, Anthony Schmitt, Siddarth Selvaraj,
Mihai Pop, Adam M Phillippy, and Sergey Koren. Integrating Hi-C links with
assembly graphs for chromosome-scale assembly. bioRxiv:261149, 2018.

[91] André Goffeau, Bart G Barrell, Howard Bussey, RW Davis, Bernard Dujon, Heinz
Feldmann, Francis Galibert, JD Hoheisel, Cr Jacq, Michael Johnston, et al. Life
with 6000 genes. Science, 274(5287):546–567, 1996.

[92] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to
practice: Plug and play with succinct data structures. In 13th International
Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[93] David Gordon, Chris Abajian, and Phil Green. Consed: a graphical tool for
sequence finishing. Genome Research, 8(3):195–202, 1998.

[94] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705–708, 1982.

[95] Osamu Gotoh. Optimal sequence alignment allowing for long gaps. Bulletin of
Mathematical Biology, 52(3):359–373, 1990.

[96] Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong
Zeng, et al. Full-length transcriptome assembly from RNA-seq data without a
reference genome. Nature Biotechnology, 29(7):644–652, 2011.

[97] Catherine Grasso and Christopher Lee. Combining partial order alignment and
progressive multiple sequence alignment increases alignment speed and scalability
to very large alignment problems. Bioinformatics, 20(10):1546–1556, 2004.

[98] Richard E Green, Johannes Krause, Adrian W Briggs, Tomislav Maricic, Udo
Stenzel, Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang
Fritz, et al. A draft sequence of the Neandertal genome. Science, 328(5979):710–722,
2010.

[99] Stuart J. Green, Reigh P. Monreal, Alan T. White, Thomas G. Bayer, Stuart J.
Green, Reigh P. Monreal, Alan T. White, Thomas G. Bayer, Yasmin D. Arquiza,
Alan T. White, Stuart J. Green, R. Buenaflor, and Jr. Nd Y. D. Arquiza. Phrap
documentation, 1999.

[100] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 841–850. Society for Industrial and
Applied Mathematics, 2003.

References 147

[101] Sarah Guthrie, Abram Connelly, Peter Amstutz, Adam F Berrey, Nicolas Cesar,
Jiahua Chen, Radhika Chippada, Tom Clegg, Bryan Cosca, Jiayong Li, et al. Tiling
the genome into consistently named subsequences enables precision medicine and
machine learning with millions of complex individual data-sets. Technical report,
PeerJ PrePrints, 2015. URL https://peerj.com/preprints/1426/.

[102] Timothy D Harris, Phillip R Buzby, Hazen Babcock, Eric Beer, Jayson Bowers, Ido
Braslavsky, Marie Causey, Jennifer Colonell, James DiMeo, J William Efcavitch,
et al. Single-molecule DNA sequencing of a viral genome. Science, 320(5872):
106–109, 2008.

[103] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner.
Splicing graphs and EST assembly problem. Bioinformatics, 18(suppl_1):S181–
S188, 2002.

[104] Desmond G Higgins and Paul M Sharp. Clustal: a package for performing multiple
sequence alignment on a microcomputer. Gene, 73(1):237–244, 1988.

[105] Jonathon T Hill, Bradley L Demarest, Brent W Bisgrove, Yi-Chu Su, Megan Smith,
and H Joseph Yost. Poly peak parser: Method and software for identification of
unknown indels using sanger sequencing of polymerase chain reaction products.
Developmental Dynamics, 243(12):1632–1636, 2014.

[106] B. Howie, J. Marchini, and M. Stephens. Genotype imputation with thousands of
genomes. G3 (Bethesda), 1(6):457–470, 2011.

[107] Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with
populations of genomes. Bioinformatics, 29(13):i361–i370, 2013.

[108] Xiaoqiu Huang. A contig assembly program based on sensitive detection of fragment
overlaps. Genomics, 14(1):18–25, 1992.

[109] Yao-Ting Huang and Chen-Fu Liao. Integration of string and de Bruijn graphs for
genome assembly. Bioinformatics, 32(9):1301–1307, 2016.

[110] Julian Huxley. Evolution: the modern synthesis. George Allen and Unwin, 1942.

[111] Ramana M Idury and Michael S Waterman. A new algorithm for DNA sequence
assembly. Journal of Computational Biology, 2(2):291–306, 1995.

[112] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nature Genetics, 44(2):
226–232, 2012.

[113] Z. Iqbal, I. Turner, and G. McVean. High-throughput microbial population genomics
using the Cortex variation assembler. Bioinformatics, 29(2):275–276, 2013.

[114] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De
novo assembly and genotyping of variants using colored de Bruijn graphs. Nature
Genetics, 44(2):226–232, 2012.

https://peerj.com/preprints/1426/

148 References

[115] Marten Jäger, Max Schubach, Tomasz Zemojtel, Knut Reinert, Deanna M Church,
and Peter N Robinson. Alternate-locus aware variant calling in whole genome
sequencing. Genome Medicine, 8(1):130, 2016.

[116] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A
Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al.
Nanopore sequencing and assembly of a human genome with ultra-long reads.
Nature Biotechnology, 36(4):338–345, 2018.

[117] Christine Jandrasits, Piotr W Dabrowski, Stephan Fuchs, and Bernhard Y Renard.
seq-seq-pan: Building a computational pan-genome data structure on whole genome
alignment. BMC Genomics, 19(1):47, 2018.

[118] W Min Jou, G Haegeman, M Ysebaert, and W Fiers. Nucleotide sequence of the
gene coding for the bacteriophage MS2 coat protein. Nature, 237(5350):82–88,
1972.

[119] Arthur B Kahn. Topological sorting of large networks. Communications of the
ACM, 5(11):558–562, 1962.

