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Abstract

Completely sequencing genomes is expensive, and to save costs we often analyze new
genomic data in the context of a reference genome. This approach distorts our image of
the inferred genome, an effect which we describe as reference bias. To mitigate reference
bias, I repurpose graphical models previously used in genome assembly and alignment
to serve as a reference system in resequencing. To do so I formalize the concept of a
variation graph to link genomes to a graphical model of their mutual alignment that is
capable of representing any kind of genomic variation, both small and large. As this
model combines both sequence and variation information in one structure it serves
as a natural basis for resequencing. By indexing the topology, sequence space, and
haplotype space of these graphs and developing generalizations of sequence alignment
suitable to them, I am able to use them as reference systems in the analysis of a wide
array of genomic systems, from large vertebrate genomes to microbial pangenomes. To
demonstrate the utility of this approach, I use my implementation to solve resequencing
and alignment problems in the context of Homo sapiens and Saccharomyces cerevisiae.
I use graph visualization techniques to explore variation graphs built from a variety
of sources, including diverged human haplotypes, a gut microbiome, and a freshwater
viral metagenome. I find that variation aware read alignment can eliminate reference
bias at known variants, and this is of particular importance in the analysis of ancient
DNA, where existing approaches result in significant bias towards the reference genome
and concomitant distortion of population genetics results. I validate that the variation
graph model can be applied to align RNA sequencing data to a splicing graph. Finally,
I show that a classical pangenomic inference problem in microbiology can be solved
using a resequencing approach based on variation graphs.
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Chapter 1

Introduction

All life on our planet is connected through a shared history recorded in its DNA. Over
time, the genomes of organisms are copied, sometimes with error or recombination.
These mutations give rise to genetic, and ultimately phenotypic diversity. Through
isolation and drift, genetic diversity enables and defines the generation of new species.

Although easily surmised, this basic process is often forgotten at the level of the most
common analyses in genomics. When considering the genomes of many individuals,
we frequently pluck a single related genome from the tree of life to use as a reference.
Using alignment, we express our sequencing data from the collection of samples in
terms of positions and edits to the reference sequence. We then use variant calling
and phasing algorithms to filter and structure these edits into a reconstruction of
the underlying haplotypes. We can then proceed to use the inferred genotypes and
haplotypes to answer biological questions of interest.

In this way, we have not fully sequenced the new genomes, but resequenced them
against the reference genome. Pieces of the new genomes which could not be mapped
to the reference will be left out of our analysis, which can distort our results.

Resequencing has arisen in response to the technical properties of the most
commonly-used DNA sequencing technologies. These “second generation” sequencing-
by-synthesis technologies produce abundant and inexpensive short reads of up to 250
base pairs, and in the past decade have become the largest source of data in the DNA
sequencing market.

Higher sequencing costs previously motivated the application of expensive com-
putational approaches to analyze all the sequences of interest simultaneously. The
decades prior to the development of cheap sequencing saw the use of multiple sequence
alignment algorithms with high computational complexity. Analyzing hundreds or
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Fig. 1.1 The tree of life, reference genomes, and variation graphs.
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thousands of sequences with such techniques is expensive but justifiable given the costs
of acquiring them.

However, such approaches became completely inconceivable as new sequencing
technologies allowed the generation of tens and then hundreds of gigabytes of data
in a single run. The new, low-cost techniques allowed joint analyses of thousands of
genomes from a single species. Resequencing provided a practical means to complete
these analyses. The alignment phase could be completed independently and in parallel,
with each sample compared to the common reference genome, and only in a final
phase of analysis might all the genome data be collected together for the inference of
alleles at a given genetic locus. By enabling the analysis of genomes at a previously
unthinkable scale, resequencing became the core genome inference pattern in genomics.
The standardization of data formats promulgated in large genome sequencing projects
supported the separation of different phases of analysis, yielding a rich ecosystem of
interacting tools.

In resequencing, the reference sequence shapes the observable space in a process
that is often called reference bias. DNA sequencing reads that contain sequence which
is divergent from or not present in the reference sequence are likely to be unmapped or
mismapped. This results in lower coverage for non-reference alleles, in effect forcing
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new samples to appear more similar to the reference than they actually are. Divergence
itself frustrates the genome inference process, as alignment may produce different
descriptions of diverged sequences depending on the relative position of the read.
Alignment works best when the sequences we are aligning are similar to the reference.
Increasing divergence requires greater computational expenditure to overcome reference
bias.

We can avoid reference bias by working on pure assemblies generated only from the
sequencing data in our experiment and unguided by any prior information. Doing so
can be rigorous, but comes at a significant cost, especially when the assembly algorithm
requires us to load all the sequencing data into memory simultaneously. We will require
much higher coverage to obtain the same level of accuracy in our assembly as we
will have when resequencing, and our read lengths will limit the length of contiguous
sequences we can infer. Virtually all assembly algorithms lose information about their
source reads through the process of assembly, and this information must be somehow
reconstituted if we wish to apply downstream algorithms to the input data in the
context of the output of the assembler.

Genome assemblers frequently use a graphical transformation of their inputs that
supports algorithm steps used to infer contigs implied by the reads. These data
structures are typically bidirectional graphs in which nodes are labeled by sequences
and edges represent observed linkages between sequences. If constructed from a set
of reads that fully cover the genome, it can be shown that such a graph contains the
genome which has been sequenced. In effect, the assembler works to filter the edges
from the graph and un-collapse repeats in order to establish a sequence assembly.

In this work I repurpose the assembly graph data model to build a pangenomic
reference system. Assembly graphs are designed to represent the full set of genomic
information to which they are applied, so it is natural to use them to develop coherent
reference systems for unbiased sequence analysis. By building a conceptual framework
and data structures that enable resequencing against this structure, we can mirror the
patterns and workflows that have already been developed for resequencing. This allows
us to retain the benefits of parallel analysis even while we resolve the issue of reference
bias. By recording genomic sequences as paths through this graph I provide anchors
for existing annotations and positional systems within the pangenome. I call these
bidirectional sequence graphs with paths variation graphs.

In this chapter I will provide background context for my work. I will cover the
history of DNA sequencing methods, assembly algorithms, and the development of
reference genomes and their use in resequencing. Finally, I will review similar data
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models that are used in genome inference. In the remainder of the work I describe
data structures and algorithms that allow the use of variation graphs as a reference
system for unbiased genome inference, and demonstrate the benefits of this approach
with a series of experiments.

1.1 Genome inference
Not two centuries have passed since the first experiments that demonstrated the
existence of genetic material [177]. In the first part of the twentieth century, these
ideas about heredity grew into the core of a modern synthesis linking biological micro-
and macro-evolutionary theory to the quantitative basis of genetics [110]. It was
understood that DNA encoded the information that gave rise to biological structures
[11]. The discovery of the structure of DNA in the 1950s [276] made clear the nature
of that information and the mechanism for its faithful transmission from generation to
generation. This knowledge, coupled with the sequencing and synthesis of proteins,
which demonstrated that they had distinct polymeric chemical identities [228] led to
Crick’s postulation of the “central dogma” of biology [50, 51]. Simply stated, the
“dogma” argues that in living systems’ information is transcribed from DNA to RNA
and ultimately translated into proteins, which guide and structure the cell and thus
living organisms. The central dogma clarifies the significance of the sequence of the
genome, and over the following decades a series of projects scaled up the throughput
and fidelity of DNA sequencing until genome inference became a practical and everyday
reality in biology.

https://github.com/vgteam/sequenceTubeMap
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1.1.1 Reading DNA

The quest to sequence genomes began with arduous and sometimes dangerously
radioactive experimental techniques, in which years of researcher time could be spent
in obtaining sequences of tens of bases from partly-characterized sources. It has then
progressed through three distinct phases. In the first, these early laboratory techniques
gave way to automated sequencing using chain terminator chemistry, and related
techniques were ultimately used to generate genome sequences for human and a number
of organisms, albeit at high costs. In the second phase, multiplex sequencing reactions
were used to miniaturize the chain terminator reaction and observe its progression using
fluorescent imaging or electrical sensing, evoking a drop in cost per sequenced base
of many orders of magnitude, and simplifying library preparation steps dramatically
by sequencing clones of individual molecules. The third wave of development has
been characterized by two techniques which allow realtime observation of single DNA
molecules. These produce enormously long read lengths that are limited by the
molecular weight of input DNA, but produce readouts with high per-base error rates.
Supporting the second and third wave are methods that allow for haplotype-specific
sequencing and the observation of long range structures in the genome.

1.1.1.1 The old school

In the 1970s a group led by Walter Fiers published the first complete gene [118], and
then genome sequence [81] from the MS2 bacteriophage using laborious digestion and 2-
dimensional gel electrophoresis techniques to sequence RNA based on work by Fredrick
Sanger and colleagues [226, 3]. To avoid the limitations of digestion based assays, Ray
Wu and colleagues developed a sequencing technique based on the partial blockage of
DNA polymerization with radiolabeled nucleotides [281, 201]. Subsequently, Sanger
developed a reliable DNA sequencing method based on the same DNA polymerization
chain-termination concept by dividing the sequencing reaction into four, one for each
base, and sorting the resulting DNA fragments in parallel on an acrylamide gel [230].
Optimized and implemented using fluorescent chemistry [255], this approach, now
known as Sanger sequencing, became the foundation of the first commercial sequencing
machines in the late 1980s.

Sanger sequencing was the workhorse standard of biology for nearly 30 years, from
the late 1970s until the mid 2000s. Its read length is limited by the reaction efficiency
required to obtain a fraction of terminations at every base in the sequence. In practice,
reads of 500 to 1000 base pairs can be obtained. With clonal DNA as input the per base
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accuracy of the method is extremely high, as each base readout reflects the termination
of large numbers of molecules [33], a feature which has ensured it remains important
for validation of sequencing results [242]. However, heterogeneity in the input DNA
library can produce muddled signals that rapidly become uninterpretable. Insertions
and deletions (indels) will cause a loss of phase in the sequencing trace [262], a problem
which is still encouraging algorithm development [105]. In order to sequence whole
genomes, which are often heterozygous, laboratory techniques were developed to allow
the segregation of clonal DNA as a substrate for sequencing. These include bacterial
artificial chromosomes (BACs) and their equivalent in yeast (YACs) [183]. The effective
read length could be increased by using “mate pair” techniques, in which the ends of a
longer molecule would be sequenced [233]. To yield fully assembled genomes, these
data required the development of suitable computational techniques [191].

1.1.1.2 “Next generation” sequencing

In the late 1990s and early 2000s, several groups began exploring alternative sequencing
strategies. In the ultimately dominant one, DNA that has been clonally arrayed on a
surface is directly sequenced using fluorescent imaging. Sequencing progresses through
the synthesis of the second strand of each of the molecules, and so these techniques
are typically called “sequencing-by-synthesis.” This modality allowed for a massive
parallelization of the sequencing reaction, and has resulted in a dramatic reduction of
cost.

In 2003 George Church and colleagues demonstrated that individual sequences
could be read from polymerase colonies or “polonies” suspended in an acrylamide gel
using fluorescence microscopy [182]. This fluorescent imaging model became the basis
for “next generation” sequencing [237]. Contemporaneously, a sequencing-by-synthesis
method which is now known as Illumina dye sequencing, was implemented using
laser fluorescent imaging and reversible terminator technology developed by Shankar
Balasubramanian and David Klenerman at Solexa (later acquired by Illumina) [12, 16].
Rather than polymerase colonies embedded in an emulsion or gel, Solexa’s technology
relied on “bridging PCR”, in which the polymerized clones of a particular fragment
were locally hybridized to an adapter-bearing surface of a flowcell. Controlled synthesis
of the second strand, based on reversible terminator chemistry [30] and fluorescently
labeled dNTPs, is then used to observe the sequence of the DNA molecule in each
colony.

A diverse set of similar approaches were explored during this period, although few
saw more than limited success in the sequencing market. Church’s group focused on a
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hybridization based sequencing protocol proceeded by an emulsion based polony PCR
step [238], and later attempted to commercialize an open source sequencing device
(the Polonator)1. In ion semiconductor sequencing direct observation of pH changes
were used to determine DNA sequences [225]. 454 Life Sciences’ “pyrosequencing”
implementation used a luciferase reporter assay to track the progression of DNA
synthesis [171], and it was used to generate the first whole genome human sequence
using “next generation” techniques [279]. Helicos commercialized the first single-
molecule sequencing system, using a similar chemistry to Illumina’s but observing
single molecules rather than pools, which proved technically challenging and only saw
use in its own development [102].

Illumina’s sequencing protocol provides greater throughput and a superior error
profile relative to these methods. Its low per base error rates and handful of context
specific error types simplify analysis [6]. It is unsurprising that the vast majority of
sequencing data produced in the 2010s comes from Illumina sequencers. Illumina’s
sequencing technology is characterized by short reads (<250bp) with per-base accuracy
(≈ 99.5%) comparable to that of Sanger sequencing. Although the read length has
been increased by optimization of the technology, the difficulty of achieving perfect
per-base reaction efficiency apparently prevents greater extension of the read length.

A number of methods extend the genome inference capacity of Illumina sequencing,
allowing it to be used to infer long haplotypes and genome organization. Moleculo,
and later 10X Genomics commercialized barcode-guided haplotype sequencing and
assembly [287]. The later has focused on providing raw tag information that could be
used downstream by an array of haplotype-resolution and assembly tools [185]. The
single template aspect of Illumina paired end sequencing allows longer contiguous DNA
reads to be obtained by merging partly-overlapping read pairs computationally [166].
Single-cell DNA template strand sequencing (strand-seq) can be used to obtain reads
from only one half of the chromatids in a single cell [74] via bromodeoxyuridine (BrdU)
treatment and cleavage of the nascent strand, which can aid in haplotype reconstruction
[212]. The Hi-C method [157] uses bisulfite treatment to generate read pairs that are
likely to physically co-locate in vivo, thus enabling the mapping of long range DNA
and chromatin interactions. It may be combined with other sequencing information to
obtain estimates of the syntenic ordering of contigs produced by assembly [90], which
has already been used to obtain de novo reference quality genomes in several difficult

1My interest in open source projects, developed while an undergraduate studying the social sciences,
led me to work on this device. The project introduced me to biology, bioinformatics, and DNA
sequencing, which have attracted my interest and effort ever since.
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sequencing projects including amaranth [158], Aedes aegypti [64], and the domestic
goat [18].

1.1.1.3 Single molecules

All previously described sequencing techniques are dependent on the observation of
pools of molecules. These methods benefit from amplification of DNA, which increases
signal, but also adds and a potential source of error to DNA sequencing. They also
suffer from de-phasing resulting from imperfect stepwise reaction efficiency, which
fundamentally limit the maximum length of an accurate read. A method to sequence
single molecules accurately would theoretically allow longer read lengths, but this
requires the difficult, direct observation of DNA. Efforts to develop such a method have
been continuously underway throughout 2000s and 2010s. Two successful commercial
sequencing platforms based on this principle are rapidly defining a new technical phase
of genome inference.

By utilizing zero-mode waveguides (ZMWs) to observe DNA polymerase in real time,
Pacific Biosciences (PacBio) generated the first successful commercial single-molecule
sequencing system [72]. In this platform, DNA polymerase is immobilized in sub-
diffraction size, picoliter detection volumes at the bottom of wells formed in aluminum
on a glass slide [135]. Single stranded DNA and fluorescently-labeled dNTPs are added
to the buffer above the ZMWs. As synthesis progresses, the fluorophore attached to
the DNA base that is being incorporated will tend to remain inside the ZMW longer
than would be expected due to random diffusion of the dNTPs, allowing a readout of
the sequence of incorporated bases as a series of fluorescent pulses. The base-level error
rate of sequencing is high, up to 15%. It is difficult to perfectly observe the series of
fluorophores pulled into the well, and random occupancy is often indistinguishable from
polymerization-mediated occupancy, which results in insertion errors. Although subtle
context dependent biases do exist [199], due to their genesis in Brownian motion, the
errors themselves may be considered as almost perfectly random in analysis [224, 188].
In recent years PacBio’s system has become a foundational technology in genome
sequencing, with many recent genome assemblies completed using it [221].

The idea that electrophoresis of DNA through nanometer scale pores might allow
the direct sequencing of DNA was first postulated in the late 1980s by David Deamer
and others [58]. While the sequencing model itself is among the simplest ever proposed,
it would take twenty-five years of work [121, 214] before the technique was brought to
market by Oxford Nanopore (ONT) [179] and used to fully sequence genomes [164, 116].
In this approach, a DNA strand is pulled through a nanometer pore by electrophoresis.
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The specific DNA bases in the pore effect characteristic changes in the electric current
density, and the DNA molecule can be read by measuring the changes in current
over time. Due to context and history-dependent effects that distort the signal, the
measured patterns in the current flux must be interpreted by sophisticated models that
have been trained to convert the traces to DNA sequences [54]. As with PacBio, its
per-base error rate approaches 15%. In practice nanopore sequencing has the highest
error rate of any commercially available method, which reflects the difficulty of mapping
between the observed signal and the underlying DNA sequence. Nanopore sequencing
can also obtain the longest reads of any sequencing technology, with megabase-scale
reads reported by some users.

1.1.2 Genome assembly

Due to technical limits that are unlikely to ever be fully eliminated, individual DNA
sequence reads are rarely able to cover the entire genome of an organism. This means
that in many cases, the best sequencing data possible is a set of random reads sampled
from fragments of the genome. In whole genome “shotgun” sequencing the genome is
fragmented, perhaps by sonication or enzymatic digestion, and the resulting fragments
are sequenced and then reassembled using computer programs [87, 227]. This process
necessitates a reconstructive step in which the information obtained from the sequenced
fragments is reassembled into the whole genome from which they arose. This process
is known as assembly, and computer algorithms implementing it have been used when
inferring genome sequences since the generation of the first whole genome sequence for
bacteriophage φX174 in 1977 [229, 253].

The earliest assembly algorithms have come to be known as “overlap-layout-
consensus” (OLC) algorithms, due to their three-phase strategy. They first establish a
set of head to tail overlaps between reads (overlap), an ≈ O(N2) order problem when
all pairwise relationships are considered between N sequence reads. However, given an
efficient method to find read pairs that are very likely to match together, the overlap
step remains tractable as the overall complexity of matching can be reduced to be
approximately quadratic in read depth and linear in genome size [108]. These overlaps
are then used to establish an estimate of the ordering of the reads (layout). The layout
is then used to generate a consensus sequence through heuristics or dynamic program-
ming over the layout [123]. This final phase is equivalent to the multiple sequence
alignment (MSA) problem, although instead of generating an MSA as output methods
would typically take the consensus sequence, as the objective is often to reconstruct
a linear representation of the input genome. Early assemblers committed frequent
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assembly errors, which necessitated time-consuming manual “finishing” [93]. The OLC
assembly approach was utilized by genome projects for the following twenty-five years,
including in the public Human Genome Project (HGP), where BAC clones of 150kb
fragments of the genome were sequenced, initially assembled by algorithm and finally
manually finished into the “golden path” that would become the reference genome [48].

In principle, the assembly process could be fully automated, but as late as the early
1990s this frequently was not seen as feasible due to the lack of reliable algorithms [168].
The improvement of OLC algorithms eventually met the challenge, yielding methods
such as PHRAP [99] (a quality aware assembler that saw extensive use downstream
of Sanger sequencers), TIGR [258] (which was used in the generation of the first
assembly of a free living organism, the 1.8Mbp genome of Haemophilus influenzae
[83]), GigAssembler [126] (which was used by the HGP), and the Celera assembler
[191, 180] (which saw extensive use in the generation of early large whole genome
assemblies in the late 1990s and early 2000s, including the privately funded genome
project [272]2.) The process implemented in the Celera assembler (including repeat
masking) has remained essential to the genome assembly problem until the present.