[120] Rolf G Karlsson and Patricio V Poblete. An O(m log log D) algorithm for shortest
paths. Discrete Applied Mathematics, 6(1):91–93, 1983.

[121] John J Kasianowicz, Eric Brandin, Daniel Branton, and David W Deamer. Char-
acterization of individual polynucleotide molecules using a membrane channel.
Proceedings of the National Academy of Sciences, 93(24):13770–13773, 1996.

[122] John Kececioglu. The maximum weight trace problem in multiple sequence align-
ment. In Annual Symposium on Combinatorial Pattern Matching, pages 106–119.
Springer, 1993.

[123] John D Kececioglu and Eugene W Myers. Combinatorial algorithms for DNA
sequence assembly. Algorithmica, 13(1-2):7–51, 1995.

[124] Birte Kehr, Kathrin Trappe, Manuel Holtgrewe, and Knut Reinert. Genome
alignment with graph data structures: a comparison. BMC Bioinformatics, 15(1):
99, 2014.

[125] W James Kent. BLAT—the BLAST-like alignment tool. Genome Research, 12(4):
656–664, 2002.

[126] W James Kent and David Haussler. Assembly of the working draft of the human
genome with GigAssembler. Genome Research, 11(9):1541–1548, 2001.

[127] W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H
Pringle, Alan M Zahler, and David Haussler. The human genome browser at UCSC.
Genome Research, 12(6):996–1006, 2002.

[128] Paul Julian Kersey, James E Allen, Irina Armean, Sanjay Boddu, Bruce J Bolt,
Denise Carvalho-Silva, Mikkel Christensen, Paul Davis, Lee J Falin, Christoph
Grabmueller, et al. Ensembl genomes 2016: more genomes, more complexity.
Nucleic Acids Research, 44(D1):D574–D580, 2015.

References 149

[129] Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced
aligner with low memory requirements. Nature Methods, 12(4):357–360, 2015.

[130] Daehwan Kim, B Langmead, and S Salzberg. HISAT2: graph-based alignment of
next-generation sequencing reads to a population of genomes. https://github.com/
infphilo/hisat2, 2017.

[131] Daniel C Koboldt, Ken Chen, Todd Wylie, David E Larson, Michael D McLellan,
Elaine R Mardis, George M Weinstock, Richard K Wilson, and Li Ding. VarScan:
variant detection in massively parallel sequencing of individual and pooled samples.
Bioinformatics, 25(17):2283–2285, 2009.

[132] Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read archive:
explosive growth of sequencing data. Nucleic Acids Research, 40(D1):D54–D56,
2011.

[133] Klaus-Peter Koepfli, Benedict Paten, Genome 10K Community of Scientists, and
Stephen J O’Brien. The Genome 10K Project: a way forward. Annual Review of
Animal Biosciences, 3(1):57–111, 2015.

[134] Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H
Bergman, and Adam M Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome Research, 27(5):
722–736, 2017.

[135] Jonas Korlach, Patrick J Marks, Ronald L Cicero, Jeremy J Gray, Devon L Murphy,
Daniel B Roitman, Thang T Pham, Geoff A Otto, Mathieu Foquet, and Stephen W
Turner. Selective aluminum passivation for targeted immobilization of single DNA
polymerase molecules in zero-mode waveguide nanostructures. Proceedings of the
National Academy of Sciences, 105(4):1176–1181, 2008.

[136] Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexandru
Tomescu, and Veli Mäkinen. Using minimum path cover to boost dynamic pro-
gramming on DAGs: co-linear chaining extended. In International Conference on
Research in Computational Molecular Biology, pages 105–121. Springer, 2018.

[137] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9(4):357–359, 2012.

[138] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3):R25, 2009.

[139] Iosif Lazaridis, Nick Patterson, Alissa Mittnik, Gabriel Renaud, Swapan Mallick,
Karola Kirsanow, Peter H Sudmant, Joshua G Schraiber, Sergi Castellano, Mark
Lipson, et al. Ancient human genomes suggest three ancestral populations for
present-day Europeans. Nature, 513(7518):409–413, 2014.

[140] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence
alignment using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

https://github.com/infphilo/hisat2
https://github.com/infphilo/hisat2

150 References

[141] Wan-Ping Lee, Michael P Stromberg, Alistair Ward, Chip Stewart, Erik P Garrison,
and Gabor T Marth. Mosaik: A hash-based algorithm for accurate next-generation
sequencing short-read mapping. PLoS ONE, 9(3):e90581, 2014.

[142] Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and International Nucleotide
Sequence Database Collaboration. The sequence read archive. Nucleic Acids
Research, 39(suppl_1):D19–D21, 2010.

[143] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.
MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

[144] Heng Li. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics, 27(21):2987–2993, 2011.

[145] Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de
novo assembly. Bioinformatics, 28(14):1838–1844, 2012.

[146] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv:1303.3997, 2013.

[147] Heng Li. Fast construction of FM-index for long sequence reads. Bioinformatics,
30(22):3274–3275, 2014.

[148] Heng Li. Fermikit: assembly-based variant calling for Illumina resequencing data.
Bioinformatics, 31(22):3694–3696, 2015.

[149] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics, 32(14):2103–2110, 2016.

[150] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, 2018.

[151] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[152] Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[153] Heng Li, Jue Ruan, and Richard Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 18(11):1851–1858,
2008.

[154] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The sequence alignment/map
format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[155] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. SOAP: short
oligonucleotide alignment program. Bioinformatics, 24(5):713–714, 2008.

References 151

[156] Ruiqiang Li, Yingrui Li, Hancheng Zheng, Ruibang Luo, Hongmei Zhu, Qibin Li,
Wubin Qian, Yuanyuan Ren, Geng Tian, Jinxiang Li, et al. Building the sequence
map of the human pan-genome. Nature Biotechnology, 28(1):57–63, 2010.

[157] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O
Dorschner, et al. Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science, 326(5950):289–293, 2009.

[158] DJ Lightfoot, David Erwin Jarvis, T Ramaraj, R Lee, EN Jellen, and PJ Maughan.
Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth
(Amaranthus hypochondriacus) chromosomes provide insights into genome evolution.
BMC Biology, 15(1):74, 2017.

[159] Henry W Lin and Max Tegmark. Critical behavior in physics and probabilistic
formal languages. Entropy, 19(7):299, 2017.

[160] Vivian Link, Athanasios Kousathanas, Krishna Veeramah, Christian Sell, Amelie
Scheu, and Daniel Wegmann. ATLAS: analysis tools for low-depth and ancient
samples. bioRxiv:105346, 2017.

[161] David J Lipman, Stephen F Altschul, and John D Kececioglu. A tool for multiple
sequence alignment. Proceedings of the National Academy of Sciences, 86(12):
4412–4415, 1989.

[162] Gianni Liti, David M Carter, Alan M Moses, Jonas Warringer, Leopold Parts,
Stephen A James, Robert P Davey, Ian N Roberts, Austin Burt, Vassiliki
Koufopanou, et al. Population genomics of domestic and wild yeasts. Nature, 458
(7236):337–341, 2009.

[163] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. deBGA: read alignment
with de Bruijn graph-based seed and extension. Bioinformatics, 32(21):3224–3232,
2016.

[164] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature Methods,
12(8):733–735, 2015.

[165] Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A natural
encoding of genetic variation in a Burrows-Wheeler Transform to enable mapping
and genome inference. In International Workshop on Algorithms in Bioinformatics,
pages 222–233. Springer, 2016.

[166] Tanja Magoč and Steven L Salzberg. FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics, 27(21):2957–2963, 2011.

[167] Michael A Mahowald, Federico E Rey, Henning Seedorf, Peter J Turnbaugh,
Robert S Fulton, Aye Wollam, Neha Shah, Chunyan Wang, Vincent Magrini,
Richard K Wilson, et al. Characterizing a model human gut microbiota composed
of members of its two dominant bacterial phyla. Proceedings of the National
Academy of Sciences, 106(14):5859–5864, 2009.

152 References

[168] BWJ Mahy, JJ Esposito, and JC Venter. Sequencing the smallpox virus genome:
prelude to destruction of a virus species. ASM News, 57:577–580, 1991.

[169] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[170] Guillaume Marçais, Dan DeBlasio, and Carleton Kingsford. Asymptotically optimal
minimizers schemes. bioRxiv:256156, 2018.

[171] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader,
Lisa A Bemben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao Chen,
et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,
437(7057):376–380, 2005.

[172] Gabor T Marth, Ian Korf, Mark D Yandell, Raymond T Yeh, Zhijie Gu, Hamideh
Zakeri, Nathan O Stitziel, LaDeana Hillier, Pui-Yan Kwok, and Warren R Gish. A
general approach to single-nucleotide polymorphism discovery. Nature Genetics, 23
(4):452–456, 1999.

[173] Jeffrey A Martin and Zhong Wang. Next-generation transcriptome assembly. Nature
Reviews Genetics, 12(10):671–682, 2011.

[174] Rui Martiniano, Anwen Caffell, Malin Holst, Kurt Hunter-Mann, Janet Mont-
gomery, Gundula Müldner, Russell L McLaughlin, Matthew D Teasdale, Wouter
Van Rheenen, Jan H Veldink, et al. Genomic signals of migration and continuity
in Britain before the Anglo-Saxons. Nature Communications, 7:10326, 2016.

[175] Ryan McDaniell, Bum-Kyu Lee, Lingyun Song, Zheng Liu, Alan P Boyle, Michael R
Erdos, Laura J Scott, Mario A Morken, Katerina S Kucera, Anna Battenhouse, et al.
Heritable individual-specific and allele-specific chromatin signatures in humans.
Science, 328(5975):235–239, 2010.

[176] Duccio Medini, Claudio Donati, Herve Tettelin, Vega Masignani, and Rino Rappuoli.
The microbial pan-genome. Current Opinion in Genetics & Development, 15(6):
589–594, 2005.

[177] Gregor Mendel. Versuche über Pflanzenhybriden. Verhandlungen des naturforschen-
den Vereines in Brunn, 44:1–47, 1866.

[178] Androniki Menelaou and Jonathan Marchini. Genotype calling and phasing using
next-generation sequencing reads and a haplotype scaffold. Bioinformatics, 29(1):
84–91, 2012.

[179] Alexander S Mikheyev and Mandy MY Tin. A first look at the oxford nanopore
minion sequencer. Molecular Ecology Resources, 14(6):1097–1102, 2014.

[180] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz,
Anushka Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton.
Aggressive assembly of pyrosequencing reads with mates. Bioinformatics, 24(24):
2818–2824, 2008.

References 153

[181] Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: An efficient algorithm to
build the compacted de Bruijn graph from many complete genomes. Bioinformatics,
33(24):4024–4032, 2016.

[182] Robi D Mitra, Jay Shendure, Jerzy Olejnik, George M Church, et al. Fluorescent
in situ sequencing on polymerase colonies. Analytical Biochemistry, 320(1):55–65,
2003.

[183] Anthony P Monaco and Zoia Larin. YACs, BACs, PACs and MACs: artificial
chromosomes as research tools. Trends in Biotechnology, 12(7):280–286, 1994.