In 2005, Myers formalized an idealized version of the assembly problem in the
string graph data structure [187], which is a sequence graph induced from the overlaps
in a set of shotgun sequencing reads. This model demonstrates that repeats greater
than the length of a sequence read will collapse into single copies in the graph, while
unique sequences will form loops between different repeat classes that flank them. The
string graph can be shown to represent the full information available in the input
sequence data, and successful assembly algorithms are built around an induction of
the string graph via the construction of the FM-index [78] from Illumina read sets
[244, 245, 148]. If not using compressed data structures and low-error reads, the
repeats are often irresolvable and may be masked from the assembly process to improve
performance on the tractable non-repetitive regions of the genome, which is a strategy
still promoted and employed by Myers [188]. Canu and FALCON, which to some extent
stand as contemporary implementations of the Celera assembly process, are among
the best-performing assemblers for noisy single-molecule sequencing data that is the
mainstay of current genome assembly projects [41, 134]. These and similar methods
have shown that long reads can be used to fully assemble genomes without human
finishing [164, 116].

2This project apparently still relied on data produced by the HGP [275], but the significance of
this reliance was disputed by researchers involved in the private project [192], who argued that the
manner in which they used the public sequences avoided contamination by manual finishing done by
the HGP.
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The repeat problem has been tackled in various ways, but one of the most enduring
solutions resolves the issue through the reduction of the assembly overlap graph to
a de Bruijn graph (DBG) [210]. In this approach, the read set is fragmented into
all subsequences of reads of a given length k, and a graph is constructed where
k-mers label nodes and overlaps of k − 1 between successive k-mers induce edges
representing linkages between them. The de Bruijn graph simplifies the representation
of the read set, providing a clean basis for assembly algorithms. It enabled the first
[285, 246, 114], and most memory-efficient assembly methods for short read sequencing
data, with techniques like bloom filters [39], succinct DBGs [23, 143], and minimizer
partitioning [40] applied to generate a compressed representation of the graph. DBG
based assemblies suffer from the loss of information induced through the k-merization
of their input, causing a reduction in assembly contiguity [67], although in practice
this can be mitigated by reconsideration of the input reads and read pairs [29]. They
also are applicable only where the sequence error rate is low enough for overlapping
reads to be expected to have exact matching k-mers of the appropriate size (typically,
k ∈ [20 . . . 50] base pairs), and as such cannot be applied to third generation single
molecule sequencing due to its inherently high error rate.

Many of the sequencing methods I have described above are still in use today.
Each popular method, as it fades from use, remains relevant in a niche area where
its particular properties provide it a comparative advantage. As a result, we are not
presented today with a single ideal sequencing method, but a menagerie of approaches,
each with its own limitations and benefits, and current assembly pipelines require
thoughtful design to incorporate these myriad sources of information. It would appear
that in order to use these many technologies to generate the best-possible assemblies
we must bring them together in a single model [34]. A current development in assembly
focuses on the design of a common interchange format for which to organize such
assembly processes, which has been implemented as the GFA v1 and v2 formats.3 This
file format and the data model it implies is an essential link between the work that I
present later in this thesis and the problem of genome inference.

1.2 Reference genomes
Obtaining a single genome sequence de novo is an arduous task, and remains a complex
problem. The result is a valuable object which can be used to lower the cost of
subsequent analyses and enable direct whole genome comparisons which provide a full

3https://github.com/GFA-spec/GFA-spec

https://github.com/GFA-spec/GFA-spec
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perspective on the genetic relationship between multiple individuals or species. The
need for reference genomes is clear, and they are collected in open public databases to
allow their dissemination and use by researchers. NCBI’s RefSeq release 89 of July
13, 2018 contains some 81,345 organisms4, although it should be noted that only a
small fraction of these genomes are eukaryotic. Recent developments in long read,
single molecule sequencing have enabled great decreases in the cost and complexity
of generating high-quality genome assemblies, supporting a recent project to generate
reference quality genomes of ten thousand vertebrates [198, 133].

The reference genome serves as an anchor for annotations that describe sequences
and regions of interest within the genome, such as genes, exons, chromatin structures,
DNA interacting proteins, and genetic variation [239, 215, 47]. An established reference
genome can serve as a conceptual foundation for the communication and interpretation
of scientific results [127], and is seen as essential for collaboration and the development
of a genome research community in a particular organism [251, 38].

Reference genomes tend to represent only a single version of each genomic locus.
This conceptual simplicity is a core feature of their public use. Although the issue
of genetic diversity has always been appreciated by those who work with genomes,
expediency has encouraged the use of linear models for reference genomes. Within
the HGP, members of the consortium could observe diversity within the BAC clones
that they had sequenced from different human donors, and initiated a debate about
the inclusion of heterozygosity in the reference itself. Ultimately, a graphical model
was seen as too complicated, and practicality necessitated the publication of a linear
reference based around what came to be called the “golden path” through the assembly5.
Since early releases, the human reference genome has included alternative versions of
some regions, with current releases including alternates for around 200 loci [235, 42],
but these are represented as linear sequences without a unifying alignment between
them, which complicates their use in resequencing and annotation [115].

1.2.1 Resequencing

Due to the high cost of obtaining error-free, full length genomes, standard practice
will use the best genome assembly for a given organism as a reference genome when
analyzing the sequences of other organisms from the same species. To do so, the
genomes of the other individuals do not need to be fully assembled, and instead
shotgun sequencing libraries from these new individuals may be aligned back to the

4https://www.ncbi.nlm.nih.gov/refseq/
5Personal communication with David Haussler.

https://www.ncbi.nlm.nih.gov/refseq/
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reference to find small differences between the genomes. To distinguish it from whole
genome sequencing and assembly, this process is known as resequencing.

Resequencing has two phases. In the first phase, reads from the sample or samples
under study are aligned against an appropriate, genetically similar, reference genome.
In the second phase, the aligned reads (alignments) are processed together locus by
locus to determine allelic variation within the samples relative to the reference genome.

1.2.2 Sequence alignment

An alignment expresses one sequence in terms of a set of positions, edits, and matches
to another. Algorithms to determine the most plausible alignment between a pair of
sequences have as long a history as sequencing itself. The first significant attempts to
algorithmically assess sequence homology and divergence between protein sequences
arose in the 1960s with Fitch’s method for homology detection [82]. To account for
insertions and deletions, this method required the comparison of many subsequences
of two sequences to be compared, resulting in poor computational bounds. In 1970,
Needleman and Wunsch responded with an O(NM) time algorithm for the global
alignment of sequences [193]. Given strings to compare of length N and M , the
algorithm builds an M ×N matrix in which any possible full length alignment between
both sequences can be expressed as a path through a series of cells. The matrix is
designed such that a match corresponds to the shortest (diagonal) path through the
matrix, and insertions and deletions correspond to horizontal or vertical movements.
To determine the most-likely path, Needleman and Wunsch apply a recurrence relation
dependent on the characters at each pair of positions in the strings and the values
of the cells above and/or to the left. This implements a dynamic programming (DP)
method [15]. For each cell, the score is given as the maximum of: the score of cell to
the diagonal plus a bonus if the corresponding sequence characters are the same and
minus a penalty if they are different; and the scores of the cells above and below minus
a penalty corresponding to the weight given to an insertion or deletion. Finally, we
determine the optimal path beginning from the opposite extreme cell of the matrix from
where the scoring began, in which we walk back through the successive maximum scores
until reaching the opposite extreme corner of the matrix. This “traceback” encodes the
alignment, which is most-simply represented as a vector of pairs of matched bases in each
sequence. It can be shown that provided full evaluation of the dynamic programming
problem, the optimal alignment is obtained given a set of scores parameterizing the
recurrence relation.
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This alignment algorithm is known as a “global” alignment algorithm, in that the
alignment covers all bases of both sequences. In practice, this type of comparison
is not always needed, and it can be advantageous to obtain only the optimal sub
alignments between sequences. Smith and Waterman provided a clean modification of
the algorithm of Needleman and Wunsch, altering it to prevent negative scores, which
allowed it to produce optimal “local” alignments [252], while ignoring regions unlikely
to contain significant homology. The algorithm, further refined by Gotoh [94] to enable
affine gaps6 and computation in O(MN) time, is today one of the most important in
genome analysis. The amount of work on this topic is considerable, and the subsequent
decade yielded numerous modifications of the basic alignment concept, for instance
reducing the memory bounds to O(N) through a divide and conquer approach [189],
and further explorations of affine gap scoring schemes [8, 95]. Subsequent works have
offered improved implementations, using vectorized instructions to improve the runtime
of the algorithm [76] and heuristics to selectively evaluate only part of the DP matrix
[259]. However, such changes were not sufficient to enable alignment against large
sequence databases.

O(MN) algorithms for sequence alignment are impractical when either M or N

becomes large. Naturally, as sequence databases grew and the size of sequenced
genomes increased, heuristic strategies to efficiently reduce the alignment problem size
were introduced. When aligning a short sequence against a large database we expect
to obtain a sensitive alignment, but provided sufficient homology between the sequence
and the database it is unlikely that we need to evaluate the full problem using an
algorithm like Smith-Waterman-Gotoh (SWG). By indexing either the query or target
set of sequences to efficiently obtain patterns of exact matches, candidate sub-regions
of both can be isolated and submitted for more sensitive alignment.

This strategy was implemented in the mid- to late-1980s in the FASTA [208] and
BLAST [9] alignment algorithms. FASTA first uses a seeding step that finds exact
matches between the query and target, using chains of short k-mer seeds to establish the
longest matching subsequences. A few of the best scoring candidates are enumerated
and evaluated using a banded SWG algorithm. In contrast, BLAST implements a fully
heuristic alignment process based solely on the k-mer seeds and ungapped alignment.
This is much faster than FASTA but can perform slightly worse with highly divergent
sequences. BLAST’s heuristic alignment is many orders of magnitude faster than full

6In affine gap schemes the cost of a gap per base decreases as its length increases. Such a scheme
approximates the ζ-distributed excursions of a particle under Brownian motion, which structure the
length of insertions and deletion mutations observed in nature.
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DP based algorithms at a minor cost to accuracy. The popularity of BLAST in biology7

is clear evidence of the importance of the alignment problem to all kinds of genomic
analysis. It is also evidence that minor losses in accuracy are acceptable given the cost
of sequence analysis in large data sets. Jim Kent’s Blast-like alignment tool (BLAT)
indexes the target set with non-overlapping k-mers and queries all k-mers in the reads,
yielding a method that is less sensitive but several orders of magnitude faster again
than BLAST [125].

As reliable commercial second-generation sequencing systems became available the
rate of sequence data acquisition growth rapidly outstripped the rate of improvement
in computing performance [142, 132]. This necessitated further improvements in the
computational cost of sequence alignment. The most-widely used of these methods
focused on the increasingly prevalent problem of aligning short reads to reference
genome type sequence databases. Due to the high quality of the reference sequence,
low error rate of the short (≤100bp) reads, and low nucleotide diversity of humans
(where θ ≈ 10−3), algorithms that focused on exact string matching had great success.
Much like BLAST and BLAT, the first wave of aligners capable of indexing the human
reference genome and aligning short reads to it utilized exact k-mer matching via hash
tables followed by local alignment [155, 141, 153]. Substantial improvements would
be yielded by the development of aligners based on contemporary developments in
compressed data structures.

The suffix tree [278] encodes all suffixes of a sequence S in the structure of a tree
such that the suffixes may be enumerated by a depth first search (DFS) of the tree.
This structure can be used to determine if a given sequence q = c1c2 . . . c|q| is present
in S in O(|q|) time. Search begins at the root, progressing across the topology (edge
or node) of the tree which is labeled with the next character until no further matches
may be found. By labeling the tree with the sequence positions corresponding to each
node, the search may also yield the positions of the exact matches detected within S.
Suffix trees may be built in linear time and space relative to their input [269], and
support diverse algorithms for string comparison [10], such as whole genome alignment
[61], but they require relatively large amounts of memory per input base. They were
superseded by equivalent data structures with better memory bounds such as the suffix
array (which represents the tree in a linear array of suffix sort ranks) [169], and its
compressible sibling the Burrows-Wheeler Transform (BWT) [28].

By augmenting the BWT to enable the exact matching via emulation of the suffix
tree, Paolo Ferragina and Giovanni Manzini developed the FM-index [77, 79]. Given a

7The BLAST1 paper has been cited more than 70,000 times as of August 2018.
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string S, the FM-index may be built using a series of transformations and auxiliary
data structures that induce the suffix tree by constructing the BWT. First, we add
marker characters for the start and end with lexicographic order less and greater
than the rest of the characters in the alphabet, e.g. #S$. Conceptually, we take
all rotations of the sequence and sort them, yielding matrix M , which is sometimes
called the Burrows-Wheeler Matrix (BWM), but in fact this is done in a space-efficient
manner without the enumeration of the rotations. This sort has many similarities to
the suffix tree, and for instance it can be seen that a lexicographically-ordered DFS
through the suffix tree would enumerate the prefixes of the rotations of the sequence
preceding the terminal character # in the same order as they are sorted. The suffix
array SA is given by the vector of the suffix ranks in the sorted order they occur in
M , and is related to the ordering of characters in the first column F , while the BWT
is given as the last column, L. If the input text has repetitive patterns, then these
will tend to result in runs in the BWT that may be compressed using various schemes.
To emulate traversal of the suffix tree, it is sufficient to construct a function LF (i)
which maps between indexes L[i] = F [j] which represent the same character. This is
done by the augmentation of the data structure with array C such that C[c] returns
the number of characters in the text that are lexicographically smaller than c, and
a function rank(c, k) that yields the number of instances of c in the prefix L[1 . . . k].
Now, LF (i) may be defined as C[L[i]] + rank(L[i], i). By allowing the traversal of
equivalencies between the suffix array and the BWT, LF mapping enables “backward
search”. Because rotations of S have been ordered in M , a given pattern will occur
as the prefix of a particular contiguous range of M . We can find all occurrences of a
given pattern by maintaining a range in the suffix array within which a given pattern
occurs, beginning at s and ending at e, which we initially set as s = 0 and e = |L| − 1.
To search for a pattern, we obtain s′ = C[c] + rank(s, c) + 1 and e′ = C[c] + rank(e, c),
walking backwards through the characters c in our query q. Our search terminates
when we complete our query or e′ − s′ ≤ 0, which indicates that the previous step in
the search did not match our target S. The various matches of q in S may now be
obtained by the positions in SA[s . . . e]. The addition of the longest common prefix
(LCP) array on the sorted suffixes can be used to emulate all algorithms on suffix
trees in this context [2], and in turn this enables O(|q|) search of queries against S.
Of particular relevance to this work, when completing a phase of backward search we
could use the LCP to traverse the suffix links in the suffix tree and continue with the
next (partially overlapping) maximal exact match.
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The FM-index is used in modern short-read aligners such as BWA [151] and
BOWTIE [138], which used backtracking LF alignment to directly align sequences to
the suffix array encoded in the FM-index. This backtracking search is fast, but has
problems detecting indels (as these require exponentially more backtracks to infer) and
performs less well with increasing read length. In response, the authors merged initial
exact matching with a final DP step to yield “long read” capable aligners like BWA-SW
[152] and BOWTIE2 [137]. Further refinements of this concept yielded BWA MEM
[146], which uses a heuristic algorithm to determine “supermaximal exact matches”
(SMEMs) and reseed “sub matches” within them using a bidirectional FM-index (the
FMD index). Due to its relative robustness to error and variation, the MEM concept
has ultimately prevailed and as of the time of this writing BWA MEM can be seen as
the industry standard method for aligning short reads to the genome.

Much of the second generation sequencing data has been generated for humans in
medically-motivated genome wide association studies [49] or population survey projects
like the 1000 Genomes Project (1000GP) [1, 45]. The development of these methods
was accelerated by an open, competitive spirit fostered during the 1000GP, whose
primary sequencing data remains the largest completely publicly available data set,
with more than 100TB of sequence data available for download from public URLs
without any authentication. There, project participants formalized the resequencing
process by generating a series of data formats linking the various stages of analysis,
including the sequence alignment/map format (SAM) and its binary equivalent (BAM)
[154] that is the standard output format for contemporary aligners.

1.2.3 Variant calling

DNA sequencing reads of all types contain errors, and genomes contain diversity.
To resolve these errors and infer the genome’s state, we aggregate information from
many reads mapping to each locus. In the context of resequencing, this process is
known as variant calling. The simplest methods resemble the consensus step in OLC
assembly, and are implemented as heuristic filters on the mutually gapped alignment
matrix of a set of homologous sequence reads [131]. A Bayesian model can incorporate
prior expectations about the genomic state with the available data to generate a
posterior estimate of the probability of polymorphism that can propagate uncertainty
to downstream analyses. It can use first principles to integrate various sources of
information in addition to the sequence of the reads themselves, including the base
quality (BQ), or machine-estimated probability of an erroneous base call, and mapping
quality (MQ), which represents the aligner’s estimate that the given alignment is a
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mismapping or ambiguous [144]. A Bayesian approach also supports the joint analysis
of many individuals from the same population. For instance, in a panmictic population
under neutral selection the pattern of observed genotypes should be consistent with
Hardy-Weinberg Equilibrium (HWE), and to have confidence in a given genotyping
call, the evidence for variation should be stronger than the prior odds of there being
no genetic variation at the site.

The earliest implementations of Bayesian variant calling and genotyping were
applied to expressed sequence transcripts (ESTs) [172]. Competition fostered by
the 1000GP encouraged the development of variant calling algorithms based on a
variety of principles. The simplest methods would detect variation given pointwise
SNP and indel descriptions directly from the alignments [154, 62]. However, this
technique was shown to be susceptible to inconsistencies in the alignment process,
and several groups developed methods that would reevaluate the alignments in a
reference-independent manner in order to homogenize the representation of small
variation. These techniques became known as “local assembly” variant detection
algorithms, and include the windowed haplotype detection implemented in freebayes
[88] as well as full local de novo assembly based on de Bruijn graphs as implemented
in Dindel [4], Platypus [222] and the GATK’s HaplotypeCaller. In parallel, several
whole genome de novo assembly methods, including SGA and Cortex, were applied
to the full data set, yielding variant calls that minimized bias towards the reference
genome. The final project results were merged into a population genome assembly
using statistical phasing algorithms [27, 106, 60] guided by genotyping results from
sequencing and genotyping arrays [45]. Members of the 1000GP also developed a file
format for describing collections of resequenced genomes, including their genotypes
and inferred haplotypes, the variant call format (VCF) [53], which has become the
standard interchange format for sequencing-based variant and genotyping information.

Due to the absence of a reliable truth set, early variant calling method implemented
conceptually-derived inference methods rather than machine learning techniques. Sub-
sequently, projects at Illumina (Platinum genomes) and NIST (Genome in a Bottle)
have generated “truth sets” for variant calls matched to cell lines for which large
amounts of sequencing data is publicly-available [69, 290]. These truth sets have
then enabled the development of “universal” variant callers using machine learning
techniques [211]8. It may be expected that this trend will continue as the number of
highly accurate independently sequenced genomes increases.

8Along with Nicolás Della Penna, I developed a similar but much simpler method based on a linear
learner: https://github.com/ekg/hhga

https://github.com/ekg/hhga
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1.2.4 The reference bias problem

Short reads are insufficient to generate de novo assemblies of reference quality, and
this issue is exacerbated when they are used in resequencing, as the prior information
provided by the reference is relatively strong and can distort our results [257]. Most
aligners operate on the principle of matching each sequence read to the linear reference,
and differences between the read and the reference induced by both error and variation
will tend to reduce the success of mapping. As I will demonstrate later in this work,
reference bias is most severe for larger variants. However, the bias towards the reference
is relevant even for SNPs, a fact which adds great complexity to experimental contexts
that are sensitive to slight changes in allele observation count, such as allele specific
expression (ASE) quantification from RNA sequencing [254], or in the context of short
and high error reads as are common in the sequencing of ancient DNA [288].

Advances in sequencing technology can reduce reference bias in some contexts where
long reads can be obtained. Long reads can overlap structural variants that would
contain shorter reads, allowing their direct discovery by alignment. However, costs
of second generation sequencing continue to drop, so it seems likely that there will
continue to be a cost advantage to resequencing with short reads for the near future.
Nonetheless, reference bias remains relevant even in a future in which all sequencing is
completed with long, low-error reads. As long as the reference is used as a basis space
for analysis, it will be impossible to develop unbiased representations of all sequences
in a given cohort. We cannot consistently describe variation in sequences which are not
in the reference unless we bring these sequences into communication with each other.
It is non-trivial to establish if structural variants independently described against the
reference represent the same allele [34]. We can use improvements in assembly methods,
such as the linked DBG [268], to build space-efficient joint assemblies of populations
of genomes. But these approaches are unlikely to improve in efficiency by the many
orders of magnitude required to consider applying them directly to sequencing from
hundreds of thousands or millions of genomes.

1.3 Pangenomes
Following the completion of the 1000GP, researchers have sought to use the population
reference established by that project as an input to genome inference processes. Rather
than establishing a single linear reference genome, these methods base their analysis
on a representation that contains some or all of the known variation in the species of
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interest. In these approaches, the reference system becomes a pangenome9, or data
space representing all the genomes and their interrelationships. The term was first
used to describe the sequence information obtained from DNA and RNA for a cancer
sample [241], but later became an important concept in microbiology as results from
bacterial genome sequencing indicated extensive diversity between bacterial genomes
[263, 176]. Due to horizontal gene transfer (driven in large part by the permissive
sex lives of bacteria), mobile DNA in the form of viruses and transposable elements,
and their enormous population sizes, the genome diversity of many prokaryotes is
much greater than that seen in larger, complex organisms. In microbial pangenomic
theory, the main object of interest is the open reading frame (ORF) and its distribution
across species in a clade [273], with particular interest to classification of ORFs or
genes into a gradient between those that are essential and found in every species (the
“core” pangenome) to those that are found infrequently (the “dispensable” pangenome).
The term “pangenome” is by no means microbiology-specific, and has also seen use
in species contexts where small, homozygous genomes support practical direct whole
genome comparison, such as Arabidopsis thaliana [31]. With reducing sequencing costs,
the levels of diversity in eukaryotic genomes can be more easily appreciated, and in the
2010s evidence has rapidly accumulated that significant levels of large-scale variation
occur in the genomes of many species, humans [156, 256, 257, 34], arabidopsis [7],
brewer’s yeast [283], and the fruit fly [35].

Evidence that non-reference genomic variation matters even in a human or medical
context motivated extensive discussion within a sub-project of the Global Alliance
for Genomics and Health (GA4GH)10. At the beginning of my studies I participated
in the GA4GH’s reference variation task team (RefVar), which was led by Benedict
Paten, David Haussler, and Richard Durbin. The group had regular meetings where
its members entertained proposals for new variation-aware genomic data models and
discussed results obtained with software implementations of them. By chance, a
meeting of the GA4GH in June 2015 in Leiden overlapped a conference held at the
Lorentz Centre on “Future Perspectives in Computational Pan-Genomics”11, whose
participants were discussing ways to apply the concept of pangenomics to many
problems in genomics. Can Alkan, who had been invited to both meetings, brought
members of the GA4GH’s RefVar group to the concurrent workshop, where both
groups presented on their work and ultimately joined efforts. This exchange motivated

9“pan-” from Greek παν−, meaning “all” or “every”
10The GA4GH is an international consortium of researchers and genomics professionals chartered

with the development of new genomics data formats and interchange systems https://www.ga4gh.org/.
11https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort

https://www.ga4gh.org/
https://www.lorentzcenter.nl/lc/web/2015/698/info.php3?wsid=698&venue=Oort
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members of the RefVar group to consider many alternative resequencing and genome
modeling problems. For the consortium, our software vg became a template for the
pangenomic resequencing concept that it would present in the paper resulting from the
meeting [46] (figure 1.3). And in turn, the consortium imagined the missing pieces that
would be required to fully enable a pangenomic reference system and support common
genome inference patterns using it. Much of the work I will present in chapters 2 and
3 of this thesis follows the design presented by this group.

1.3.1 On pangenomic models

My own work builds on a particular model for encoding a pangenome. Here, I will
briefly describe alternative models and justify the use of the graphical one that I
present, while the remainder of the chapter will provide background on more-closely
related graphical approaches more closely related to my work.

Traditional techniques from microbial pangenomics have focused on cataloging the
distribution of ORFs across bacterial species [202]. In this sense the pangenome is not
so much a sequence-based object, but a matrix encoding the presence or absence of
genes across the species of a given clade.

If we want to use pangenomic principles to resolve issues with resequencing, then
we must take the concept of pangenome more literally, and build a representation that
losslessly encodes genomes together with a focus on their sequence content. In this
perspective, the classical bacterial pangenome becomes a derivative product that we
can produce using analyses based on a sequence-oriented pangenomic reference. I will
mostly focus on sequence-based pangenomic models. The main classes are described
visually in figure 1.4.

The simplest possible sequence-aware pangenome is just a set of whole genome
sequences of many species or individuals, in which all sequence homologies and evo-
lutionary relationships are implicit (figure 1.4A). The unfolded pangenome resolves
reference bias, and can be extended with new data by simply including new genome
sequences. This model does not benefit from compression related to shared sequences
in the pangenome, as adding a new genome always adds all the sequence in that
genome to our system. Without additional information about homologies, an unfolded
pangenome cannot represent new sequences in terms of recombinants between known
sequences.

An MSA (figure 1.4B) provides a matrix describing the relationships between the
sequences as well as the sequences themselves. We must introduce a concept of a
gap character to pad the matrix. The MSA is a linear object, and cannot represent
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monotonic sequences of coordinates where possible and coord-
inates should be concise and interpretable.

Biological features and computational layers
Annotation of biological features should be coherently provided
across all individual genomes (see Figure 2, ‘Annotate’ oper-
ation). Computationally, these features represent additional
layers on top of pan-genomes. This includes information about
(1) genes, introns, transcription factor binding sites; (2)

epigenetic properties; (3) linkages, including haplotypes; (4)
gene regulation; (5) transcriptional units; (6) genomic 3D struc-
ture; and (7) taxonomy among individuals.

Data retrieval
A pan-genome data structure should provide positional access to
individual genome sequences, access to all variants and to the
corresponding allele frequencies (see Figure 2, ‘Retrieve’

Figure 2. Illustration of operations to be supported by a pan-genome data structure.

124 | Marschall et al.

Downloaded from https://academic.oup.com/bib/article-abstract/19/1/118/2566735
by guest
on 03 August 2018

Fig. 1.3 An overview of techniques required to support pangenome-based resequencing.
In vg, we have implemented virtually all the presented components and algorithms.
Reprinted from [46].

.
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Fig. 1.4 Various pangenomic models of a small collection of sequences. (A) shows an
unfolded pangenome, (B) provides an MSA encoding the same sequences, (C) shows
the DBG with k = 3, (D) is an acyclic version of the pangenome, akin to the alignment
in (B), and (E) represents a compressed alignment graph allowing cycles to represent
copy number variants. Reprinted from [46].

.
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structural variation compactly. An MSA has an equivalent representation as a sequence
DAG, as in figure 1.4D.

Assembly graphs, in particular DBGs (figure 1.4C), provide a simple decomposition
of collections of genomes. However, a strict DBG without any labeling loses the
mapping back to the original genomes. Sequence graphs, as in figure 1.4E, when
annotated with the full set of input paths, provide a lossless representation of the input
genomes. If they are also bidirectional like DBGs (not shown in figure 1.4E) then they
can directly represent copy number variations and inversions.

1.3.2 The variation graph

In this thesis I employ a reference system that encodes genomes and the base-level
relationships between them. This model can be understood as a kind of all-versus-all
alignment between the sequences in the pangenome. If the data model is to allow
recombination between known sequences (a key contributor to genomic diversity) and
tandem repeat copy number variation (which occurs readily in genomes), then it can be
represented as a regular language encoded in a graphical model like a nondeterministic
finite automaton (NFA).

We can adjust the regular language model slightly so that it has properties similar
to those of DNA. NFAs are represented graphically with states (in our case, pangenomic
coordinates) as nodes connected by edges labeled by characters (e.g. DNA bases) in
the alphabet of strings that the language recognizes. In DNA the atomic element is the
DNA base, which is represented as a character. Graphical models with nodes (or edges)
labeled by sequences and edges (or nodes) representing allowed transitions between
them are a straightforward generalization of the linear string. Compression can be
achieved by allowing the labels on the nodes to have more than a single character
on them. Because DNA is double-stranded, any such a language implies a reverse
complement language which recognizes the reverse complement of any sequence in the
first. Formalizing this by allowing edges to transition between different strands of the
graph allows the model to directly represent sequence inversions.

If we combine these adjustments, we arrive at a kind of regular language model that
resembles DNA and allows the representation of collections of related sequences by
allowing us to represent homologous sequences and all kinds of natural polymorphism
between them. This structure is often referred to as a bidirectional DNA sequence
graph, indicating that the graph is sequence-centric, directed, stranded, and allows
transitions between strands. Sequence graph, then implies a simpler concept in which
the graph is meant to model sequences but only one strand is considered. Assembly
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and multiple sequence alignment methods have employed sequence graphs of both
types since the earliest computational analyses of biosequences, and it is sensible that
we might employ them to represent collections of genomes.

The conceptual basis of the work I present here is the extension of the bidirectional
DNA sequence graph with paths that may be used to describe sequences as walks
through the graph. In this way, the panel of reference genomes or sequences used to
construct the graph may be related to the graph itself, and the relationships between
them made evident in the structure of the graph. Existing knowledge expressed with
respect to known sequences may thus be projected into the graphical pangenome model.
Similarly, entities within the graph may be “surjected” out into the space of a given
path. These properties ensure that the pangenome fully encompasses existing reference
technologies. In addition, maintaining the sequences in the space of the graph makes
the graph lossless, in that it fully represents the input sequences without additional
information. Perhaps most importantly, this feature resolves the exponential decay
in mutual information which limits the applicability of Markovian models like the
sequence graph to modeling natural sequences [159]. I term this combination of a
bidirectional sequence graph and paths a variation graph, as it represents sequences
and the variation between them. In chapter 2 I will formalize the variation graph
model and important auxiliary data structures that enable its modification and use in
resequencing.

1.4 Graphical techniques in sequence analysis
Many genome analysis algorithms employ sequence graphs. I introduced the alignment
algorithms described in 1.2.2 in terms of a matrix, but they may also be described
as algorithms on graphs, although the nodes in these graphs correspond to matrix
cells and thus alignment states rather than characters or sequences. Similarly, hidden
Markov models (HMMs) have a long history of use in bioinformatics [66], and these
models bear similarities to the bidirectional sequence graph model. Here, I will focus
on those methods that are most closely related to variation graphs, and upon which
my work draws most heavily. These include techniques for generating and encoding
multiple sequence alignments, genome assembly graphs, RNA splicing graphs, and the
related gene model graphs used in RNA sequence analysis, and the sequence DAG
implied by the VCF format.
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1.4.1 (Multiple) sequence alignment

Optimal multiple sequence alignment generalizes the problem of pairwise sequence
alignment from a 2D matrix to an N -dimensional lattice, where the optimal mutual
alignment of N sequences of average length L can be determined in O(LN) time [32].
In the early days of sequencing, when only a handful of sequences might be considered
in one analysis, such costs were almost acceptable, even if they limited the number
of sequences in the MSA to only 3. By pruning regions of the lattice in which no
optimal alignments could occur, the authors of the tool “MSA” increased the number of
sequences which could be optimally aligned into an MSA to 6 [161]. In contrast to the
optimal alignment approach, progressive multiple sequence aligners such as CLUSTAL
build a guide tree based on alignment of all sequences to all others in O(NL2) time,
and then generate the MSA progressively using the guide tree in O(L2 log N) time,
resulting in polynomial time algorithms capable of generating MSAs for hundreds of
sequences using contemporary computers [104]. In this form of progressive alignment,
the MSA is built recursively from the leaves to the root of the guide tree, with each
step combining pair of MSAs representing different branches of the tree using the best
pairwise alignment between the sequences they contain. The progressive approach is
fundamentally greedy, and susceptible to errors that propagate along the guide tree,
although such errors can be mitigated by structuring the alignment using biological
priors [264]. Further improvements to the quality of the MSA can be gained by
guiding the progressive alignment with a limited kind of global information about the
relationships of all the sequences, as in T-COFFEE [194], but this popular method
exhibits a worst-case computational complexity of O(N3L2).

The progressive alignment in MSA algorithms like CLUSTAL may be represented
graphically. In the late 1980s Eugene Myers and Webb Miller developed algorithms
to optimally align sequences to sequence graphs, and sequence graphs (in the form
of regular expressions) to each other in O(MN) time (where M and N are the
sequence length of the graphs) [190, 282]. Unfortunately, to my knowledge were
never implemented in publicly available software for sequence analysis12. A recent
implementation of sequence to graph alignment [219] transforms a sequence graph
into an alignable graph which is acyclic and partially ordered, on which a bit-parallel
alignment algorithm is applied to achieve high performance when aligning long noisy
reads to arbitrary sequence graphs. This work is related to that of Wu, Manber and
Myers [282], wherein the authors provide an algorithm for the alignment of pairs of
regular expressions using a transformation of the regexes to NFAs and bit-parallel

12Myers was unable to provide related source code on request.
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resolution of the final alignment. Later in chapter 2 I will present and evaluate a
similar approach to align reads to arbitrary bidirectional sequence graphs through
transformation of the graph into an ordered graph against which accelerated sequence
to graph alignment may be run.

Christopher Lee later provided the first implementation of an MSA algorithm
based on sequence to graph alignment [140]. Apparently unaware of the work of
Myers and Miller, he instead built on the concept of “consistent equivalence relations”
that DIALIGN used to represent the MSA [184]. Where DIALIGN’s authors appear
to consider the MSA in the space of the N -dimensional lattice, Lee encoded the
equivalence relations in a partial order graph, which is often referred to as a directed
acyclic graph (DAG). In this DAG, characters label nodes and edges label observed
linkages between them in sequences embedded in the MSA. Lee demonstrated that
a straightforward generalization of the recurrence relations used in Smith-Waterman-
Gotoh would allow the alignment of sequences of length N to the DAG of sequence
length M in approximately O(MN) time. To determine the score at a given position,
partial order alignment (POA) considers matches and deletions relative to all the
characters that immediately preceded the current one in the partial order. Later, POA
was extended to allow the direct alignment of pairs of MSAs using partial order to
partial order alignment (PO-POA) [97]. Like CLUSTAL-W and other progressive
methods, POA would build its MSA using pairwise alignments across a guide tree.
But, rather than aligning the last pair of sequences, PO-POA alignment would be
used to align the MSAs from each branch together. This resolved problems with order
dependence, yielding MSAs with nearly the same accuracy13 as T-COFFEE across a
range of problems. As PO-POA proceeds over a neighbor joining guide tree, it requires
N log N alignment steps. Given low sequence divergence, the cost of each step will
approximate L2. The algorithm thus has a lower bound of approximately O(L2N log N),
which the authors confirmed with experiments demonstrating subquadratic scaling in
the number of input sequences.

Despite its use of an algorithm that scales cubically with the number of input
sequences, T-COFFEE’s higher accuracy has resulted in it receiving ten times the
citations of POA. The low rate of use meant that the POA concept was “rediscovered”
by participants in the 1000GP who needed a computationally inexpensive method to
align sequences to VCF-based pangenomes14.

13Here goodness is quantified using a sum of pairs score (SPS) metric representing the goodness of
the alignment.

14Sequence to graph DAG alignment was one of Deniz Kural’s main PhD projects. I worked with
him in Gabor Marth’s laboratory, and we applied his implementation of POA to generate accurate
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Lee’s POA model provides a simple pattern for thinking about pangenomes. How-
ever, POA MSAs are linear objects which cannot capture many natural kinds of genetic
variation such as repeats or rearrangements without duplication of the rearranged
sequences. Several methods have extended the MSA concept to unordered graphs,
including the Threaded Blockset Aligner (TBA) [21], which models the MSA graph
as a set of partially ordered MSAs linked by unordered larger scale connections, and
the A-Bruijn Aligner (ABA), which models the MSA using a de Bruijn graph and
represents a solution to problems in MSA using techniques that later become important
to short read assembly [217]. Variation graphs generalize these models without the
limitations of order (as in POA and TBA) or k-mer based graph structures (as in
ABA).

1.4.2 Assembly graphs

The problem of assembling large genomes is not dissimilar from that of multiple sequence
alignment. MSA algorithms tend to be applied to the alignment of a single coherent
genomic locus. Their input sequences might be expected to have approximately the
same length, and maintain synteny between them. In contrast, whole genome shotgun
assembly methods cannot rely on such assumptions, as reads of a large genome rarely
overlap, and both strands of DNA will be sampled, yielding ambiguity about relative
orientation. Thus, the graphical models used in assembly must maintain bidirectional
structure. OLC assembly methods in some sense began their evolution with the set of
compromises that MSA algorithms ended theirs, with thrifty heuristic methods being
used to establish the overlaps between all pairs of sequence reads from a given genome,
and the resulting overlap set subsequently represented graphically. Earlier in section
1.1.2 I gave a historical outline of the development of these methods in response to
changes in available sequencing technology. Here, I provide deeper technical detail to
describe these methods and illustrate their relationship to the variation graph model.

1.4.2.1 Overlap graphs

One interesting feature of overlap-based assembly graphs is that their efficient con-
struction tends to yield a representation in which sequences attached to nodes partially
overlap with the nodes in their neighborhood in the graph15. This follows from the

genotype likelihoods for indels and complex variation in the final phase of the 1000GP. We learned of
the prior work later, when a reviewer pointed out that the algorithm was roughly equivalent to POA.

15In many formulations, sequences in the overlap graph are attached to edges rather than nodes.
This model is equivalent to one in which sequences are attached to nodes, which I will use here for
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fact that the graph induction algorithms use a kind of pairwise alignment, retaining
relationships between sequences in a pairwise rather than compacted N-wise form.
In the case of DBGs and the FM-index based string graph assemblers, an iterative
overlap-wise sequence comparison where unitigs (unbranching sequences in the graph)
are inferred from the compressed sequence graph yields overlap graph. Given a node-
labeled sequence graph, it is common to think of the edges as representing the overlaps
between the nodes they connect. This represents an incomplete compression of the
relational information in the graph, but this is typically not important to the use of
these methods. They are judged by the quality of the set of contiguous sequences
(contigs) they output rather than their raw assembly graph. These methods will
traverse linear portions of the graph to generate contigs, after pruning or ignoring
edges, which the uncompressed overlap representation does not inhibit.

Due to its duplicated representation of sequences within overlaps, the overlap graph
model is more complex to use as a reference system (in which positions should be
unique) than a “bluntified” representation in which the overlaps are non-ambiguously
reduced into the nodes in the graph and its linkage topology. In their most general
form, overlaps are themselves alignments, and have a natural encoding in graph form
(section 1.4.1). However, assembly data models often encode alignments using several
dissimilar data structures, a fact which is reflected in the complexity and redundancy
of the GFA version 2 specification16. In general this overlap representation makes it
difficult to work directly with such graphs using the algorithms we will introduce, and
they must be reduced into a “blunt-ended” bidirectional graph.

It is also possible to directly induce a bidirectional string graph from a set of
pairwise alignments, sidestepping the overlap issue. In section 2.2.6 I will present my
design and implementation of an external memory algorithm that transforms sets of
pairwise alignments into a variation graph using a transitive closure of the equivalencies
implied by the alignments.

1.4.2.2 De Bruijn graphs

De Bruijn graphs [56] are graphs in which a set of k-mers are taken as the nodes of
the graph, and edges are added for each pair of k-mers k1 → k2 in which the last k − 1
bases of k1 are the same as the first k−1 bases of k2. As discussed previously in section
1.1.2, this model simplifies the overlap graph structure, allowing efficient calculation

consistency. The same convention is used in vg’s data model and in the GFA interchange format that
it reads and writes.

16https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md

https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md
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and representation of the graph. For instance, k-mer lengths may be chosen so that
they fit inside a machine word, allowing bitwise operations and integer math rather
than string comparison to be used to infer the graph structure directly implied by the
k-mers themselves.