[184] Burkhard Morgenstern, Andreas Dress, and Thomas Werner. Multiple DNA and
protein sequence alignment based on segment-to-segment comparison. Proceedings
of the National Academy of Sciences, 93(22):12098–12103, 1996.

[185] Yulia Mostovoy, Michal Levy-Sakin, Jessica Lam, Ernest T Lam, Alex R Hastie,
Patrick Marks, Joyce Lee, Catherine Chu, Chin Lin, Željko Džakula, et al. A
hybrid approach for de novo human genome sequence assembly and phasing. Nature
Methods, 13(7):587–590, 2016.

[186] Eugene W Myers. Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology, 2(2):275–290, 1995.

[187] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21
(suppl_2):ii79–ii85, 2005.

[188] Eugene W Myers. Efficient local alignment discovery amongst noisy long reads. In
International Workshop on Algorithms in Bioinformatics, pages 52–67. Springer,
2014.

[189] Eugene W Myers and Webb Miller. Optimal alignments in linear space. Bioinfor-
matics, 4(1):11–17, 1988.

[190] Eugene W Myers and Webb Miller. Approximate matching of regular expressions.
Bulletin of Mathematical Biology, 51(1):5–37, 1989.

[191] Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P Fasulo,
Michael J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A
Remington, et al. A whole-genome assembly of drosophila. Science, 287(5461):
2196–2204, 2000.

[192] Eugene W Myers, Granger G Sutton, Hamilton O Smith, Mark D Adams, and
J Craig Venter. On the sequencing and assembly of the human genome. Proceedings
of the National Academy of Sciences, 99(7):4145–4146, 2002.

[193] Saul B Needleman and Christian D Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, 1970.

[194] Cédric Notredame, Desmond G Higgins, and Jaap Heringa. T-coffee: a novel
method for fast and accurate multiple sequence alignment1. Journal of Molecular
Biology, 302(1):205–217, 2000.

154 References

[195] Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension of the po-
sitional Burrows–Wheeler transform and its applications. Algorithms for Molecular
Biology, 12:18, 2017.

[196] Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly,
Alexander Dilthey, Jordan Eizenga, MA Saleh Elmohamed, Sally Guthrie, André
Kahles, et al. Genome graphs. bioRxiv:101378, 2017.

[197] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. metaS-
PAdes: a new versatile metagenomic assembler. Genome Research, 27(5):824–834,
2017.

[198] Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-
genome sequence for 10 000 vertebrate species. Journal of Heredity, 100(6):659–674,
2009.

[199] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. PBSIM: PacBio reads simula-
tor—toward accurate genome assembly. Bioinformatics, 29(1):119–121, 2012.

[200] Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Detecting superbubbles
in assembly graphs. In International Workshop on Algorithms in Bioinformatics,
pages 338–348. Springer, 2013.

[201] R Padmanabhan, Ernest Jay, and Ray Wu. Chemical synthesis of a primer and its
use in the sequence analysis of the lysozyme gene of bacteriophage t4. Proceedings
of the National Academy of Sciences, 71(6):2510–2514, 1974.

[202] Andrew J Page, Carla A Cummins, Martin Hunt, Vanessa K Wong, Sandra Reuter,
Matthew TG Holden, Maria Fookes, Daniel Falush, Jacqueline A Keane, and Julian
Parkhill. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics,
31(22):3691–3693, 2015.

[203] Benedict Paten, Javier Herrero, Kathryn Beal, Stephen Fitzgerald, and Ewan
Birney. Enredo and Pecan: genome-wide mammalian consistency-based multiple
alignment with paralogs. Genome Research, 18(11):1814–1828, 2008.

[204] Benedict Paten, Mark Diekhans, Dent Earl, John St John, Jian Ma, Bernard
Suh, and David Haussler. Cactus graphs for genome comparisons. Journal of
Computational Biology, 18(3):469–481, 2011.

[205] Benedict Paten, Dent Earl, Ngan Nguyen, Mark Diekhans, Daniel Zerbino, and
David Haussler. Cactus: Algorithms for genome multiple sequence alignment.
Genome Research, 21(9):1512–1528, 2011.

[206] Benedict Paten, Jordan M Eizenga, Yohei M Rosen, Adam M Novak, Erik Garrison,
and Glenn Hickey. Superbubbles, ultrabubbles, and cacti. Journal of Computational
Biology, 25(7):649–663, 2018.

[207] N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck,
T. Webster, and D. Reich. Ancient admixture in human history. Genetics, 192(3):
1065–1093, 2012.

References 155

[208] William R Pearson and David J Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences, 85(8):2444–2448,
1988.

[209] Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang, Jeffery A
Schloss, Vivien Bonazzi, Jean E McEwen, Kris A Wetterstrand, Carolyn Deal, et al.
The NIH human microbiome project. Genome Research, 19(12):2317–2323, 2009.

[210] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Sciences, 98
(17):9748–9753, 2001.

[211] Ryan Poplin, Dan Newburger, Jojo Dijamco, Nam Nguyen, Dion Loy, Sam S Gross,
Cory Y McLean, and Mark A DePristo. Creating a universal snp and small indel
variant caller with deep neural networks. bioRxiv:092890, 2017.

[212] David Porubskỳ, Ashley D Sanders, Niek Van Wietmarschen, Ester Falconer,
Mark Hills, Diana CJ Spierings, Marianna R Bevova, Victor Guryev, and Peter M
Lansdorp. Direct chromosome-length haplotyping by single-cell sequencing. Genome
Research, 26(11):1565–1574, 2016.

[213] Kay Prüfer. snpAD: an ancient DNA genotype caller. Bioinformatics, 2018. doi:
10.1093/bioinformatics/bty507.