In second generation sequencing, where per-base error rates are low and read
lengths are short, little information is lost by breaking the read set into k-mers of
1/3 or 1/5th the length of the original reads, and so the de Bruijn graph model
has been readily applied to cheap short read sequence data since its introduction to
genomics in the mid 1990s and early 2000s [111, 210]. Velvet [285], which used a
straightforward but memory-costly hash table strategy to encode the DBG. Zamin
Iqbal then extended the DBG model to support various kinds of pangenomic analysis
by labeling each k-mer with “colors” representing read counts from different samples
[114]. The colored DBG (cDBG) model has seen application in RNA-seq transcript
quantification, where the model is used as a reference basis for the relation of known
transcripts to pseudoalignments of reads to the cDBG [25]. Later versions of the Cortex
assembler have extended this to fully encode long reads or contigs relative to the DBG
[268]. Similarly, improvements in performance have been yielded by linking read pairs
in the DBG model [13].

The simplicity of the DBG has made it possible to develop very memory-efficient
data models to support its use in assembly. The DBG can be effectively encoded in the
FM-index of a read set [23], and this succinct DBG model underpins the most-scalable
assembly methods currently available [143]. Other techniques, such as bloom filter
encodings and minimizer partitioning schemes are also used to provide time and space
efficiency to DBG methods [39, 40].

In the compacted DBG generalization non-furcating regions of the graph are merged
into a single node with label length > k. The compacted DBG is now often a typical
output for DBG assemblers [40, 181]. The compressed nodes and their overlaps with
their neighbors comprise a set of unitigs that, together with their neighbor relations,
are often taken as the most-raw kind of assembly output. DBG assemblers like SPAdes
and Minia3 infer longer contigs by filtering and further contracting the unitig graph
[13].

As with any overlap graph, DBGs must be made into blunt-ended sequence graphs
before they can be utilized by variation graph based algorithms. The basic method
for doing so is simpler than for generic overlap graphs, as overlaps in DBGs are exact
string matches. In my work I have found this an important feature, as in addition to
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being generated by efficient methods, it ensures that DBGs are universally convertible
into variation graphs.

1.4.2.3 String graphs

The string graph is a formalism that describes the full information represented by
a shotgun sequencing experiment and an all-against-all alignment between its reads
[186, 187]. Myers argued that the then-current paradigm of assembly, which attempted
to generate the shortest common superstring (SCS) incorporating all the N input
sequence reads, failed to reconstruct the genome correctly in the context of repeats
in the genome that are longer than the average read length L. He then posited the
“chunk graph” (later, string graph) as a graphical model of the overlap set, showing
that the correct consensus sequence would by definition exist as a walk through the
graph, and that constraining the collapse using coverage information would improve
reconstruction of the genome read in the shotgun sequencing experiment. In this graph
nodes (or edges) represent sequence reads and directed edges (or nodes) represented
observed ϵ-approximate overlaps between them. Repeat units in the genome that are
longer than L will collapse in this graph, provided errors in the reads can be corrected
so such repeats become fully identical.

This idea was introduced at the same time as de Bruijn graphs, with Myers’ work
on string graphs and the first description of a genome assembly algorithm using de
Bruijn graphs both presented at the same workshop in 1995 [186, 111]. Myers’ 2005
formalization of the string graph [187] responds particularly to de Bruijn models,
and he points out that generating k-mers from the reads as the basis for the graph
means that the resulting graph is not “read coherent”, or in other words does not
accurately represent the information in the read set. Subsequent work has shown that
the boundaries between the two models are not so well-defined. As a specialization
of the overlap string graph, the de Bruijn model may be applied to certain complex
subsets of a string graph, creating a kind of hybrid assembler where the k-mer model is
used to resolve the most-difficult components, while the generic overlap model is used
elsewhere [109]. Similarly, the high cost of error and graphical complexity suffered by
the string graph encourage the use of k-mer based read correction methods, which
could be seen as filtering the reads using a DBG model.

String graphs are often described as “lossless” representations of the input read set
and the alignments between them [145]. Neither in practice, in Myers’ formalizations,
nor its implementations like the Celera assembler (CABOG) [180] is this strictly true.
In the model, overlaps are assumed to be ϵ−correctable at approximately the raw
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sequencing error rate. In practice, this filtering can result in a loss of input sequence
from the string graph. String graphs can consume very large amounts of memory when
fully constructed without filtering from a read set [149, 134]. Input filtering, mostly
to reduce repeat content, is used to mitigate this issue. If not aggressively corrected,
repeats tend to generate ultra-dense graph regions that are known as “hairballs” which
can increase the complexity of assembly by orders of magnitude.

To deal with repetitive sequences in the genome, one solution is to mask out
repetitive k-mer, minimizer, or alignment seeds used in generating the overlap set, as
in CABOG, FALCON, and miniasm [180, 41, 149]. Recently, the authors of Canu
showed that alternative probabilistic seed filtering based on the tf-idf (term frequency,
inverse document frequency) metric can retain information about repeats and support
their separation rather than excision from the assembly string graph [134].

String graph methods related to the Celera assembler, such as FALCON and Canu,
implement error correction steps before overlap inference, as this reduces memory
requirements during assembly. Similarly, methods that generate assemblies via a
string graph induction step from Illumina sequencing data (SGA, fermi, and fermikit)
also apply an error correction processes before the generation of the string graph
[245, 243, 148], which helps to reduce the graph complexity and improve contiguity of
the resulting assembly.

Allelic diversity in either a string graph or de Bruijn graph will, if sufficiently
separated from repeats and other allelic variants, result in a bubble, or graph component
connected to the rest of the graph via single sources and sinks. Like de Bruijn
graphs, string graphs have been used to support variant calling, for instance finding
heterozygotes represented as bubbles in the assembly graph [145]. All methods that I
am aware of will establish variants relative to a reference sequence threaded through
the graph. Also, thus far no method has specifically merged the two concepts of variant
calling and graph based assembly finishing together, although assembly projects may
use a variant caller to establish variants in their contigs [116, 232].

With minimap and miniasm Heng Li took the approach of efficient all versus all
alignment and overlap graph generation without prior read correction [149]. With
no multiple alignment step, this generates an assembly in which the error rate in the
contigs approaches that of the input reads. Tools like racon [271] have been developed
to subsequently generate a consensus, but these work on the level of individual contigs
rather than an assembly graph. Li [149] also proposed to mix and match different
assembly components (for instance using DALIGNER [188] rather than minimap
for the overlap step, or swapping quiver for nanopolish for consensus generation) by
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establishing a set of standard data types including the pairwise alignment format (PAF)
and the graphical fragment assembly (GFA). These encode the results of the overlap
step and a graphical model for the assembly at any state of its progression. GFA is
used in a wide number of methods, but as of August 2018 it appears that very few
tools both read and write GFA17, and much of the assembly improvement steps are
implemented on contigs (encoded in FASTQ or FASTA format) rather than the string
graph itself.

1.4.2.4 RNA sequencing graphs

While many approaches to transcript analysis consider each particular gene transcript
separately, a more compact representation would be as a splicing graph in which
all alternative splicing junctions are represented by edges connecting bases of the
underlying reference sequence [103, 140]. Transcript assembly has attracted many of
the same approaches as those used in genome inference, but their application must
be adjusted to account for variation in read coverage of several orders of magnitude
caused by large differences in expression of different genes [173], and in some cases
they may not be suitable as the ideal of a transcript assembly is not a linear sequence
assembly, but a splicing graph that models the combinatorial relationships in the
transcriptome [96]. Standard assemblers, parameterized or modified to better support
RNA transcript assembly have been applied to the problem since their development
for genome assembly [20, 223, 236]. But methods which are specifically design to meet
the needs of the problem have arguably been more popular [96, 37].

Direct use of the splicing graph concept is limited, with the most-popular workflow
involving “splice-aware” alignment to a reference transcript model followed by quantifi-
cation of expression versus the alignment and transcript model [265]. More recently,
probabilistic approaches have come into favor, and to support these assembly models
have been applied to transcript quantification via pseudoalignment to a colored DBG
annotated with reference transcripts [25]. In contrast, Daewan Kim’s HISAT2 aligns
RNA-seq reads to a whole genome splicing graph [129, 130], including SNP and indel
variation directly in the whole genome index.

1.4.2.5 Genome alignment graphs

The graphs used in genome alignment algorithms are the nearest in content and
structure to variation graphs, and it can be shown than a number them of nearly

17https://github.com/GFA-spec/GFA-spec#gfa-1

https://github.com/GFA-spec/GFA-spec#gfa-1
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identical representational capacities [124]. The alignment graph, first introduced in the
context of multiple sequence alignment [122, 218], represents a collection of alignments
in graphical form, supporting the induction of a sequence graph (or MSA when such
a graph is partially ordered). Vertices in the alignment graph Ga = (V, E) represent
characters in the input sequences S, and edges represent cases where characters in
the input sequences have been aligned, with an additional relation ≺ on V such that
v ≺ w holds if and only if v precedes w in S. As it contains both the sequences and
their alignments, this graph may then be contracted to produce a compressed graph
that represents both. We can then contract Ga into the base graph Gs, adding a node
for each connected component in Ga and labeling it with the corresponding character,
while adding an edge for each pair of nodes X and Y which represent a pair of input
characters in Ga that satisfy ≺. Each column of an MSA matrix or each base in a
variation graph would correspond to a particular connected component in Ga. It is
worth noting that the equivalence is not exact unless we generalize the alignment graph
to represent alignments in both the forward or reverse complement orientations, which
has been explored in the A-Bruijn model [217].

The Enredo graph model Ge = (V, E), used by the Benedict Paten’s Enredo/Pecan
multiple genome aligner [203], generalizes the alignment graph model to be bidirectional
by representing each genome segment in the graph with two nodes, a head and tail.
The graph maintains two kinds of edges, Es which represent genome segments and are
equivalent to nodes in Gs, and Ea which represent breakpoints of adjacencies between
segments. To obtain a graph like Gs from the Enredo graph, the MSA resolver Pecan
is applied to sets of homologous Es connecting the same head and tail nodes.

Paten further refined multiple genome alignment by the development of the Cactus
graph Gc = (V, E) [204]. To construct the Cactus graph, we build a precursor graph
G′

c by adding a node for each adjacency-connected component in the Enredo graph
Ge and adding edges between nodes for each segment Es whose head and tail lie
in both adjacency components. To obtain the Cactus graph, we collapse three-edge
connected components in G′

c into single nodes, yielding an Eulerian graph with a tree
like structure. The nodes in the Cactus graph can be shown to correspond to a tree of
ultrabubbles (graph components connected to the rest of the graph by one or two head
and tail nodes) in the sequence graph from which it was constructed [206]. This forms
the basis for the development of genotype models on top of arbitrary graphs.

Without additional labeling, these graph models are insufficient to fully reproduce
their input, and although it may be implemented in corresponding software, existing
models to do not clarify how this labeling is accomplished [124]. Variation graphs
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respond to this issue by making the path embedding of the sequences in the graph
explicit in the model.

1.4.3 Pangenomic alignment

As the review presented in this chapter shows, the idea of using pangenomic models
as a reference basis is not new, and interest in the topic extends back to the earliest
explorations of the multiple sequence alignment problem. But it was only in the last
decade, as surveys of populations of genomes routinely produced sets of phased variant
calls [162, 277, 31, 1, 45] that the idea of scaling up alignment to enable the alignment
of short reads to populations of genomes gained traction. Numerous methods use
some form of pangenome aware alignment. These have helped me to understand the
problem and guided my work to a significant degree. Each has important limitations
relative to more generic problems. For instance, some operate on sequence DAGs,
and cannot easily be generalized to work on arbitrary bidirectional sequence graphs.
Others implement a limited form of alignment that prevents their use for every kind of
sequencing technology. Virtually all use the pangenome only as an additional source of
information during alignment, and do not use the pangenome as the reference system
itself.

1.4.3.1 Alignment to unfolded pangenomic references

As discussed in section 1.3.1, the simplest pangenomic model stores each genome se-
quence individually, without recording the implied homologies or relationships between
the sequences. Such a model grows linearly with the number of genomes included, and
in this way it does not benefit from compression provided by sequence relationships
and shared evolutionary histories. Annotations can be provided for each genome and
interlinked at a higher level of semantic relationships, as is done in major genome
annotation catalogs like Ensembl genomes [128]. This expedient approach provides
almost all the benefits of the kind of pangenomic models I present in this thesis,
excepting that it cannot represent base-level sequence relationships within the semantic
model without significant effort. Whenever a researcher uses BLAST or BLAT to
search a large database of sequence they are interrogating this “unfolded” pangenome.
This pattern could be thought of as the default in bioinformatics, and it is the starting
place for many DNA-based analyses.

In terms of methods specifically designed to align large sequence read sets against
an unfolded pangenome, few are currently under development. Of note, the CHIC



36 Introduction

aligner provides an initial implementation of such an idea [270] This method is based
on an indexing strategy which uses Lempel-Ziv (LZ77) [289] parsing of the pangenome
to generate a “kernel” sequence encoding the pangenome that may be indexed and used
by a standard short read aligner (the authors use BOWTIE2). By using this kernel,
the seeding step is aware of alternative sequences embedded in the pangenome, but
the local alignment step is ultimately run against a linear reference. As this approach
aligns directly to the unfolded pangenome it is not able to correctly estimate mapping
quality, as the reference does not encode any model about the relationships between
the genomes that comprise the pangenome and consequently we cannot determine
when multiple alignments match to homologs in different genomes or paralagous copies
dispersed across one or many genomes. The linear growth in data scale can add
algorithmic complexity when sequencing many genomes, and so it is understandable
that experiments using the CHIC aligner only used up to 100 genomes at a time. By
relying on the linear reference to report alignments, CHIC gains the ability to hook
into standard resequencing workflows, but it loses the ability to describe variation in
sequence that is not contained in the reference.

1.4.3.2 Alignment to tiled pangenomic references

A near-approximation of the unfolded model is one in which genomes are broken into
small pieces in the construction of the model. These blocks or tiles can then be formed
into sequence DAG by the addition of edges showing linkages between successive
blocks [101]. These models present as a specialized kind of sequence DAGs18, and can
represent the whole set of sequences in a pangenome in a semi-compressed way using
the same principles as in POA, DBG, or string graph models. Each tile represents a
known haplotype in a given window of the pangenome. As new genomes are added to
the structure, new tiles only need to be added where we observe a new sequence in a
given window.

A tiled pangenome graph was employed by the pangenomic aligner, GenomeMapper
[234], which was produced in support of the Arabidopsis thaliana 1001 Genomes Project
(AT1001GP). As arabidopsis frequently selfs, individuals may have extremely low levels
of genomic diversity, which in turn simplifies the process of genome inference [31]. At
the same time, several percent of the reference genome is missing or highly divergent
in various accessions (strains) [43, 284]. These conditions break standard short-read
aligners developed for mapping Illumina sequencing data against low-diversity reference

18Known implementations appear to be unable to directly represent inversions and copy number
variants in their structures, instead encoding them as if they were indels.
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genomes. GenomeMapper models the pangenome using 256 basepair tiles. A k-mer
index is used to seed local alignment of very short (<50bp) reads against the pangenome.
The authors report an extension of the Needleman-Wunsch alignment algorithm that
allows alignment against the graph wherein the graph traversal is converted into
a tree of alignments by duplicating the alignment process at each furcation. This
alignment algorithm is exponential in the average number of forks per sequence base,
which may contribute to the observation that it runs hundreds of times slower than
standard alignment methods on 100bp reads [163]. GenomeMapper does not have a
graph-specific alignment format, and instead reports alignments against the genome
to which each is most similar, which the authors call “reference free”. So that the
alignments may be used downstream in standard approaches, they may be projected
against another chosen reference genome.

1.4.3.3 Alignment to graphical assembly models

In order to report their results relative to the reference, assembly methods require the
ability to align the reference genome into the sequence graph they have generated de
novo [114, 245], although this can be achieved through the alignment of the assembly
graph’s unitigs to the reference genome [148], which results in greater sensitivity to
small variation but may also increase bias towards the reference genome. Aligning
external sequence to an assembly graph is equivalent to extending the assembly to
include the sequence and recording the path through the assembly graph that represents
it.

The deBruijn Graph Aligner (deBGA) inverts this approach by enabling the
alignment of short reads to a reference DBG (RdBG) [163]. An RdBG is a compacted
DBG in which one or more reference genomes have been embedded, and the authors
of deBGA enable alignment against it through a k-mer index that is used to drive a
kind of MEM-based seed and extend alignment. The alignment process itself attempts
to link patterns of k-mer hits in unitigs in the graph into larger alignments, finally
producing a local alignment by applying Smith-Waterman-Gotoh to the read and the
particular reference genome region to which it aligns. While deBGA uses a DBG to
structure alignment, it can output a BAM file against the linear reference genome for
use in variant calling or other analyses. The authors claim that deBGA is fast and,
thanks to its use of a DBG-based index, robust to alignment problems introduced by
repeats. However, it is not clear how the method develops mapping qualities, and
due to its inability to represent evolutionary homology or equivalence between regions
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of genomes, this would appear to be is a significant limitation of the reference data
structure they have chosen.

deBGA is the first published method specifically designed to align short reads
against arbitrarily-structured graph genomes. While deBGA was designed to work on
collections of linear references, the authors note that it would also be possible to apply
the indexing strategy to any sequence graph, as k-mer enumeration may be used to
convert any sequence graph into a DBG19 The authors do not evaluate its operation on
generic DBGs, and instead compare it to linear reference based aligners on the same
collections of genomes.

1.4.3.4 Genotyping using a sequence DAG

Variant calls in the VCF format, when combined with the reference genome to which
they refer, form a sequence DAG that encodes all the genomes from which the calls
were derived as well as novel recombinations between them. As this feature of variant
calls was appreciated, it led to the development of several methods which first map
reads globally to a linear reference and then realign them locally to a variation-aware
reference. This can be shown to reduce reference bias, but it can only do so in a
localized sense as this form of graph resequencing cannot change the global placement
of reads.

By the final phase of the 1000GP [45] it was apparent that indels and complex
variation were more difficult to genotype than SNPs. Their significance was appreciated
by 1000GP subprojects that examined the putative functional effects of such variants
[36], which motivated efforts to develop a high-quality variant set including them
for the final release. The best-performing methods for generating the SNP genotype
likelihoods (GLs) were only able to model biallelic SNPs [274], and additional methods
would be applied to derive GLs for non-SNP, non-biallelic variant types.

While participating in the project, Deniz Kural and I extended (as glia20) a POA
algorithm he had developed to realign poorly-mapped reads (such as those with softclips,
many mismatches, gaps, or unaligned fragments anchored by their pair mates) to a
sequence DAG created from the reference and candidate alleles in the region. By
projecting the alignment back into the reference space, we were able to generate a BAM
output from glia. I implemented improvements to freebayes that allowed it to genotype
alleles represented by observations in these alignments, as well as contamination

19Jouni Sirén and I had implemented an aligner based on a DBG transform of an arbitrary sequence
graph at the time of deBGA’s publication. The authors of deBGA were apparently as unaware of our
work as we were of theirs.

20https://github.com/ekg/glia

https://github.com/ekg/glia
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estimates that were essential to high-quality GLs in low-coverage data. This pipeline
outperformed alternatives, and was ultimately used to generate GLs for all non-SNP
variation in the project.

The indels were integrated into the phased scaffolds provided by the SNPs through
two cycles of genotyping. In the first, GLs generated by the method were given to MVN-
call [178], a multalleleic, site-independent phasing algorithm that can phase genotypes
at a given site onto a fixed background haplotype scaffold. The posterior genotype
and phasing quality estimates produced by MVNcall, along with a number of other
metrics related to indel sequencing error such as sequence entropy and homopolymer
context, were then used to establish a support vector machine (SVM) classification
model which was trained using data from high-quality genomes and applied to the full
set of alleles to remove likely errors. The final set of alleles were fed back through the
glia, freebayes, and MVNcall process to ultimately produce the set of indels in the
1000GP phase 3 release.

Hannes Eggertson’s GraphTyper [71] implements a similar workflow to the genotype
likelihood generation method applied to the 1000GP indels. In the GraphTyper pipeline,
Illumina reads are aligned against the reference genome using a standard short read
aligner. Those alignments with soft clips and apparent differences from the reference
are matched to a sequence DAG built from the reference and VCF in a window around
the read’s candidate mapping location. GraphTyper matches short k-mers between
the read and the sequence DAG using a k-mer index of the reference structure and
1bp-overlapping k-mers from the read. This does not produce an alignment per se,
but rather a list of variant traversals supported by each read. This transformation
provides sufficient information to genotype the variants in the graph. The pipeline may
update its reference system so that it includes both known variation from other studies
and new variation discovered during analysis. GraphTyper uses the graph reference
system internally to improve algorithm performance, but results are projected into the
linear reference and the graph has no other representation than VCF. This prevents the
representation of “nested” variation or non-SNP or indel SVs. GraphTyper’s efficient
and accurate performance on exceptionally large resequencing problems supports
the authors’ design decisions and firmly asserts the utility of the graph realignment
approach.

Sibbesen and colleagues generalize the genotyping problem to arbitrary variation
graphs with BayesTyper [240]. They adopt a kind of pseudoalignment model in which
exact k-mer matches between a read set and the reference are used to establish support
for paths across bubbles in the variation graph. These can then be used to build
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probabilistic models of genotypes for any kind of variation represented in the graph,
both small (SNPs and indels), including nested variation.

1.4.3.5 Population reference graphs

Pangenomic references need not be used as a coordinate system in the same manner as
the linear reference genome. Instead, they can be used as a prior to infer most-likely
underlying haplotypes of a given individual. Further refinement can be achieved by
aligning the read set back to the inferred haplotypes. This approach makes sense if
alignment against the pangenome is extremely costly, but efficient haplotype inference
patterns can be applied to the genome.

Population reference graphs (PRGs) [63] are POA-like graphs in which sequences
aligned by MSA are collapsed in the case of identity above a given k-mer size, which
embeds some information about local phasing into the graph. First assembled from long
sequences, the PRG is then augmented with local variation information, with SNPs
and indels added to all paths at appropriate positions. Dilthey and colleagues develop
a genome inference model based on the comparison of the PRG to a DBG built from
reads from a given individual. By comparison between these two structures, weighted
by k-mer frequency in the genome and PRG, they provide sufficient annotations to
the PRG to run an HMM on the graph to infer the most-likely underlying pair of
haplotypes. Short read alignment can be used to map the full reads back to these
haplotypes in an ad hoc manner in order to find new small variation against them and
fully resolve their sequences. The authors demonstrate that this method can be applied
to the human MHC, where high sequence diversity frustrates methods optimized for
typical regions of the human genome.

1.4.3.6 Succinct pangenomic sequence indexes

Generalizations of the FM-index to support indexing of sequence DAGs, or equivalently
regular languages, yielded a number of short read to sequence graph aligners. Such
methods enable pattern matching against pangenome graphs in much the same way as
done by FM-index based short read aligners.

The Generalized Compressed Suffix Array (GCSA) [248, 249] enables pattern
matching against arbitrary finite regular languages. It indexes a reverse-deterministic
automaton21 that encodes the sequence DAG implied by a VCF and reference genome.
To enable path queries, it builds the BWT based on the sorted prefixes of the language

21Reverse determinization ensures that each prefix of this automaton can only have a single starting
position.
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encoded in the automaton, adding support structures that allow pattern search as in
an FM-index. Additional support bitvectors akin to those used to encode and index
labeled trees [80] allow the traversal of the sequence DAG during query matching.
Sirén constructs the index using the prefix-doubling method used to construct sorted
suffixes, wherein prefixes and their starts and ends may be extended from length L to
2L through a sort and join operation. Because it indexes a memoryless automaton and
the construction requires the enumeration of all the prefixes of the automaton, GCSA
suffers from exponential costs in index generation in the order of the number of possible
recombinations represented in the sequence DAG. Careful curation of the pangenome
allows the construction of the GCSA for the entire human genome in the memory of an
available computer (1TB), provided the construction is broken into chromosomes and
local complexity in the input sequence DAG is reduced. Experiments with the GCSA
used backtracking search as in BWA [151] to directly align reads with differences from
the indexed graph, but the method was not developed into a full-featured short read
alignment method.

Alternative schemes make no fundamental change to the CSA/FM-index model,
but rather embed information about particular kinds of pangenome graphs into the
sequence that is indexed. BWBBLE [107] encodes SNPs by extending the reference
alphabet to include ambiguity codes which match more than one DNA base. To encode
indels, it extends the reference by adding a sequence for each indel which includes the
non-reference allele and the surrounding 2l bases of the reference. The resulting index
can support queries of up to length l. A mapping between the positions in the extended
reference and the original reference sequence space is used to project alignments from
the extended reference to the base reference. This approach is simple and allows for
a linear-time indexing of the pangenome, but the added complexity of the extended
reference and larger alphabet required to represent SNPs yield a query time that is
100-fold slower than the backtracking BWA method [107].

In gramtools [165], a particular kind of sequence DAG is indexed in a large-alphabet
CSA based on wavelet trees [100].22 Maciuca and colleagues develop an encoding for
a sequence DAG in which bubbles may not have any deeper internal structure, and
any traversal across a bubble is required to contain sequence. Effectively, bubbles
contain a number of alternate alleles that may be represented as linear sequences, and

22Wavelet trees reduce the representation of a large alphabet of size Σ into a tree of O(log Σ)
bitvectors that recursively partition the sequence space into each character. These bitvectors may be
compressed efficiently while maintaining accessibility, and by augmenting them with rank and select
supports the entire structure can be used to determine the number of each class of character before
a given position, or select the ith of a given character. This allows for the implementation of LF
mapping on a CSA represented in a large alphabet.
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conveniently, this kind of graph is exactly that which is used in VCF. To build its
vBWT index of the graph, gramtools linearizes the alt-bubble sequence DAG into
an integer vector (the “linear PRG”) in which DNA bases are represented normally
while the structure of each bubble is encoded as a series of alternate alleles delimited
by i, flanked by delimiters i− 1. Each bubble gets a unique even integer i, requiring
the use of alphabets with millions of symbols. A CSA-based FM-index is then built
from the linear PRG. The backwards search algorithm is augmented to consider the
alternate alleles when it encounters an odd integer greater than 4 (the alphabet space
allocated to DNA sequence encoding). The use of a unique pair of integers for each
bubble ensures that the alleles in the bubble will be sorted together in the CSA of the
linear PRG. The encoded bubble structure allows backward search to furcate across the
alternative alleles, and a new suffix array interval is added to a heap of intervals that
are extended together at each step. As this scheme results in an exponential increase
in the number of suffix array intervals, the input set of alleles must be structured
in a way to reduce the density of bubbles. In their experiments the authors set an
allele frequency threshold and merge alleles within a certain window size into larger
haplotype alleles23. It is perhaps due to this exponential factor that gramtools’ query
performance is many times slower than BWBBLE and around 1000 times slower than
bwa mem on a linear version of the same reference [165]. In effect, the method trades
exponentially expensive construction for exponentially expensive queries. Gramtools
does not implement any local alignment model, and to demonstrate the method’s
conceptual utility, the authors apply it to infer the most-likely linear genome for a
given query set, to which the read set is ultimately mapped using a standard aligner.

HISAT2 implements variation-aware alignment against human genome scale graphs,
including alignment to RNA splicing junctions [130]. Its hierarchical GFM-index
structure allows seeding alignments against sequence DAGs. To find seeds globally, it
uses an implementation of the generalized compressed suffix array (GCSA) [248]. It
builds the global index including common short SNPs and indels. Then a set of local
GCSA indexes are used to allow fast search of the splice graph and determination of
candidate splicing junctions even when supported by minimal evidence in the read.
HISAT2 is an important point of reference as a scalable and mature implementation of
sequence to graph alignment, and is presently the only widely-used aligner based on
the GCSA index. Like other methods, HISAT2 writes BAM alignments resulting from
the expression of alignments to the sequence graph against the linear reference genome.

23The algorithm used to convert the input VCF into the haplotype bubble form appears to be the
same as in vcfgeno2haplo in vcflib: https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp.

https://github.com/vcflib/vcflib/blob/master/src/vcfgeno2haplo.cpp
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Unlike the other pangenomic aligners, HISAT2 can achieve very high throughput, and
is competitive with standard short read aligners even when considering splicing and
small variants.

Sirén’s more recent work on this topic has produced GCSA2 [247]. This model
removes the automaton reverse-determinization step, allowing the index to be built
on top of any kind of graph. GCSA2 indexes a DBG generated from a bidirectional
sequence graph in which nodes retain both k-mer identity and their starting and ending
positional context in the graph. This positional information is used to drive the prefix
doubling step required to build the BWT of the DBG. The space requirements of GCSA
are avoided by terminating the prefix doubling at a length appropriate to accommodate
queries of interest, which in practice is limited to 256bp. By computing the longest
common prefix array (LCP) of its sorted suffixes, GCSA2 encodes the implied suffix
tree, which supports MEM-based seed generation algorithms for efficient and sensitive
alignment against variation graphs.

1.4.3.7 Mapping to k-mer based pangenome indexes

A k-mer index is trivial to build from a graph: one just needs to be able to enumerate
or sample k-long walks through the graph and link the graph position to the k-mer in
an efficient hash table or other kind of index. The size of the index can be reduced by
sampling k-mers in some pattern. This indexing strategy was used in an early version of
vg, which supported experiments by the GA4GH-DWG [196] oriented at understanding
the utility of various graphs constructed for a set of loci where GRCh38 encoded
alternative sequences. This same indexing technique is used by a proprietary method
developed by members of the GA4GH-DWG from Seven Bridges Genomics Inc. (SBG)
[216]. The SBG graph aligner’s (SBGA) input is constructed from higher-frequency
variants found in various public variation resources. It masks out regions of high allelic
complexity and builds a reference-rooted edge-labeled sequence DAG to serve as an
alignment target. To enable graph mapping it builds an index of spaced k-mers by
walking short segments of the graph. The k-mers and their locations are used as seeds
to establish mapping candidate loci. A local alignment is obtained for each candidate,
and the output is transformed into the reference space as BAM.

Curiously, to align the reads to the graph locally SBG’s aligner does not use a
method like POA, and instead uses a kind of local backtracking exact matching against
the tree of paths through the local graph which has exponential complexity with respect
to the density of variation. If the variant density and read error rates are kept low,
this scheme allows SBGA to achieve extremely high read throughput, equivalent to
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that of bwa mem without any apparent loss in accuracy on the linear reference. In
this context the authors demonstrate their method can significantly (although slightly)
improve sensitivity to known indels. However, the method is not adaptable to other
graph types or sequencing contexts, with reports from users indicating high increases
in runtime with increased read error and variant density. Due to the fact that SBGA
is closed source and proprietary it is not possible to appreciate exactly why.

1.5 Overview and objectives
Resolving the genome of a sample de novo requires sequencing and assembly. Standard
approaches to assembly are built on graphical models that allow for ambiguity, and
out of this system they attempt to derive a set of contigs which represent the true
haplotypes of the genome. When we have already assembled a genome related to
the one we wish to infer, we can describe our new sample in terms of a reference
genome, with ambiguity and variation represented only in the alignments of the new
sequences where they can be mapped to the reference genome. This reduces the cost of
sequencing, as we can infer much of the genome using lower sequencing coverage and
shorter reads, but it also exposes resequencing based genome inference to reference
bias, which is a distortion of inferred genomes towards the sequence of the reference
genome.

I posit that by extending the reference genome to be a pangenome with a graphical
representation, we can enable population aware resequencing that avoids reference bias
to any particular linear reference. The model I develop, the variation graph, extends
the bidirectional sequence graph models used in assembly to support the labeling
of paths through the graph, and allowing the representation and relation of linear
reference systems within itself.

Variation graphs are related to a wide array of graphical models used in bioinfor-
matics. They have similarity with string graphs, multiple sequence alignments, and
whole genome alignment graphs. This indicates that they could serve as a unifying
basis for many domains of sequence analysis which have traditionally been separated
by methodological differences, such as assembly and variant calling.

Recently, several methods have been published which provide variation-aware
alignment or genotyping based on sequence DAGs built from population resequencing.
These methods demonstrate the difficulty of the problem of generalizing resequencing
to graphical reference systems at the multi-gigabase scale of vertebrate genomes. In
virtually all cases, they use a graph reference model internally, but express their results
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in terms of a linear reference genome, producing BAM alignments or genotyping results
in VCF format. None implement a generic strategy to work with a graphical model
equivalent to the variation graph. The method I develop, vg, is not the first pangenomic
aligner, but it is the first that models its results in terms of the pangenome itself,
enabling full resequencing analyses to be completed within the graphical model.

In the following chapters I will precisely define the variation graph and associated
data models that allow representing all kinds of resequencing data types in the context
of a variation graph. Then I will describe the algorithms implemented in vg that enable
the use of variation graphs as a basis for genome analysis, including their construction
from many data sources, serialization and visualization. I will present indexing methods
that support the queries needed to enable resequencing, and I will provide algorithms
that implement efficient read alignment to large scale graphs. Finally, I will cover
applications of the method I developed. I will show that vg is applicable to a wide
range of genomic inference problems, with a particular focus on the quality of alignment
of both short and long sequence reads against variation graphs constructed from all
kinds of sources.

Throughout this work I use the first person singular “I” to refer to work that I
completed alone, while the plural “we” where presenting work completed in collabo-
ration with others. Wherever possible, I clarify the nature of the collaboration and
identify my collaborators.





Chapter 2

Variation graphs

Variation graphs (VGs)1, previously introduced in section 1.3.2, combine a bidirectional
sequence graphs with paths that model sequences as walks through the positional space
of the graph. They link graphical models and linear sequence models. This allows them
to be used to model the relationships between collection of sequences, including all
variation contained therein. The encapsulation of these two divergent ways of modeling
about bioinformatic data systems allows them to bridge traditionally isolated analysis
modalities.

In this chapter, I will articulate the variation graph model and lay out the algorithms
and data structures that enable its use as a reference system in pangenomic resequencing.
First I will provide formulations for the graph, its paths, edits, alignments, and
genotypes define within it. Then I will present algorithms that induce the variation
graph from different data models introduced in the previous chapter. I describe the
serialization techniques used to exchange variation data via computer files or network
connections. I develop index structures to enable queries of the graph’s topology,
sequence, and path spaces, and algorithms to derive optimal alignments to the graph.
Understanding variation graphs requires techniques to visualize them, and I will
present various approaches, each with particular advantages and drawbacks. Working
with variation graph references necessitates a number of graph-modifying operations,
including augmentation, sorting, pruning, and bubble simplification. Finally, I will
discuss how variation graphs can provide normalized basis spaces for the analysis of
pangenomes, such as through various projections of alignment sets and the graph
including coverage maps, ultrabubble decomposition, and haplotype matching.

1I will refer to variation graph as VG, and to the software implementation of the VG model vg
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2.1 A generic graph embedding for genomics
We define a variation graph to be a graph with embedded paths G = (N, E, P )
comprising a set of nodes N = n1 . . . nM , a set of edges E = e1 . . . eL, and a set of paths
P = p1 . . . pQ, each of which describes the embedding of a sequence into the graph. By
generalizing these paths to support edits against the graph, we provide a mechanism
to describe relations between the graph and other sequences. Augmenting the path
with additional information important to sequence analysis allows us to construct an
alignment. Collections of pairs of paths covering the space of two graphs describe a
graph to graph alignment, or translation which can be generated when the graph is
edited, to allow for the projection of coordinates and sequences in one graph into the
space of the other. A limited form of this translation is a genotype, which maps the
implied bubble formed across multiple copies of a homologous locus into the space of
the graph. Collections of genotypes are the primary output of resequencing. Phasing
algorithms extend genotypes into longer phased haplotypes, which we record as paths
through the graph. These data models thus provide a sufficient informational basis for
resequencing against variation graphs.

2.1.1 The bidirectional sequence graph

Each node ni represents a sequence seq(ni) that is built from an alphabet Σ =
{A, C, G, T, N}. Nodes may be traversed in either the forward or reverse direction, with
the sequence being reverse-complemented in the reverse direction. We write ni for the
reverse-complement of node ni, so that seq(ni) = revcomp(seq(ni)). Note that ni = n.
For convenience, we refer to both ni and ni as “nodes”.

Edges represent adjacencies between the sequences of the nodes they connect. Thus,
the graph implicitly encodes longer sequences as the concatenation of node sequences
along walks through the graph. Edges can be identified with the ordered pairs of
oriented nodes that they link, so we can write eij = (ni, nj). Edges also can be traversed
in either the forward or the reverse direction, with the reverse traversal defined as
eij = (nj, ni). VGs can contain ordinary cycles (in which ni is reachable from ni),
reversing cycles (in which ni is reachable from ni), and non-cyclic instances of reversal
(in which both ni and ni are reachable from nj).
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2.1.2 Paths with edits

We implement paths as an edit string with respect to the concatenation of node
subsequences along a directed walk through the graph. We do not require the alignment
described by the edit string to start at the beginning of the sequence of the initial node,
nor to terminate at the end of the sequence of the terminal node. To allow the path
model to support differences from the graph, each path is composed of a series of node
mappings pi = m1 . . . m|pi| which are semantically identical to the alignment format
used by standard aligners. Each mapping mi = (bi, ∆i) has a starting position encoded
as a node and offset in the graph bi = (nj, oi) and a series of edits ∆i = δ1 . . . δ|mi|.
Edits δi = (fi, ti, ri) represent a length fi in the graph node nj (a “from length” in the
reference), a length ti in the sequence the path encodes (a “to length” in the query),
and an additional sequence ri that would replace the sequence at the given position in
the reference in order to transform it into the query. In the case of exact matches, we
allow the replacement sequence ri to be empty.

Alignments are often described in terms of matches, mismatches, and indels. We
encode matches when fi = ti ∧ ri = ∅, single mismatches when fi = ti = 1 ∧ ri ̸= ∅,
deletions when fi > 0 ∧ ti = 0 ∧ ri = ∅, and insertions when fi = 0 ∧ ti > 0 ∧ ri ̸= ∅.
As paths are described by a series of mappings with independent positions, they
can represent all kinds of structural variation relative to the graph. When mapping
positions are always at the start of a node, the edit set for the path contains only
matches, and the edges traversed by the path are all present in the graph2, we say that
the path is embedded. The paths from which we construct the variation graph are fully
embedded, and in practice paths that contain differences occur only in the alignment
of new sequences into the graph.

2.1.3 Alignments

Auxiliary read information is important when analyzing collections of DNA sequencing
data sets. Each read has a name, and an identity related to a particular sequencing
experiment. It may be related to a particular genomic sample or individual. DNA
sequence reads themselves result from a previous set of analyses run on raw observations
derived from DNA, perhaps fluorescence or current traces or images. The process of
collapsing this raw information into the sequence read yields a confidence in addition
to a base call. These are recorded in a quality string in FASTQ. The need to collect

2Note that paths may contain disjoint mappings that are not connected by edges in the graph,
which allows them to represent structural variations.
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this information has resulted in the development of the SAM/BAM sequence alignment
format, which provides a standard for linking the called bases (sequence), quality
information, read name, features of the alignment against a reference genome and
additional optional typed annotations.

I follow this same model in developing an alignment format for read alignments
to the graph. An aligned set of sequences Q, A = a1 . . . a|Q|, represents a sequencing
experiment. Each aligned read connects a sequence, an (optional) quality string, a
path through the graph including possible edits, and an optional set of Di annotations:
ai = (si, qi, pi, k1 . . . kDi

). In principle the read sequence can be reconstructed from
the path, but retaining the sequence information makes the alignment object lossless
with respect to the input FASTQ and provides redundancy which can help in data
processing.