[214] Robert F Purnell, Kunal K Mehta, and Jacob J Schmidt. Nucleotide identification
and orientation discrimination of DNA homopolymers immobilized in a protein
nanopore. Nano Letters, 8(9):3029–3034, 2008.

[215] Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6):841–842, 2010.

[216] Goran Rakocevic, Vladimir Semenyuk, James Spencer, John Browning, Ivan
Johnson, Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, Maria C Suciu, Sun-Gou
Ji, et al. Fast and accurate genomic analyses using genome graphs. bioRxiv:194530,
2018.

[217] Benjamin Raphael, Degui Zhi, Haixu Tang, and Pavel Pevzner. A novel method
for multiple alignment of sequences with repeated and shuffled elements. Genome
Research, 14(11):2336–2346, 2004.

[218] Tobias Rausch, Anne-Katrin Emde, David Weese, Andreas Döring, Cedric
Notredame, and Knut Reinert. Segment-based multiple sequence alignment. Bioin-
formatics, 24(16):i187–i192, 2008.

[219] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-to-
graph alignment. bioRxiv:323063, 2018.

[220] Gabriel Renaud, Kristian Hanghøj, Eske Willerslev, and Ludovic Orlando. gargam-
mel: a sequence simulator for ancient DNA. Bioinformatics, 33(4):577–579, 2016.

[221] Anthony Rhoads and Kin Fai Au. PacBio sequencing and its applications. Genomics,
Proteomics & Bioinformatics, 13(5):278–289, 2015.

156 References

[222] Andy Rimmer, Hang Phan, Iain Mathieson, Zamin Iqbal, Stephen RF Twigg,
Andrew OM Wilkie, Gil McVean, Gerton Lunter, WGS500 Consortium, et al.
Integrating mapping-, assembly-and haplotype-based approaches for calling variants
in clinical sequencing applications. Nature Genetics, 46(8):912–918, 2014.

[223] Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew
Field, Shaun D Jackman, Karen Mungall, Sam Lee, Hisanaga Mark Okada, Jenny Q
Qian, et al. De novo assembly and analysis of RNA-seq data. Nature Methods, 7
(11):909–912, 2010.

[224] Michael G Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon,
Ryan Hegarty, Chad Nusbaum, and David B Jaffe. Characterizing and measuring
bias in sequence data. Genome Biology, 14(5):R51, 2013.

[225] Nicole Rusk. Torrents of sequence. Nature Methods, 8(1):44–44, 2010.

[226] F Sanger, GG Brownlee, and BG Barrell. A two-dimensional fractionation procedure
for radioactive nucleotides. Journal of Molecular Biology, 13(2):373–398, 1965.

[227] F Sanger, Ar R Coulson, GF Hong, DF Hill, and GB d Petersen. Nucleotide
sequence of bacteriophage λ DNA. Journal of Molecular Biology, 162(4):729–773,
1982.

[228] Frederick Sanger and Hans Tuppy. The amino-acid sequence in the phenylalanyl
chain of insulin. 1. the identification of lower peptides from partial hydrolysates.
Biochemical Journal, 49(4):463–481, 1951.

[229] Frederick Sanger, Gilian M Air, Bart G Barrell, Nigel L Brown, Alan R Coulson,
John C Fiddes, Clyde A Hutchison III, Patrick M Slocombe, and Mo Smith.
Nucleotide sequence of bacteriophage φx174 DNA. Nature, 265(5596):687–695,
1977.

[230] Frederick Sanger, Steven Nicklen, and Alan R Coulson. DNA sequencing with
chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74
(12):5463–5467, 1977.

[231] Stephan Schiffels, Wolfgang Haak, Pirita Paajanen, Bastien Llamas, Elizabeth
Popescu, Louise Loe, Rachel Clarke, Alice Lyons, Richard Mortimer, Duncan
Sayer, et al. Iron age and Anglo-Saxon genomes from East England reveal British
migration history. Nature Communications, 7:10408, 2016.

[232] Michael Schmid, Daniel Frei, Andrea Patrignani, Ralph Schlapbach, Juerg E Frey,
Mitja NP Remus-Emsermann, and Christian H Ahrens. Pushing the limits of de
novo genome assembly for complex prokaryotic genomes harboring very long, near
identical repeats. bioRxiv:300186, 2018.

[233] Holger Schmitt, Ung-Jin Kim, Tatiana Slepak, Nikolaus Blin, Melvin I Simon, and
Hiroaki Shizuya. Framework for a physical map of the human 22q13 region using
bacterial artificial chromosomes (BACs). Genomics, 33(1):9–20, 1996.

References 157

[234] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warthmann,
Sandra Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous alignment of
short reads against multiple genomes. Genome Biology, 10(9):R98, 2009.

[235] Valerie A Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-Chuan
Chen, Paul A Kitts, Terence D Murphy, Kim D Pruitt, Françoise Thibaud-Nissen,
Derek Albracht, et al. Evaluation of GRCh38 and de novo haploid genome assemblies
demonstrates the enduring quality of the reference assembly. Genome Research, 27
(5):849–864, 2017.

[236] Marcel H Schulz, Daniel R Zerbino, Martin Vingron, and Ewan Birney. Oases:
robust de novo RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics, 28(8):1086–1092, 2012.

[237] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotech-
nology, 26(10):1135–1145, 2008.

[238] Jay Shendure, Gregory J Porreca, Nikos B Reppas, Xiaoxia Lin, John P Mc-
Cutcheon, Abraham M Rosenbaum, Michael D Wang, Kun Zhang, Robi D Mitra,
and George M Church. Accurate multiplex polony sequencing of an evolved bacterial
genome. Science, 309(5741):1728–1732, 2005.