2.1.4 Translations

A generalization of the alignment is the translation set Φ = ϕ1 . . . ϕ|Φ|, which relates
paths in different graphs to describe the mapping between them. A translation
ϕ = (pf , pt) defines the projection between two paths which may arise in the context
of two graphs Gf and Gt. In this use each pf corresponds to a path relative to Gf

(conventionally the base or reference graph), and each pt to some path in Gt.
If each node and edge and path in both graphs is represented in some graph trans-

lation in Φ then it provides an isomorphic relationship between the graphs. Provided
each Φ encodes an isomorphism, then we can layer a series of Φi together to provide a
coherent coordinate space across any number of updates to a given graph. Consider a
function pattern translate, which allows the projection of paths relative to Gf through
translations Φ to yield paths in Gt: translate(pi, Φ)→ pj ∈ Gt, and similarly allows
the transformation of a base graph into a target graph: translate(Gf , Φ)→ Gt. If we
have a series of (Gi, Φ1) . . . (Gρ, Φρ), where translate(Gi, Φi) → Gi+1 and thus each
Φi describes an isomorphism between Gi and Gi+1, then we can generate a graph
translation Φ∆ providing translate(G1, Φ∆) → Gρ. We build this graph translation
with the function layer(Φα, Φβ)→ Φα◦β by rewriting each path translation ϕi ∈ Φα so
that its pt refers to Gβ. We do so by projecting the pt through Φβ, and finally adding
any ϕj ∈ Φβ for which pf = ∅, as these represent insertions of new sequence in Gβ

relative to Gα.
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2.1.5 Genotypes

As path to path relationships can provide descriptions of allelic diversity, they form
the basis for a graph-relative genotype encoding. To represent the exact genotype of a
particular sample with ploidy ν at a given locus ι we can simply collect the multiset
of alleles πι = (p1 . . . pν). We could alternatively build a probabilistic model ϖ of
an unphased genotype by using a set of µ alleles {p1 . . . pµ}. To do so, we associate
likelihoods γξ for each possible genotype πιξ

that could be sampled from the alleles such
that ϖ = γ1 . . . γ µ!

ν!(µ−ν)!
. In practice, we develop our γξ out of quality information from

the reads and a sampling model related to ν [88, 144]. Existing genotyping models can
be applied to drive genotyping using read sets aligned to the graph, and the output of
the genotyper is defined fully in the space of the graph.

2.1.6 Extending the graph

Given an alignment ai, we can edit the graph G so that it includes the alignment and
the sequence it represents as an embedded path, augment(G, ai)→ (G′, Φ), such that
translate(pi, Φ) ∈ G′. To update the path space of the graph we project all paths,
including that of ai, through the translation implied by the augmentation of the graph
with pi. Any other alignment aj whose path pj overlaps pi would no longer be valid,
although it could be projected through the graph translation Φ as well to express
it in the space of the new graph G′. Updating the graph one alignment at a time
is inefficient as we need to build and layer a new translation for each alignment. It
is simpler to edit the graph in a single step, taking a collection of alignments and
including them in the graph, edit(G, A)→ (G′, Φ).

One way to accomplish this is to first take the set of unique mappings represented
in the paths of A, Ω = {m1 . . . m|Ω|}, and for each mi cut ni at the breakpoints where
any new variation would need to be added in, adding new nodes to represent the cut
portions. Then, walking through each alignment we add in unique novel sequences and
their linkages to the preexisting nodes or new breakpoints to the graph. This process
will disrupt the identifier space of the nodes and edges of the graph, but it naturally
yields a translation that can be used as described in section 2.1.4. Both alignments
and genotypes are based on paths, so this mechanism can be used to extend the graph
based on any sequence level differences observed through alignment or variant calling.
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2.2 Variation graph construction
We will use variation graphs as the core model for a number of essential processes
in genome inference. This model can represent many graphical sequence models
used in genomics. Each one necessitates conversion into the variation graph model.
Here I describe the transformation of a number of graphical models into variation
graphs, including MSAs, assembly graphs, and alignment graphs induced from pairwise
alignments. In some cases the conversion is direct, but in others it requires the addition
of new labels to our model. Variation graphs may also be built from first principles,
provided a function that aligns a sequence into the graph and the editing operations
described in 2.1.6.

2.2.1 Progressive alignment

If we have a series of k queries q1 . . . qk, then we can build a progressive alignment by a
series of edit and alignment operations applied to the variation graph. First, take the
empty graph G∅, to which any alignment will yield a path p1 that has no mappings and
which encodes the query sequence q1 as a replacement sequence in the path. We then
edit the graph to add the sequence using edit(G∅, p1)→ G1. For each subsequent qj

we obtain the next graph by finding the alignment align(qj, Gj)→ pj and editing the
graph with it to yield the next graph edit(Gj, pj)→ Gj+1 until j = k and we obtain
our final graph. This simple approach is attractive as it allows the variation graphs to
be built from whole sequences using only techniques that are native to the variation
graph model itself. However, it is obviously order dependent, with potentially different
results if the set of input sequences are presented in different orders. I later presents
results based on this multiple sequence to graph alignment process, vg msga.

2.2.2 Using variants in VCF format

As discussed in section 1.4.3.4, the VCF format that is popular in resequencing implies
a sequence DAG. We can consider how to build a trivial variation graph using the
core operation edit. First, we build a variation graph from the reference genome Qref

: Gref. This graph contains one path pref : seq(pref) = Qref. As described in section
2.1.5 each locus reported in VCF can be encoded as a set of paths Pvcf = p1 . . . pV ,
each representing a different allele. We now edit the graph to embed these allele paths,
edit(Gref, Pvcf)→ Gvcf. It is possible to regenerate the VCF file input by walking the
positions of pref and enumerating the overlapping paths as alleles in VCF format.
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For efficiency, we have not implemented VCF to variation graph conversion with
specifically this algorithm, but instead build up Gvcf by walking along the reference
genome Qref and processing each locus sequentially. This exploits the partially ordered
property of the VCF to limit memory requirements. For regions before, after, and
between variant records at reference offsets i and j we add a node ncurr : seq(ncurr) =
substr(Qref, i, j), linking these by edges to those nodes ending at position i of the
reference and adding corresponding mappings for the reference path to pref. At simple
variant sites we add each of the alleles as a new node nvari

, including an edge for each
ecurr≺vari

. Here we also handle the reference allele differently in that we append a
mapping mref = ((nref, 0), ∅) to pref.

As long as the VCF records are ordered, this process allows for streaming conversion
of the VCF format into a variation graph. However, VCFs used to represent structural
variation often do not describe a fully-ordered series of loci. For instance, a large
deletion may be described in one record, and followed by a number of records describing
variation on the reference within the scope of the deletion. In the graph, this results in
the nesting of bubbles, and requires a deviation from a simple streaming algorithm
in order to be handled. Deletions must be recorded and linked into the downstream
portion of the graph as it is later generated.

VCFs may also encode phased haplotypes, which, like the reference, have a natural
representation in the graph as paths. Parsing these may require multiple passes over
the VCF due to the memory requirements for storing large numbers of haplotypes
uncompressed and cross-indexed to allow traversal in RAM. To prevent O(H|Gvcf|)
growth of the required memory to store these, we implement compression strategies on
the haplotype set that exploit their repetitiveness. The VCF format does not impose a
semantic requirement that the encoded haplotypes are valid, which introduces some
complexity in the implementation of this method. We must break haplotypes where
they are found to be invalid in order to record them in VG format. For instance, a
phased VCF may report more than ν (expected ploidy) alleles for a given individual,
such as when deletion and SNP variants overlap. We expect these haplotype paths to
be embedded in the graph. Although haplotype sets are equivalent to large collections
of paths, we term their components threads to indicate that they have a simpler
representation than arbitrary paths.

2.2.3 From gene models

A reference-based RNA splicing graph is usually expressed as a set of named intervals
in BED or the General Feature Format (GFF). As with the generic VCF generation
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algorithm, we can convert the transcripts to alignments A relative to the graph. Then
we can then embed the transcript paths in the graph edit(Gref, A) → Gsplice. Any
transcript in our set is thus encoded by the graph, and can be matched to it directly
with alignment. The resulting structure will also support novel isoforms built with
splices from the known set.

2.2.4 From multiple sequence alignments

A multiple sequence alignment in matrix form has a simple translation into a se-
quence DAG and thus a VG [140]. Given a set of sequences Q = q1 . . . qκ their
υ-long mutual alignment may be described in a κυ matrix X designed to maximize∑υ

i=1
∑κ

j=1
∑κ

k=1 δXijXik
, where δ is the Kronecker delta, or some generalization of this.

The alphabet used to encode the matrix is the same as the input sequences with the
addition of a special gap character □ which does not match itself, and gaps thus do
not contribute positively to the matrix score. To build a variation graph Gmsa from
the MSA we proceed from i = 1→ υ through X. For each unique character B in the
query alphabet Σ \□ found in each row i, we create a node nB in Gmsa and append a
mapping to each path pi for which nB ∈ qi. We construct the edges of Gmsa by taking
the distinct pairs of consecutive node traversals found in the path set Pmsa produced
after the generation of the nodes in MSA traversal. Adding add an edge eij for each
pair of nodes (ni, nj) consecutively traversed in Pmsa ensures that our sequences are
present as walks through the graph. We can optionally compact series of nodes (which
represent single characters) where no furcations occur to obtain a simpler graph.

Instead of a matrix, we can formulate the multiple alignment as an alignment graph
(described in section 1.4.2.5). By making this graph bidirectional, and thus equivalent
in information content with the Enredo graph, it becomes equivalent to a variation
graph. Aligners that produce data formats of this type, such as Cactus [205], can thus
be used to produce VGs, so long as the relationship between the input sequences and
the graph is recorded and can be converted into a path description. In section 3.1.2 I
discuss the use of this method to build a pangenomic reference system for a diverse set
of yeast strains.

2.2.5 From overlap assembly and deBruijn graphs

Overlap-based sequence graphs used in assembly, described in sections 1.4.2.1, 1.4.2.2,
and 1.4.2.3, are nearly identical to variation graphs. The critical difference between
these models and the variation graph is that they attach a label to each edge (or node)
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describing the alignment between the pair of nodes (or edges) which they connect.
Variation graphs do not support such a feature in their basic definition, as it is
unimportant for any use besides temporarily representing overlap graphs. We call the
process of transferring sequence information from the edges to the nodes bluntification.

We start by assigning the sequence of each node to be the sequence of the corre-
sponding read. If we shorten the sequence of a node to reduce an overlap between a
pair of nodes, it will render other overlaps on the same nodes incorrect. Thus, it is
essential that the bluntification algorithm work by the reduction of sets of overlaps
on edges which are transitively closed by connection to the same ends of each node,
net(eij) → ∀ei∗ ∈ G ∪ ∀e∗j ∈ G, considering both strands of the graph when doing
so. For each net we apply a function pinch(net(eij)) → Gpinchij

, which reduces the
overlaps between the nodes in the net into a blunt-edged variation graph. We then
link Gpinchij

back into the rest of the graph by connecting with the inbound links to
each node involved in the net.

In a de Bruijn graph or string graph as generated by SGA or Fermi2, overlaps are
exact matches and so are defined given only a length. This simplifies the implementation
of pinch, as no further computation is required to correctly determine the mutual
alignment of overlapping sequences. In contrast, overlaps in a generic string or overlap
graph are correctly defined as alignments. Resolving a single pairwise alignment into
structures in the graph is trivial, but it becomes considerably more complex when
many sequences map into a transitively closed set of overlaps. These nets can then be
resolved into an alignment graph by an algorithm similar to that given in section 2.2.6,
but in practice, vg implements bluntification using a pinch graph library developed for
whole genome alignment [205].

2.2.6 From pairwise alignments

A set of pairwise alignments imply a variation graph, however I know of no contained
method that will generate the variation graph or lossless string graph from these
alignments. To explore this, I developed an algorithm to do so that operates in external
memory, which I here present in detail. It operates by conversion of the alignment set
into an alignment graph and the subsequent use of this graph in the elaboration of
the variation graph including paths representing the input sequences. The resulting
graph is a lossless representation of the input and the alignments between them. To
distinguish the approach from string graphs, which imply error correction, I call this
variation graph induction model the squish graph.
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seqwish3 implements a lossless conversion from pairwise alignments between se-
quences to a variation graph encoding the sequences and their alignments. As input,
we typically take all-versus-all alignments, but the exact structure of the alignment set
may be defined in an application specific way. seqwish uses a series of disk-backed
sorts and passes over the alignment and sequence inputs to allow the graph to be
constructed in low memory relative to the size of the input sequence set. Memory
usage during construction and traversal is limited by the use of sorted disk-backed
arrays and succinct rank/select dictionaries to record a queryable version of the graph.

As input, we have Q, which is a concatenation of the sequences from which we
will build the graph. We build a compressed suffix array (CSA) mapping sequence
names to offsets in Q, and also the inverse using a rank/select dictionary on a bitvector
marking the starts of sequences in Q. This allows us to map between positions in the
sequences of Q, which is the format in which alignment algorithms typically express
alignments, and positions in Q itself, which is the coordinate space we will use as a
basis for the generation of our graph. We encode the set of input pairwise alignments
between sequences in Q as object A. Although these alignments tend to be represented
using oriented interval pairs in Q, for simplicity and robustness to graph complexity,
we describe A as a set of pairs of bidirectional positions (sequence offsets and strands)
[1 . . . |Q1 . . . Q|Q||] , such that A = {(bq, br), . . .}. We sort A by the first member (bq)
of each pair, ensuring that the entries in A are ordered according to their order in Q.

To query the induced graph we build a rank/select dictionary allowing efficient
traversal of A, based on a bit vector Abv of the same length as A such that we record a
1 at those positions which correspond to the first instance of a given bq and record a 0
in Abv otherwise. We record which bq we have processed in the bitvector Qseen which
is of the same length as Q. This allows us to avoid a quadratic penalty in the order of
the size of the transitive closures in Q generated by pairs in A.

Now we inductively derive the graph implied by the alignments. For each base bq

in Q not already marked in Qseen, we find its transitive closure cq := {bq, br1 , . . .} by
traversing aligned base pairs recorded in A. We write the character of the base bq to
an entry si in a vector S, then for each bc in cq we record a pair (si, bc) into N and its
reverse, (bc, si) into P . We mark Qseen for each base in each emitted cluster, so that
we will not consider these bases in subsequent transitive closures. By sorting N and P

by their first entries, we can build rank/select dictionaries on them akin to that we
built on A that allow random access by graph base (as given in S) or input base (as
given in Q).

3https://github.com/ekg/seqwish

https://github.com/ekg/seqwish
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To fully induce the variation graph we need to establish the links between bases in
S that would be required for us to find any sequence in the input as a walk through
the graph. We do so by rewriting Q (in both the forward and reverse orientation) in
terms of pairs of bases in S, then sorting the resulting pairs by their first element,
which yields L = [(ba, bb), . . .]. These pairs record the links and their frequencies, which
we can emit or filter (such as by frequency) as needed in particular applications. In
typical use we take the graph to be given by the unique elements of L.

Our data model encodes the graph using single-base nodes, but often downstream
use requires identifying nodes and thus we benefit from compressing the unitigs of the
graph into single nodes, which reduces memory used by identifiers in analysis. We can
compress the node space of the graph by traversing S, and for each base querying the
inbound links. Maintaining a bitvector Sid of length equal to S we mark each base at
which we see any link other than one from or to the previous base on the forward or
reverse strand, or at bases where we have no incoming links. By building a rank/select
dictionary on Sid we can assign a smaller set of node ids to the sequence space of the
graph.

Given the id space encoded by Sid we can materialize the graph in a variety of
interchange formats, or provide id-based interfaces to the indexed squish graph. To
generate graphs in vg or GFA format, we want to decompose the graph into its nodes
(S), edges (L) and paths (P ). The nodes are given by S and Sid, and similarly we
project L and P through Sid to obtain a compressed variation graph.

2.3 Data interchange
In vg, a schema language, Google Protocol Buffers (Protobuf), is used to define a
compact description of data structures sufficient for the representation of all the required
components. One cause of this pattern was my involvement in the GA4GH-DWG at
the beginning of my thesis, which was then seeking a coherent way of describing graph
genomes4 to support pangenomic resequencing and related information exchange across
the internet. I implemented the schema for vg in the popular Protobuf schema language.
This provided a core API on which to build vg. It also implied a set of streaming
data formats, which I implemented as a template library capable of serializing any
stream of Protobuf objects. Due to the reliance on Protobuf, the only code needed to

4https://github.com/ga4gh/ga4gh-schemas

https://github.com/ga4gh/ga4gh-schemas
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implement reading and writing of these formats is vg schema and the stream library5.
This greatly simplified the process of developing libraries for working with the variation
graph data models. Although in practice the Protobuf data structures are slower to
parse than handmade C-struct serializations like BAM, the amount of effort required
to begin writing efficient and structured binary data formats was considerably less
with the schema based approach. Most importantly, the schema based definition of the
core data types in vg helped new developers and researchers using the system quickly
appreciate the basic concepts.

Several data formats are important to vg. In .vg format, the graph itself is
serialized in non-overlapping chunks, where each edge eij is stored once in the chunk
Gchunk : ni ∈ Gchunk. Path mappings must have a rank that identifies their position in
the path in order to be subdivided in this way. This allows them to be read in and
rebuilt even if they have been serialized out of order. A series of alignment objects
is a sensible output of the mapping algorithm vg map. The file format produced by
writing out a series of Protobuf alignment object serializations using the stream.hpp
library is called GAM, for Graphical Alignment/Map, in analogy to SAM (Sequence
Alignment/Map format).

These data models have various other equivalent serializations. The GFA format
can be used to directly encode VGs. However, GFA lacks a representation of an
alignment with the semantics required by vg. VGs that are partially ordered can be
deconstructed into VCF files. As paths in variation graphs can be used to represent
any kind of existing annotations, data providers who represent annotations across
many genomes (such as ENSEMBL Genomes) can build their annotation sets which
were previously spread across many genomes into a single one embedded in a VG. To
enable this several collaborators6 have developed a Resource Description Framework
(RDF) compatible version of the core VG model.

2.4 Index structures
As described in section 1.2.2, the large collections of read data produced by current
sequencing methods require efficient read alignment to support downstream analysis.
Typically, these methods develop indexes of their reference genome, using k-mer hash
tables or FM-index/CSA based data structures that support efficient arbitrary-length

5At the time of writing the schema, https://github.com/vgteam/vg/blob/master/src/vg.proto and
stream parsing library https://github.com/vgteam/vg/blob/master/src/stream.hpp total around 1000
lines of code, and are sufficient to link any C++ program into the vg ecosystem.

6Jerven Bolleman and Toshiaki Katayama among others.

https://github.com/vgteam/vg/blob/master/src/vg.proto
https://github.com/vgteam/vg/blob/master/src/stream.hpp
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exact matching. These indexes remain static during the resequencing analysis, and
can thus be designed to be very compact and to support efficient queries.

When the genome is just a linear string, distances between locations may be
computed trivially, and subsets of the sequence are simply substring operations on the
vector representing the genome, so no additional structure beyond a full text index
is required to seed the alignment of reads to the genome. However, this situation
changes in graphs, where the computation of distances is more complex and particular
topologies of the graph must be recorded and reproduced. Graph distances may be
estimated using an approximate sort and the paths embedded in the graph. However, to
do so requires efficient indexes of the path structure in the graph. Furthermore, loading
the entire graph into memory in a naïve manner can be very expensive, and effort is
required to minimize the runtime costs to enable resequencing even on lower-memory
commodity compute servers.

2.4.1 Dynamic in-memory graph model

Serialized in .vg or compressed GFA format, the graph of the 1000GP is not much larger
than the uncompressed human reference genome. However, the performance-oriented
implementation of the dynamic variation graph which I developed at the beginning of
my studies can use a hundred times this much memory when the entire graph is loaded
into RAM. In this scheme implemented in vg, indexes on the node identifier space of
the graph allow for fast traversal and query of nodes by identity and neighborhood, as
well as insertion or deletion of nodes and edges and associated editing of paths. Various
inefficiencies are accepted, such as on the hash table occupancies used to build these
indexes, in the pursuit of higher performance during dynamic modification of the graph.
I now believe that it should be easy to provide a dynamic VG in low memory by using
a succinct encoding, but I have not yet completed any work on this issue. Operating on
graphs of hundreds of millions of nodes with annotations like paths remains a difficult
problem. In most cases the graph can be subdivided (as with map/reduce processing
patterns [59] which underpin most industrial operation on large graphs [44]). This is
particularly easy to implement for sequence DAG VGs, allowing for us to work on
graphs of arbitrary sizes if they are approximately linear.

2.4.2 Graph topology index

The graph is unlikely to be changed during many kinds of analysis, and so we have the
opportunity to compress it into static data structures that provide efficient access to
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important aspects of the graph with low memory overhead. Specifically, we care about
the node and edge structure of the graph and queries that allow us to extract and seek
to positions in embedded paths. We would like to be able to query a part of the graph
corresponding to a particular region of a chromosome in a reference path embedded in
the graph. Similarly, if we find an exact match on the graph using GCSA2, we would
like to load that region of the graph into memory for efficient local alignment.

We implement a succinct representation of variation graphs in the XG7 library,
using data structures from the C++ toolkit SDSL-lite [92]. Node labels and node ids
are stored in a collection of succinct vectors, augmented by rank/select dictionaries that
allow the lookup of node sequences and node ids. An internal node rank is given for
each node, and we map from and to this internal coordinate system using a compressed
integer vector of the same order as the node id range of the graph we have indexed.
To allow efficient exploration of the graph, we store each node’s edge context in a
structured manner in an integer vector, into which we can jump via a rank/select
dictionary keyed by node rank in the graph. Efficient traversal of the graph’s topology
via this structure is enabled by storing edges as relative offsets to the nodes to which
they connect, which obviates the need for secondary lookups and reduces the cost of
traversal. Paths provided to XG are used to induce alternative coordinate systems
over the graph. We store them using a collection of integer vectors and rank/select
dictionaries that allow for efficient queries of the paths at or near a given graph position,
as well as queries that give us the graph context near a given path position.

An XG index of G = (N, E, P ) is composed primarily of the backing graph vector
Giv = g1 . . . g|N |, with each gi recording the edge context for node ni in the graph:
gi = (ηi, Ξi), a sequence vector Siv recording the sequences labels of the nodes in a
bitcompressed form, and a path membership mapping Npath. Each pi ∈ P is encoded
with a set of structures that allow random access to the graph by path position, which
is important for the use of paths as reference coordinate systems in the graph. A visual
sketch of this model is provided in figure 2.1.

To enable better compression, the node sequence space is recorded as a concatenation
of node labels Siv = seq(ni) . . . seq(n|N |), in which each node has an offset in this
sequence space defined by seqoffset(ni). In bitvector Sbv : |Sbv| = |Siv| we set 1 at each
first character in a node label, and 0 otherwise: Sbv[i] = 1 ⇐⇒ ∃j : seqoffset(nj) = i∨0.
Random access by node rank i is provided by function Sselect1

bv , allowing us to find the
sequence given a node rank in Giv.

7“X” implies compression and “G” refers to the graph that is compressed.

https://github.com/simongog/sdsl-lite
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Fig. 2.1 A visual presentation of the key elements of the XG index for the given graph.

Each ηi records node contextual information, including an external id, its offset in
the sequence vector, and the degree of ni in terms of inbound and outbound nodes:
ηi = [id(i), seqoffset(ni), |seq(ni)|, in(ni), out(ni)]. The use of an external identifier
allows the index to work on subsets of larger graphs, and the information about node
degree allows us to parse the edge records and efficiently traverse Giv.

The edge context Ξi enumerates the set of edges that connect to this node in a
structured way that allows for oriented traversals across the two strands of the graph.
To enable fast traversal we rewrite the edges in terms of relative positions in the
encoded Giv vector, which is stored as a bitcompressed integer vector using SDSL-lite’s
template primitives. Each node record is stored contiguously. We delimit the records
by a secondary bitvector Gbv, for which we build supports for functions Grank1

bv and
Gselect1

bv , which allow random access of Giv by node id. Previous designs decomposed
the graph structure into a set of parallel vectors, but this required multiple select
queries during traversal and provided poor cache locality and performance.

Node to path membership is recorded in an integer vector Npath, which contains
a contiguous record of path ids that cross each node. Random access to Npath is
provided by a rank/select dictionary built on a bitvector delimiting the various node
path membership lists. Nodes with no path membership are marked in Npath with a 0.
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Each path is represented in a set of succinct data structures that let us walk the path
by starting at a particular node, query the path position of a given node, or find the
node at a particular path position. We store the path pi = m1 . . . m|pi| by decomposing
its mappings into the nodes (id and orientation) it traverses piids = id(nj)∀nj ∈ pi and
pidir such that pidir [j] = 0 ⇐⇒ mj = (nj, . . .) ∨ 1 ⇐⇒ mj = (nj, . . .). To allow rank
and select queries on the node ids, we can store piids in a wavelet tree, although in
practice performance is greatly improved by also recording a minimum node id, which
decreases the alphabet size and thus memory and runtime costs of the wavelet tree. So
that we may transform nodes to path positions, we use an integer vector to store a
path position for each node traversal in the path, pipos . To go from path offset to node,
we build a bitvector that marks the beginning of each node traversal in the path in a
manner similar to that used to mark the sequence beginning of each node in Siv, such
that pioffset is a bitvector of length ∑|pi|

j=1 |seq(pi[j])| where we have marked 1 for each
node start in the path, pioffset [j] =

(
1 ⇐⇒ ∃nk ∈ p : j = ∑k

m=1 |seq(pi[m])|
)
∨ 0. By

implementing prank1
ioffset

we can find the node at a given path position Q by prank1
ioffset

(Q)→ j :(∑j
k=1 |seq(pi[k])| ≤ Q ∧∑j+1

k=1 |seq(pi[k])| > Q
)
. We can also find the position of the

jth node in a path as pselect1
ioffset

(j). A compressed suffix array (CSA) and rank dictionary
Pcsa and P rank1

name map from path name to internal rank of the path in P .
A number of compression techniques can be applied to the data models in XG to

reduce the size of the overall index without any loss in functionality. However, many
of these compression methods producing compressed bitvectors, integer vectors, and
wavelet trees, will result in slower access. In the context of read alignment, such losses
may be undesirable as long as there is sufficient memory to load the entire index into
system memory, and so I have tuned the index by choosing compression strategies
appropriate for its use on current datasets.

2.4.3 Graph sequence indexes

Indexing the sequence space of a variation graph can be achieved using the same k-mer
based techniques frequently used in pairwise alignment. In the early stages of this
project, I implemented a k-mer based index using a disk-backed system (see section
2.4.5). An efficiently-built in-memory index of k-mers, perhaps sampled and possibly
w, k-minimizers [170, 150], appears to be a reasonable basis for a sequence to graph
aligner, but I did not explore this beyond these initial experiments. Our research focus
on the replication of results of the short read mapper bwa mem, which seeds alignments
with maximal exact matches (MEMs), encouraged a similar approach for vg. MEMs
are found using a suffix tree related data structure, which provides access to a wide
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range of efficient sequence matching and inference algorithms, and a strong basis for a
sensitive read aligner.

On seeing my early experiments, Jouni Sirén, who had recently joined our lab,
suggested that there might be a way to adjust his GCSA index model for partially
ordered graphs to work on arbitrary graphs. He proposed a de Bruijn graph (DBG)
transformation of the graph as input to the indexing process. The resulting indexing
model is similar to both GCSA, in its encoding of the graph topology, and succinct
DBGs [23], which are also developed from BWTs based on a k-mer set. Sirén’s design
allows for the use of much longer k-mers than are typically considered in DBGs, with
the final DBG to be indexed having k = 256. As few contemporary reads are likely to
generate 256bp-long sequences with no mismatch from the reference8, this approach
effectively allows us to find all the exact matches for a typical sequencing read. To be
more precise, we find supermaximal exact matches (SMEMs) as defined in [146]. The
addition of the longest common prefix (LCP) array alongside GCSA2’s BWT effectively
generalizes all essential operations on a suffix tree to the GCSA2, and enables us to
find SMEMs and develop sensitive MEM-based seeding heuristics using the index. The
design of GCSA2 is wholly Sirén’s work [247], and it forms one of the core components
of the vg mapper paper, which we coauthored. I present it here because the mapping
algorithm I developed for vg relies on it heavily.

To reduce redundancy, GCSA2 uses a pruned DBG whose nodes may have labels
shorter than k where these shorter strings still uniquely identify the beginning of their
corresponding paths in the unpruned DBG.
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Figure 2: Left: Input graph G = (V,E), with each node v ∈ V labeled with v : G.label(v). Right: The order-3
de Bruijn graph G′ = (V ′, E′) of graph G, with each node v′ ∈ V ′ labeled with G′.key(v′) and G′.value(v′). Both:
Edges (t, s) are not shown. The highlighted path in the de Bruijn graph is a false positive, as it consists of two
disjoint paths in the input graph.

Lemma 3.4. (No short false positives)
Let G = (V,E) be a graph, let G′ = (V ′, E′) be an
order-k pruned de Bruijn graph of graph G, and let
X ∈ (Σ \ {#, $})∗ be a pattern with 1 ≤ |X| ≤ k. Then
G′.locate(X) is a set of start nodes v ∈ V of paths
matching the pattern in graph G.

Lemma 3.5. (Pruning) Let G = (V,E) be a graph, let
G′ = (V ′, E′) be the order-k pruned de Bruijn graph
of G with key set K, let K ∈ Σ∗ be a string of length
|K| > 0, and let V ′K be the set of nodes v′ ∈ V ′ having
string K as a proper prefix of G′.key(v′). If |V ′K | > 0 and
G′.value(u′) = G′.value(v′) for all u′, v′ ∈ V ′K , the path
graph with key set (K \ {G′.key(v′) | v′ ∈ V ′K}) ∪ {K} is
an order-k pruned de Bruijn graph of G.

We can compress a de Bruijn graph structurally
by merging sets of nodes sharing a common prefix of
their keys, as long as the conditions of Lemma 3.5
hold. Let G′ = (V ′, E′) be an order-k pruned de Bruijn
graph, and let G′′ = (V ′′, E′′) be the same graph after
further pruning. Each node v′′ ∈ V ′′ is an equivalence
class of nodes V ′(v′′) ⊆ V ′ corresponding to a shared
prefix G′′.key(v′′) of keys. For all v′ ∈ V ′(v′′), we have
G′.value(v′) = G′′.value(v′′). See Figure 3 for an example
of a pruned de Bruijn graph.

Definition 3.6. (Maximally pruned graph)
Let G′ be a a pruned de Bruijn graph of graph G. We
say that G′ is maximally pruned, if we cannot prune it
any further using Lemma 3.5.

Lemma 3.6. (Maximal pruning) Let G′ = (V ′, E′)
be a maximally pruned de Bruijn graph of G = (V,E).
Then |G′.key(u′)| ≤ |G′.key(v′)|+ 1 for all (u′, v′) ∈ E′.

4 GCSA2
As in the original GCSA, we sort the nodes of the
path graph in lexicographic order, encode the indegrees

and outdegrees in bitvectors IN and OUT, and store
the predecessor labels in BWT. See Figure 3 for an
example. If lexicographic range [spi+1, epi+1] matches
suffix X[i + 1, |X| − 1] of pattern X, we can find the
range [spi, epi] matching suffix X[i, |X| − 1] as

[spin, epin] = [IN.select(spi+1, 1) + 1,

IN.select(epi+1 + 1, 1)];

[spout, epout] = [LF(spin, X[i]),

LF(epin + 1, X[i])− 1];

[spi, epi] = [OUT.rank(spout, 1),

OUT.rank(epout, 1)].

In order to support locate queries, we sample the
values of a node, if the node has multiple incoming edges
or the values cannot be derived from the predecessor.
We may also sample other values to improve query
performance. The sampled nodes are marked in bitvector
BS , the number of values in each sample is encoded in
unary in bitvector BV , and the sampled values are stored
in integer array VS . A detailed description of the data
structure can be found in Appendix B.

GCSA2 construction starts from paths of length k in
the input graph. We build a maximally pruned order-2k,
order-4k, or order-8k de Bruijn graph using a similar
prefix-doubling algorithm as in the original GCSA [43],
and encode the result as a GCSA. To avoid excessive
memory usage, we keep the paths and the graphs on
disk, and read only a single chromosome at a time into
memory. The details of the construction algorithm can
be found in Appendix C.

We can improve the query performance with (max-
imally pruned) de Bruijn graphs by using a simplified
encoding (Appendix D). We replace BWT and IN with
bitvectors Bc for all c ∈ Σ, where Bc[j] = 1 if and only
if node j in lexicographic order has a predecessor with

Fig. 2.2 A sequence graph and its de Bruijn transformation. Reprinted from [247].

This pruned graph is then encoded in a generalization of the FM-index built on a
BWT of the k-mers in the pruned DBG. The FM-index is extended to support search
over the DBG by adding auxiliary bitvectors which record the indegree and outdegree

8Illumina’s reads rarely reach 256bp, and when they do they tend to have higher error rates in the
later cycles. The 10-15% error rate of PacBio and ONT sequencing mean that a 256bp exact match
is extremely unlikely, although PacBio circular consensus reads (CCR) may approach this level of
accuracy.
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of nodes in the pruned DBG. These are used in backwards search to adjust the suffix
array ranges that are considered, expanding them when the indegree is greater than 1
and contracting them when the out degree is greater than 1, in effect encoding the
graph structure into the index in a space efficient manner optimized for traversal.
This technique is the same as that used in GCSA, although GCSA indexes a reverse
deterministic automaton rather than a DBG. Impressively, GCSA2 uses around 1 bit
per k-mer in indexes of the 1000GP pangenome graph for k = 128, which is favorable
with comparison to true DBG indexes.

As an FM-index like structure, GCSA2 supports queries for a pattern X that
yield the suffix array interval matching a given pattern: find(X) = (spX , epX), and
locate(spX , epX) = {b1 . . . bcount(spX ,epX)} which yields the positions in the input VG
where the given patterns occur. The LCP array allows the index to support several
operations that require a suffix tree, including count(spi, epi), which returns the number
of matches for a given suffix array range, and parent(spi, epi) = (spj, epj), which allows
us to traverse the suffix links embedded in the suffix tree and forms the basis of maximal
exact match (MEM) inference using GCSA2.
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Figure 3: Left: An order-3 pruned de Bruijn graph G′′ 3-equivalent to the de Bruijn graph in Figure 2. Right:
GCSA for graph G′′. Leftward arrows illustrate backward searching, with the red arrows showing it from T to AT.
Rightward arrows mark the samples belonging to each node, with the blue ones showing them for node CAT.

label c. This simplifies backward searching to

spout = C[X[i]] +BX[i].rank(spi+1, 1);

epout = C[X[i]] +BX[i].rank(epi+1 + 1, 1)− 1;

[spi, epi] = [OUT.rank(spout, 1),OUT.rank(epout, 1)].

The compacted trie of keys resembles a suffix tree.
We can simulate it space-efficiently by using the LCP
array [1, 11], and thus extend GCSA2 to support many
suffix tree operations. For example, we can search for
maximal exact matches by using LF-mapping and parent
queries [35], and use that as a basis for a read aligner
similar to BWA-MEM [21]. We can also use document
counting techniques [41] to quickly count the number
of distinct matches in a lexicographic range. Further
details of these extensions can be found in Appendix E.

5 Implementation and Experiments
GCSA2 is the path indexing library of vg [14]. The
implementation is written in C++, and the source code
is available on GitHub.3 It depends on SDSL [15] and
libstdc++ parallel mode. We use the simplified encoding
(Appendix D) with fast non-compressed bitvectors
in most index components. Bitvectors Bc for rare
characters (N, #, and $) are compressed as sparse
bitvectors [36].

We used a system with two 16-core AMD Opteron
6378 processors and 256 gigabytes of memory for the
experiments, and stored all files on a distributed Lustre
file system. The system was running Ubuntu 12.04
on Linux kernel 3.2.0. We used vg version 1.3.0 for
processing the graphs and GCSA2 version 0.8 using
SDSL version 2.1.1 for the benchmarks. All code was
compiled with gcc/g++ version 4.9.2.

3https://github.com/jltsiren/gcsa2

5.1 Construction Variation graphs, as defined in vg,
use strings as node labels. A node can be traversed
in both forward and reverse complement orientations,
and edges may cross between the orientations. For
indexing, the graph is implicitly converted into an input
graph with single-character labels. We always sample
the input graph nodes corresponding to the initial offsets
of variation graph node labels.

We built vg graphs from the human reference genome
(GRCh37) and 1000 Genomes Project variation [45]. To
avoid excessive growth, we removed paths where 16-mers
crossed more than 4 nontrivial edges with vg mod -p
-l -e 4, and subgraphs shorter than 100 bases with vg
mod -S -l 100. We extracted all paths of length 16
from the forward strand of the graph. There were a total
of 4.80 billion paths with 1.53 billion distinct labels. We
then built GCSA with 1–3 doubling steps, producing
order-32, order-64, and order-128 indexes.

Tables 1 and 2 show construction requirements
and index sizes, respectively. We can build a whole-
genome index overnight using less than 96 gigabytes
of memory, including disk cache. The index contains
1.031k ·2.348 billion k-mers, but the path graph only uses
4.4–5.7 billion nodes to represent them. For k = 128,
GCSA2 requires 0.63 bits per k-mer, out of which
0.28 bits is used for the path graph. Extensions based
on suffix trees increase the size to 1.08 bits per k-mer.

Index construction uses more memory with k = 32
than with larger values of k. The order-32 path graph
has more nodes, where we cannot derive the values from
the predecessor node. As we sample more values, we
need more memory in the final phase of construction.
With larger values of k, the path graph resembles the
input graph better, and we sample less values. For the
same reason, index size decreases with larger values of
k, even though the graph requires more space.

Fig. 2.3 Left: An order-3 pruned de Bruijn graph 3-equivalent to the de Bruijn graph in
figure 2.2. Right: GCSA for the graph. Leftward arrows illustrate backward searching,
with the red arrows showing it from T to AT. Rightward arrows mark the samples
belonging to each node, with the blue ones showing them for node CAT. Reprinted from
[247].

GCSA2 resolves a number of problems that limit the utility of other graph path
indexing schemes. Indexing a pruned DBG allows GCSA2 to be applied to arbitrary
bidirectional string graphs that include reversals and loops. It avoids exponential costs
during backwards search. However, it does incur exponential costs in construction of
the index. To mitigate the affects of these it may be constructed mostly in external
memory, and furthermore construction may be broken into pieces by chromosome or
some other subdivision of the graph. Its external memory construction algorithm uses
a prefix doubling approach to transform an input DBG of order k to a pruned one
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of order 2mk through m doubling steps. The high-order DBG need never be loaded
into RAM but is induced from a lower-order DBG augmented with sufficient positional
context on its nodes to support the disk-backed prefix doubling process. In order
to further reduce the complexity of the final index, the DBG input to GCSA2 may
be constructed from a VG in which complex regions have been masked or reduced
in local complexity using prior information such as a haplotype panel. By default,
vg runs GCSA2 with initial k = 16 and m = 4, yielding a final DBG with k = 256.
Because it is based on a DBG, GCSA2 limits the maximum length query for which no
false-positive results will be returned to the order k of the DBG.

To appreciate the costs of indexing a human genome sized graph9, the order-256
GCSA2 index of the 1000GP variation graph may be constructed using less than
500GB of scratch space, to and from which are written approximately 3TB during
construction, all while requiring less than 50GB of RAM. This puts GCSA2’s indexing
resource requirements well within the specifications of standard commodity compute
servers. The resulting index occupies between five and ten times the input graph’s
serialized size, no more than 50GB for a human genome.

2.4.4 Haplotype indexes

Recording the path set of a graph in XG (described in section 2.4.2) requires O(NP +
L|P |) space where L is the average haplotype length in terms of nodes it crosses, N is
the number of nodes in the graph, |P | is the number of paths in the graph, and P the
average number of paths crossing each node. Although, such a representation can be
compressed, the size of this representation will grow linearly with the addition of new
paths, making it impractical as a means to record very large numbers of genomes.