[239] Stephen T Sherry, M-H Ward, M Kholodov, J Baker, Lon Phan, Elizabeth M
Smigielski, and Karl Sirotkin. dbSNP: the NCBI database of genetic variation.
Nucleic Acids Research, 29(1):308–311, 2001.

[240] Jonas Andreas Sibbesen, Lasse Maretty, The Danish Pan-Genome Consortium,
and Anders Krogh. Accurate genotyping across variant classes and lengths using
variant graphs. Nature Genetics, 50:1054–1059, 2018.

[241] F Sigaux. Cancer genome or the development of molecular portraits of tumors.
Bulletin de L’Academie Nationale de Medecine, 184(7):1441–7, 2000.

[242] Birgit Sikkema-Raddatz, Lennart F Johansson, Eddy N de Boer, Rowida Almomani,
Ludolf G Boven, Maarten P van den Berg, Karin Y van Spaendonck-Zwarts, J Peter
van Tintelen, Rolf H Sijmons, Jan DH Jongbloed, et al. Targeted next-generation
sequencing can replace Sanger sequencing in clinical diagnostics. Human Mutation,
34(7):1035–1042, 2013.

[243] Jared T Simpson. Exploring genome characteristics and sequence quality without
a reference. Bioinformatics, 30(9):1228–1235, 2014.

[244] Jared T Simpson and Richard Durbin. Efficient construction of an assembly string
graph using the FM-index. Bioinformatics, 26(12):i367–373, 2010.

[245] Jared T Simpson and Richard Durbin. Efficient de novo assembly of large genomes
using compressed data structures. Genome Research, 22(3):549–556, 2012.

[246] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inanç Birol. ABySS: a parallel assembler for short read sequence data.
Genome Research, 19(6):1117–1123, 2009.

158 References

[247] Jouni Sirén. Indexing variation graphs. In 2017 Proceedings of the ninteenth
workshop on algorithm engineering and experiments (ALENEX), pages 13–27.
SIAM, 2017.

[248] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing finite language repre-
sentation of population genotypes. In International Workshop on Algorithms in
Bioinformatics, pages 270–281. Springer, 2011.

[249] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries
with applications in genome research. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 11(2):375–388, 2014.

[250] Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard Durbin.
Haplotype-aware graph indexes. arXiv:1805.03834, 2018.

[251] Temple F Smith. Functional genomics—bioinformatics is ready for the challenge.
Trends in Genetics, 14(7):291–293, 1998.

[252] Temple F Smith and Michael S Waterman. Comparison of biosequences. Advances
in Applied Mathematics, 2(4):482–489, 1981.

[253] Rodger Staden. A strategy of DNA sequencing employing computer programs.
Nucleic Acids Research, 6(7):2601–2610, 1979.

[254] Kraig R Stevenson, Joseph D Coolon, and Patricia J Wittkopp. Sources of bias
in measures of allele-specific expression derived from RNA-seq data aligned to a
single reference genome. BMC Genomics, 14(1):536, 2013.

[255] Erich C Strauss, Joan A Kobori, Gerald Siu, and Leroy E Hood. Specific-primer-
directed DNA sequencing. Analytical Biochemistry, 154(1):353–360, 1986.

[256] P. H. Sudmant, J. O. Kitzman, F. Antonacci, C. Alkan, M. Malig, A. Tsalenko,
N. Sampas, L. Bruhn, J. Shendure, 1000 Genomes Project, and E. E. Eichler.
Diversity of human copy number variation and multicopy genes. Science, 330(6004):
641–646, 2010.

[257] Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker, Alexej
Abyzov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz,
et al. An integrated map of structural variation in 2,504 human genomes. Nature,
526(7571):75–81, 2015.

[258] Granger G Sutton, Owen White, Mark D Adams, and Anthony R Kerlavage. TIGR
Assembler: A new tool for assembling large shotgun sequencing projects. Genome
Science and Technology, 1(1):9–19, 1995.

[259] Hajime Suzuki and Masahiro Kasahara. Acceleration of nucleotide semi-global
alignment with adaptive banded dynamic programming. bioRxiv:130633, 2017.

[260] Artem Tarasov, Albert J Vilella, Edwin Cuppen, Isaac J Nijman, and Pjotr Prins.
Sambamba: fast processing of NGS alignment formats. Bioinformatics, 31(12):
2032–2034, 2015.

References 159

[261] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[262] Aaron E Tenney, Jia Qian Wu, Laura Langton, Paul Klueh, Ralph Quatrano,
and Michael R Brent. A tale of two templates: Automatically resolving double
traces has many applications, including efficient pcr-based elucidation of alternative
splices. Genome Research, 17(2):212–218, 2007.

[263] Hervé Tettelin, Vega Masignani, Michael J Cieslewicz, Claudio Donati, Duccio
Medini, Naomi L Ward, Samuel V Angiuoli, Jonathan Crabtree, Amanda L Jones,
A Scott Durkin, et al. Genome analysis of multiple pathogenic isolates of strepto-
coccus agalactiae: implications for the microbial “pan-genome”. Proceedings of the
National Academy of Sciences, 102(39):13950–13955, 2005.

[264] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. CLUSTAL W: im-
proving the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids
Research, 22(22):4673–4680, 1994.

[265] Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R
Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn, and Lior Pachter.
Differential gene and transcript expression analysis of RNA-seq experiments with
tophat and cufflinks. Nature Protocols, 7(3):562–578, 2012.

[266] Susannah Green Tringe, Christian Von Mering, Arthur Kobayashi, Asaf A Salamov,
Kevin Chen, Hwai W Chang, Mircea Podar, Jay M Short, Eric J Mathur, John C
Detter, et al. Comparative metagenomics of microbial communities. Science, 308
(5721):554–557, 2005.

[267] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob
Knight, and Jeffrey I Gordon. The human microbiome project. Nature, 449(7164):
804–810, 2007.

[268] Isaac Turner, Kiran V Garimella, Zamin Iqbal, and Gil McVean. Integrating
long-range connectivity information into de Bruijn graphs. Bioinformatics, 34(15):
2556–2565, 2018.

[269] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

[270] Daniel Valenzuela and Veli Mäkinen. CHIC: a short read aligner for pan-genomic
references. bioRxiv:178129, 2017.

[271] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate
de novo genome assembly from long uncorrected reads. Genome Research, 27(5):
737–746, 2017.

[272] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. Science, 291(5507):1304–1351,
2001.

160 References

[273] George Vernikos, Duccio Medini, David R Riley, and Herve Tettelin. Ten years of
pan-genome analyses. Current Opinion in Microbiology, 23:148–154, 2015.

[274] Y. Wang, J. Lu, J. Yu, R. A. Gibbs, and F. Yu. An integrative variant analy-
sis pipeline for accurate genotype/haplotype inference in population NGS data.
Genome Research, 23(5):833–842, 2013.

[275] Robert H Waterston, Eric S Lander, and John E Sulston. On the sequencing of the
human genome. Proceedings of the National Academy of Sciences, 99(6):3712–3716,
2002.

[276] James D Watson, Francis HC Crick, et al. Molecular structure of nucleic acids.
Nature, 171(4356):737–738, 1953.

[277] Detlef Weigel and Richard Mott. The 1001 genomes project for Arabidopsis thaliana.
Genome Biology, 10(5):107, 2009.

[278] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on,
pages 1–11. IEEE, 1973.

[279] David A Wheeler, Maithreyan Srinivasan, Michael Egholm, Yufeng Shen, Lei Chen,
Amy McGuire, Wen He, Yi-Ju Chen, Vinod Makhijani, G Thomas Roth, et al. The
complete genome of an individual by massively parallel DNA sequencing. Nature,
452(7189):872–876, 2008.

[280] Ryan R Wick, Mark B Schultz, Justin Zobel, and Kathryn E Holt. Bandage:
interactive visualization of de novo genome assemblies. Bioinformatics, 31(20):
3350–3352, 2015.

[281] Ray Wu. Nucleotide sequence analysis of DNA. Nature New Biology, 236(68):
198–200, 1972.

[282] Sun Wu, Udi Manber, and Eugene Myers. A subquadratic algorithm for approximate
regular expression matching. Journal of Algorithms, 19(3):346–360, 1995.

[283] Jia-Xing Yue, Jing Li, Louise Aigrain, Johan Hallin, Karl Persson, Karen Oliver,
Anders Bergström, Paul Coupland, Jonas Warringer, Marco Cosentino Lagomarsino,
et al. Contrasting evolutionary genome dynamics between domesticated and wild
yeasts. Nature Genetics, 49(6):913–924, 2017.

[284] Georg Zeller, Richard M Clark, Korbinian Schneeberger, Anja Bohlen, Detlef
Weigel, and Gunnar Rätsch. Detecting polymorphic regions in Arabidopsis thaliana
with resequencing microarrays. Genome Research, 18(6):918–929, 2008.

[285] Daniel Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821–829, 2008.

[286] Mengyao Zhao, Wan-Ping Lee, Erik P Garrison, and Gabor T Marth. SSW library:
An SIMD Smith-Waterman C/C++ library for use in genomic applications. PLoS
ONE, 8(12):e82138, 2013.

References 161

[287] Grace XY Zheng, Billy T Lau, Michael Schnall-Levin, Mirna Jarosz, John M
Bell, Christopher M Hindson, Sofia Kyriazopoulou-Panagiotopoulou, Donald A
Masquelier, Landon Merrill, Jessica M Terry, et al. Haplotyping germline and cancer
genomes with high-throughput linked-read sequencing. Nature Biotechnology, 34
(3):303–311, 2016.

[288] Boyan Zhou, Shaoqing Wen, Lingxiang Wang, Li Jin, Hui Li, and Hong Zhang.
Antcaller: an accurate variant caller incorporating ancient DNA damage. Molecular
Genetics and Genomics, 292(6):1419–1430, 2017.

[289] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

[290] Justin M Zook, Brad Chapman, Jason Wang, David Mittelman, Oliver Hofmann,
Winston Hide, and Marc Salit. Integrating human sequence data sets provides a
resource of benchmark SNP and indel genotype calls. Nature Biotechnology, 32(3):
246–251, 2014.

[291] Justin M Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend
Sidow, Ziming Weng, Yuling Liu, Christopher E Mason, Noah Alexander, et al.
Extensive sequencing of seven human genomes to characterize benchmark reference
materials. Scientific Data, 3:160025, 2016.

Related publications

During my graduate studies I have been an author on a number of publications which
are related to this work. These include the following:

• Garrison, Erik, Jouni Sirén, Adam M. Novak, Glenn Hickey, Jordan M. Eizenga,
Eric T. Dawson, William Jones et al. “Variation graph toolkit improves read
mapping by representing genetic variation in the reference.” Nature biotechnology,
36(9):875–879, (2018).

• Paten, Benedict, Jordan M. Eizenga, Yohei M. Rosen, Adam M. Novak, Erik
Garrison, and Glenn Hickey. “Superbubbles, ultrabubbles, and cacti.” Journal of
Computational Biology, 25(7):649–663, (2018).

• Garg, Shilpa, Mikko Rautiainen, Adam M. Novak, Erik Garrison, Richard Durbin,
and Tobias Marschall. “A graph-based approach to diploid genome assembly.”
Bioinformatics, 34(13):i105–i114, (2018).

• Sirén, Jouni, Erik Garrison, Adam M. Novak, Benedict Paten, and Richard Durbin.
“Haplotype-aware graph indexes.” arXiv:1805.03834 (2018).

• Paten, Benedict, Adam M. Novak, Jordan M. Eizenga, and Erik Garrison. “Genome
graphs and the evolution of genome inference.” Genome Research, 27(5):665–676,
(2017).

• Novak, Adam M., Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly,
Alexander Dilthey, Jordan Eizenga et al. “Genome graphs.” bioRxiv:101378 (2017).

• Computational pan-genomics consortium. “Computational pan-genomics: status,
promises and challenges.” Briefings in Bioinformatics, 19(1):118–135, (2016).

• Novak, Adam M., Erik Garrison, and Benedict Paten. “A graph extension of
the positional Burrows–Wheeler transform and its applications.” Algorithms for
Molecular Biology, 12:18, (2017).

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Genome inference
	1.1.1 Reading DNA
	1.1.1.1 The old school
	1.1.1.2 ``Next generation'' sequencing
	1.1.1.3 Single molecules

	1.1.2 Genome assembly

	1.2 Reference genomes
	1.2.1 Resequencing
	1.2.2 Sequence alignment
	1.2.3 Variant calling
	1.2.4 The reference bias problem

	1.3 Pangenomes
	1.3.1 On pangenomic models
	1.3.2 The variation graph

	1.4 Graphical techniques in sequence analysis
	1.4.1 (Multiple) sequence alignment
	1.4.2 Assembly graphs
	1.4.2.1 Overlap graphs
	1.4.2.2 De Bruijn graphs
	1.4.2.3 String graphs
	1.4.2.4 RNA sequencing graphs
	1.4.2.5 Genome alignment graphs

	1.4.3 Pangenomic alignment
	1.4.3.1 Alignment to unfolded pangenomic references
	1.4.3.2 Alignment to tiled pangenomic references
	1.4.3.3 Alignment to graphical assembly models
	1.4.3.4 Genotyping using a sequence DAG
	1.4.3.5 Population reference graphs
	1.4.3.6 Succinct pangenomic sequence indexes
	1.4.3.7 Mapping to k-mer based pangenome indexes

	1.5 Overview and objectives

	2 Variation graphs
	2.1 A generic graph embedding for genomics
	2.1.1 The bidirectional sequence graph
	2.1.2 Paths with edits
	2.1.3 Alignments
	2.1.4 Translations
	2.1.5 Genotypes
	2.1.6 Extending the graph

	2.2 Variation graph construction
	2.2.1 Progressive alignment
	2.2.2 Using variants in VCF format
	2.2.3 From gene models
	2.2.4 From multiple sequence alignments
	2.2.5 From overlap assembly and deBruijn graphs
	2.2.6 From pairwise alignments

	2.3 Data interchange
	2.4 Index structures
	2.4.1 Dynamic in-memory graph model
	2.4.2 Graph topology index
	2.4.3 Graph sequence indexes
	2.4.4 Haplotype indexes
	2.4.5 Generic disk backed indexes
	2.4.6 Coverage index

	2.5 Sequence alignment to the graph
	2.5.1 MEM finding
	2.5.2 Distance estimation
	2.5.3 Collinear chaining
	2.5.4 Unfolding
	2.5.5 DAGification
	2.5.6 POA and GSSW
	2.5.7 Banded global alignment and multipath mapping
	2.5.8 X-drop DP
	2.5.9 Chunked alignment
	2.5.10 Alignment surjection
	2.5.11 Base quality adjusted alignment
	2.5.12 Mapping qualities

	2.6 Visualization
	2.6.1 Hierarchical layout
	2.6.2 Force directed models
	2.6.3 Linear time visualization

	2.7 Graph mutating algorithms
	2.7.1 Edit
	2.7.2 Pruning
	2.7.2.1 k-mer m-edge crossing complexity reduction
	2.7.2.2 Filling gaps with haplotypes
	2.7.2.3 High degree filter

	2.7.3 Graph sorting
	2.7.4 Graph simplification

	2.8 Graphs as basis spaces for sequence data
	2.8.1 Coverage maps
	2.8.2 Bubbles
	2.8.3 Variant calling and genotyping

	3 Applications
	3.1 Yeast
	3.1.1 A SNP-based SGRP2 graph
	3.1.2 Cactus progressive assembly
	3.1.3 Constructing diverse cerevisiae variation graphs
	3.1.4 Using long read mapping to evaluate cerevisiae graphs

	3.2 Human
	3.2.1 1000GP graph construction and indexing
	3.2.2 Simulations based on phased HG002
	3.2.3 Aligning and analyzing a real genome
	3.2.4 Whole genome variant calling experiments
	3.2.5 A graph of structural variation in humans
	3.2.6 Progressive alignment of human chromosomes
	3.2.7 Building graphs from the MHC
	3.2.8 CHiP-Seq

	3.3 Ancient DNA
	3.3.1 Evaluating reference bias in aDNA using simulation
	3.3.2 Aligning ancient samples to the 1000GP pangenome

	3.4 Neoclassical bacterial pangenomics
	3.4.1 An E. coli pangenome assembly
	3.4.2 Evaluating the core and accessory pangenome

	3.5 Metagenomics
	3.5.1 Arctic viral metagenome
	3.5.2 Human gut microbiome

	3.6 RNA-seq
	3.6.1 Yeast transcriptome graph

	4 Conclusions
	References
	Appendix Related publications