Recording collections of paths is an important requirement for the use of VG in
resequencing, as the Markovian property of the bare sequence graph G = (N, E, P = ∅)
means it can encode exponentially many paths relative to the true input path set
used to build the graph. This introduces significant issues during read mapping and
genome inference. With increasing variant density the number of possible sequence
paths of a given length grows exponentially, and this can lead to spurious mismapping
(section 3.2.2). The exponential growth of the path space of the graph has relevance for
sequence indexing with GCSA2, and as described in 2.4.3, simplification of the graph
in complex regions prior to GCSA2 indexing is required to build indexes in practice. A
haplotype index allows the pruning operation to preserve known haplotypes, rather

9Precise sizes are given later in the discussion of results.
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than defaulting to the reference genome in such cases. Efficient path indexes could
be used for many operations in variant calling and phasing, and may have utility in
assembly problems, for instance to losslessly record a read set embedded in a squish
graph representing their mutual alignment (section 2.2.6).

Haplotype sequences from the genomes of the same species often share extensive
regions, which suggests that they may be very efficiently compressed. This property was
used to store large haplotype sets in the positional BWT (PBWT) [65]. As input, the
PBWT assumes a set of haplotype strings S1 . . . Sm of the same length which describe
a set of haplotypes relative to a set of variable loci. Sj [i] records the allele in haplotype
j found at locus i. We set Sj[i] = 0 when haplotype j has the reference allele at locus
i, and Sj[i] > 0 if it encodes one of possibly several alternate alleles. The PBWT can
be understood as an FM-index of texts T1 . . . Tm : Tj [i] = (i, Sj [i]) [84]. To search for a
haplotype of h in the range [i, j] we look for pattern h′ = (i, h[1]) . . . (j, h[|h|]). The
alphabet size of this FM-index is large, but the matrix like structure of the haplotype
set means that we can implicitly encode the array indexes by building a separate sub
index for each position. Applying run length encoding to the BWT allows extremely
good compression of real haplotype sets.

With the graph positional Burrows–Wheeler transform (gPBWT) [195], we extended
this model to work on variation graphs. The basic model is the same as the generic
PBWT except that instead of variant matrix positions we consider haplotype traversals
of oriented nodes10 ni or ni, and rather than a local alphabet of variant alleles we encode
a local alphabet Σni

= {j ∈ N |eij ∈ E} which describes the set of nodes n{j∈N |eij∈E}

to which haplotypes go after the current node ni. As in the generic PBWT we build
an FM-index of T1 . . . Tm, encoded in what we call the Bs arrays, which provide the
local description of prefix sorted haplotypes (equivalently, threads) traversing each
node ns. To deal with the bidirectionality of paths in variation graphs, each haplotype
must be encoded in its forward and reverse orientation. In [195] we demonstrated the
expected sublinear scaling of the gPBWT by building an index for chr22 with increasing
numbers of samples. Constructing the gPBWT for haplotype sets representing more
than a few hundred samples proved difficult when using our particular implementation.
Progressive construction of the gPBWT in generic graphs was enabled by encoding the
gPBWT into dynamic succinct data structures and adding a single haplotype thread
and its inverse one at a time. While functional, we found this to be untenable for large
graphs and haplotype sets. Overheads associated with the dynamic data structures it
uses were significant, but the most-difficult issue was the serial nature of the progressive

10These are described as “sides” in [195].
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construction algorithm, which gives the algorithm O(m) runtime. Consequently, all
our large-scale experiments were carried out using a partially ordered construction
algorithm that worked using a VCF file as input.

The graph Burrows-Wheeler transform (GBWT) [250] simplifies the data model
used by gPBWT so that it is independent of vg. The GBWT can be understood as
the FM-index of a transformation of the graph’s paths p1 . . . pm ∪ p1 . . . pm into the
text T = $(p1 = ni . . . nj) . . . $(pm = nj . . . ni) wherein the paths are rewritten as a
series of characters representing node traversals in a large alphabet and delimited by a
marker $. This approach is challenging due to the large size of T for moderately-sized
haplotype sets embedded in variation graphs, e.g. |T | ≈ 1012 for the 1000GP [250].
Serializing the path set during construction is not feasible, which suggests a dynamic
version of the model is required.

In the GBWT we break the full FM-index into per-node records, each of which
encodes a header defining an alphabet Σni

of all the nodes that follow ni in any path,
and a body BWTni

which is the subset of the full BWT specifying which node follows
ni in each path that passes through ni, with the paths sorted in reverse sequence order
up until ni. Since paths that are similar before ni tend to be similar after it, this
sequence of next node values run length compresses well.

The GBWT supports essential FM-index operations including: find(X)→ [sp, ep]
yielding the lexicographic range of suffixes starting with pattern X; locate(sp, ep)→
paths occurring in SA[sp, ep]; and extract(j)→ pj which returns the jth path in the
graph. By encoding all paths in both orientations, the GBWT can be treated as a
kind of FMD-index for haplotypes, allowing bidirectional search. This means that the
GBWT in turn supports MEM-based haplotype matching, which has potential uses in
genotype imputation, phasing, association mapping, and other population genetic and
evolutionary assays.

The GBWT representation reflects a number of assumptions that tend to hold for
most DNA sequence graphs. Nodes tend to have low degree, which means the local
alphabet size |Σni

| is small, and we can afford to decompress a small local alphabet
encoding efficiently. Most nodes are not traversed more than once by each path, so
the BWTni

remains small and can be accessed and modified in bounded time. Due to
relatedness among individuals in many species, it is sensible to assume that haplotypes
will be highly repetitive, which allows for efficient RLE encoding of BWTni

. The graph
is sorted, and its identifier space has been compacted, which allows us to store the
same information for the entire range of node identifiers in bounded memory with
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respect to |N |. The graph tends to be locally ordered in most places, which decreases
the complexity of construction.
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Fig. 2.4 Left: A graph with three paths. Right: GBWT of the paths. Reprinted from
[250].

A dynamic GBWT implementation presents the node records through an index
over the range of [min(i : ni ∈ N), max(i : ni ∈ N)], for each linking to its header,
body, incoming edges, and haplotype identifiers. Construction employs this model
in a manner similar to RopeBWT2 [147], where batches of paths are insert into the
index in a single step following the BCR construction algorithm [14]. This process
includes the new paths in the dynamic GBWT by rebuilding each node record affected
by the extension. When constructed, the GBWT may be encoded in a compacted but
immutable form that uses less memory. By breaking the construction process apart for
each chromosome and finally merging the compressed GBWTs, it is possible to build
the GBWT for the entire 1000GP haplotype set in around 30 hours. The resulting
GBWT requires ≈ 15 GB, with around half allocated to the GBWT structure itself
and half to haplotype identifiers. The index consumes less than 0.1 bit per node in
the stored paths, and we should expect this to improve when we build the GBWT for
larger haplotype panels.

2.4.5 Generic disk backed indexes

I began the development of vg alone, starting with schemas for the data models,
then building an index of the graph using the disk-backed key/value store RocksDB11.
I transcribed the data model into namespaces and sorted arrays written into the
key/value store. As compressors of various types could be applied to the sorted arrays

11https://github.com/vgteam/vg/blob/master/src/index.hpp

https://github.com/vgteam/vg/blob/master/src/index.hpp
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backing RocksDB, the memory required for this approach was ultimately similar to
that for the final indexing models that I present here. However, performance was far
worse, and the initial version of the aligner based on these systems could not achieve
correct results using reasonable amounts of time for large graphs. Ultimately, this
flexible database model has remained important for some pipelines, in particular as a
technique to organize alignments against the graph. Other workloads such as sequence
queries were untenable for large genomes, with reliable performance only possible if
the entire index of spaced 27-mers was cached in RAM, requiring nearly 200G in the
case of the 1000GP variation graph. The sorted disk-backed array does have the useful
property of allowing prefix queries of the k-mer set, but this can easily be attained
with GCSA2. On the networked storage available in my institutional setting, the
construction costs for disk-backed index models were usually much worse than those of
the XG and GCSA2 models.

2.4.6 Coverage index

A coverage map, of the alignments to a VG is similar to the labeling required to
implement “colors” on a DBG [112]. The coverage map loses information about the
edge traversals and the paths taken through the graph, which could reduce the visibility
of some kinds of variation within it. But in benefit, this simple model is efficient to
use. The complexity of computing the coverage map is linear in the number of the
input alignment set, and it requires O(∑∀ni∈N |ni|) space to store once built.

I developed an compact coverage index by mapping the sequence space of the graph
into a vector and recording coverage across it for a GAM read set. During construction,
a succinct format is employed to store each base’s coverage in a single byte as long
as it is below 255, and in a secondary hash table if it reaches or exceeds 255. Finally,
a compressed integer vector is generated, which can be queried by graph position
computed from the XG index of the graph. I extended this concept with a succinct
“pileup” format [154] generated from the edits against the graph. In this model edits in
mappings which don’t match the reference were serialized into a byte alphabet using
Protobuf, such that each non-reference edit ej at position bi was recorded as a string
$biej, with the idea that by building a CSA/FM-index from these I could obtain the
set of edits at each graph position through pattern matching. However, I found it
impossible to construct this for a large high-coverage sequencing sample, and have not
continued this line of investigation.
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2.5 Sequence alignment to the graph
To align sequences to a VG, we use the graph and sequences indexes described in the
previous section (2.4) to derive MEMs between a query and the graph. A Markovian
chaining model is built from the MEMs which respects their relative positions in the
graph and the read, favoring collinear mappings of MEMs, and Viterbi is used to
extract likely mappings based on the MEMs. We then align the sequence locally to the
graph at each of the high scoring chains using various sensitive alignment algorithms
that use various kinds of dynamic programming.

To detect structural variation and align long reads without incurring quadratically-
scaling computational penalties, we apply a kind of banding and a second layer
of chaining. In chunked alignment, large sequences are broken up into overlapping
segments, each of which is aligned individually in any order or orientation. This
subdivision provides a kind of banding to the alignment algorithm, preventing the
evaluation of the full DP matrix, but more importantly it also allows alignments that
are generated to represent any kind of variation. Each chunk is aligned independently.
The same collinear chaining model, with different parameters, is used to establish the
optimal global chain through the alignment chunks, thus yielding a full alignment for
an input sequence of any size. Where our reads are shorter than the standard chunk
size (256bp), the alignment behaves exactly as in bwa mem. Figure 2.5 illustrates the
alignment of a long read against a complex graph.

Unfolding and DAGification transform a cyclic bidirectional sequence graph with
inversions to an acyclic simple sequence graph one in which all k-paths in the first graph
are represented. Any alignment algorithm that may be implemented on a sequence DAG
can thus be used. Optionally, other alternative DP alignment algorithms implementing
a banded global alignment can be applied, and I describe one of these that I implemented
to surject alignments into a particular reference path.

2.5.1 MEM finding

First, a set of super-maximal exact matches (SMEMs) of a query sequence are generated
by traversing the suffix tree encoded in the GCSA2 index until the count of matching
strings drops to 0, then backing off one step to find all longest exact matches. A
recursive series of “reseed” passes through the traversal can then identify distinct
next-longest matches which are used both to improve sensitivity. These are not super-
maximal, thus we tend to call these heuristically derived exact matches “MEMs”.
Then, chains of MEMs that are consistent with the query sequence are found using a



2.5 Sequence alignment to the graph 71

A

B

C

Fig. 2.5 Aligning a 32,737bp PacBio read from the SK1 strain to a yeast pangenome
graph (section 3.1.2). Red nodes contain initial MEM hits, while other nodes are
colored if they were matched during local alignment. (A) The nodes found in the best
alignment are labeled in blue. (B) A much smaller secondary alignment is shown in
green. (C) MEM hits for this read cluster in chromosome ends, which are seen as tips
in the graph visualization.
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Markov model in which the optimal alignment is likely to form a Viterbi path. For
each candidate chain, we then locally align the read against the graph. Scoring results
from the local alignment are used to rank the candidate alignments. We then return
the best alignment, or multiple candidates if multiple mappings are required.

2.5.2 Distance estimation

To cluster our MEMs we require a distance function that returns the minimum
distance between any two positions dist(bi, bj). Distance measurement between nodes
in a variation graph is non-trivial, with exact solutions to the problem theoretically
requiring O(E log log L) where L = max∀ni∈N |ni| is the maximum node length [120].
Precomputation of the full set of distances would thus require O(N2E log log L) time
and O(N2) space, which is infeasible for any large graph. Many variation graphs are
mostly linear, which we can exploit to build an approximate distance metric. Provided
we have applied a partial sort to the graph, in the partially ordered regions we can use
the offset of each node in the XG sequence vector Siv as an approximate 1D coordinate,
which we query using the corresponding rank/select dictionary Sbv. We expect that in
much of the graph Sselect1

bv (id(bj)) + offset(bj)− Sselect1
bv (id(bi)) + offset(bi) ∝ dist(bi, bj),

where id(b) is the function that returns the rank of position b’s node in the XG index,
and offset(b) returns the position’s offset inside the sequence label of the node.

Nonlinearities in the graph will frustrate this metric, and to manage these we rely
on the positional index provided by the positional paths given in the XG index. In
these, we can query the relative positions of nodes in the path in O(1) time. Where
both positions are not on the same path, we can use local exploration of the graph
near our positions bi and bj to attempt to find anchoring nodes on the same path. In
our clustering step we can consider the multiple coordinate systems to develop a global
pseudoalignment.

2.5.3 Collinear chaining

If the MEMs do not cover the full read length, then we attempt to link them together
into chains by building a Markov model in which the best possible chains form high-
scoring paths. In this model the nodes correspond to the reference graph positions
where MEMs in the read occur and the transitions between nodes correspond to a
weight that is proportional to the indel size implied by the difference in distance
between the positions of the MEMs in the read and their distances in the graph. To
allow us to consider different distances calculated from different positional paths, we
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record one node per positional path that each MEM touches. If we are aligning a read
pair, the weight between MEMs on different fragments is proportional to the probability
of that distance under a learned model of the fragment insert size distribution. Once
we establish this model, we take the Viterbi path through it as our first candidate
alignment. By masking out the states in this path and re-running the Viterbi algorithm
on the model, we can extract a series of candidate alignments in descending order
of goodness. Although the exact algorithm is different, in spirit our implementation
is similar to that developed in [136], which extends collinear chaining to DAGs by
running a similar model over a minimal set of paths covering the graph.

2.5.4 Unfolding

Every node has an implicit default orientation so that it is possible to determine edges
that cause an inversion, i.e. those which connect between a forward and a reverse
complement node orientation. When unfolding the graph, we use a breadth first search
starting at every inverting edge in the graph to explore the reverse complemented
portions of the graph that we can reach within length k from the inverting edge. We
then copy this subgraph, take its reverse complement, and replace the inverting edges
connecting it to the forward strand of the graph with non-inverting ones.

2.5.5 DAGification

Variation graphs may have cycles. These are useful as compact representations of
copy number variable regions, and arise naturally in the process of genome assembly.
However, partial order alignment algorithms do not handle these structures, and so we
convert cyclic graphs into k-path equivalent acyclic form in order to apply DAG-based
alignment algorithms to them. To do so, we unroll cyclic structures by copying their
internal nodes an appropriate number of times to allow a given query length to align
through the unrolled version of the component. If our query is shorter than this limit,
k ≥ |Q|, then we are guaranteed to find the optimal alignment in the original graph by
aligning against the DAGified one.

We first detect all strongly connected components by using a recursion-free im-
plementation of Tarjan’s strongly connected components algorithm [261]. Then, we
copy each strongly connected component and its internal edges into a new graph.
We greedily break edges in this graph that introduce cycles. Next we k-DAGify the
component progressively copying the base component and, for each edge between nodes
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in the component, connecting from the source node in the previous copy to the target
node in the current copy.

We use dynamic programming to track the minimum distance back through the
graph to a root node outside the component at each step. When this reaches our
target k, we stop unrolling, and add the expanded component back into the graph by
reconnecting it with its original neighborhood. For each copy of a node in the DAGified
component we copy all its inbound and outbound edges where the other end of the
edge lies outside the strongly connected component. The resulting graph is acyclic and
supports queries up to length k on the original graph using the translation that we
maintain between the new graph and the source one.

2.5.6 POA and GSSW

Graph striped Smith-Waterman (GSSW)12 generalizes an implementation [286] of
Farrar’s SIMD-accelerated striped Smith Waterman (SSW) algorithm [76] to enable
string to graph alignment. Single-Input Multiple-Data (SIMD) instructions allow
vectorized mathematical operations in a single machine instruction, and can be used
to greatly speed up algorithms which can be implemented in terms of operations on
vectors.

GSSW generalizes all aspects of SSW to operate over sequence directed acyclic
graphs, including affine gap penalties, and retains its matrices for traceback13. This is
simple to accomplish if the reference is a graph, as the striping of SIMD calculations in
SSW across the reference is done by a single character at a time, and thus boundaries
between nodes do not split the SIMD embedded variables. We can generalize SSW to
GSSW by extending the recurrence relation that defines the scores in the DP matrices
to consider all previous positions on all nodes that connect to the current one.

Given a query Q and a sequence graph G = (N, E) with sequence length L =∑|N |
i |seq(ni)|. We record the maximum scores of partial alignments between Q and

G in the set of matrices H = H1 . . .H|N | : each Hi is a |seq(ni)| × |Q| matrix. H
thus contains |Q| × L cells. When we have completed the scoring phase of alignment
each Hi[x, y] will record the maximum score of an alignment between Q and G ending
at (ni[x], Q[y])14. To develop our scores, we use a scoring function score(a, b), which
in the case of DNA returns the value of a match (typically a positive integer) when

12https://github.com/vgteam/gssw
13SSW discards these matrices for performance reasons, instead establishing the traceback later

with local banded DP.
14Here I will use brackets [. . .] to identify the cells in 2-dimensional arrays.

https://github.com/vgteam/gssw
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Fig. 2.6 DAGification of a small graph, as seen in 2.6a, with the k unrolling parameter
given below each graph.
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a = b ∨ a = N ∨ b = N and the value of mismatch when a ̸= b (typically a negative
integer). We score a gap beginning with ωopen and a gap extension as ωextend. We
record the score of a gap along G in matrices E = E1 . . . E|N | and a gap along Q in
matrices F = F1 . . .F|N |.

Gaps in Ê extend across the graph, and so we need to consider all the inbound
edges when we are at the beginning of a node:

Ei[x, y] = max



Ei[x, y − 1]− ωextend

Hi[x, y − 1]− ωopen

max∀j:∃eji∈E Ej[|nj|, y − 1]− ωextend if x = 1
max∀j:∃eji∈EHj[|nj|, y − 1]− ωopen if x = 1

(2.1)

However, this is not the case for F̂ , whose data dependencies flow vertically over
the query Q:

Fi[x, y] = max

Fi[x− 1, y]− ωextend

Hi[x− 1, y]− ωopen
(2.2)

The score in Ĥ combines the affine gap calculations in Ê and F̂ . As with Ê , we
here we also must consider the inbound nodes:

Hi[x, y] = max



0
Ei[x, y]
Fi[x, y]
Hi[x− 1, y − 1]− score(Q[x], ni[y])
max∀j:eji∈EHj[|nj|, y − 1]− score(Q[x], nj[y]) if x = 1

(2.3)

The values of Hi, Ei, and Fi are 0 when x = 0 or y = 0 and node ni has no
inbound edges. Note that this is the initial condition provided by Gotoh to improve
the algorithm of Smith and Waterman.

We fill the matrices using Farrar’s SSW algorithm [76], based on Zhao’s imple-
mentation [286]. By storing the full score matrices we can then trace back from the
maximum score in Ĥ to obtain the optimal alignments under our scoring parameters.
The traceback can be represented as moves in the matrix, or equivalently as the
alignment object model described in section 2.1.3.
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2.5.7 Banded global alignment and multipath mapping

By modifying equation 2.3 so that it is no longer lower-bounded at 0 and changing the
traceback so that it goes from beginning to end of query Q and graph G, we obtain
a “global” alignment algorithm with the same properties as Needleman-Wunsch. To
reduce computational costs, we can band the algorithm to limit the region of the DP
tables which needs to be explored. This approach, as implemented in vg by Jordan
Eizenga, forms the basis for multipath mapping, in which alignments are represented
probabilistically as DAGs rather than linear series of node traversals and edits. In
multipath mapping, regions between MEMs in a particular cluster are aligned using
global alignment. The use of global alignment ensures that the alignment fully covers
the gap between the MEMs. Multiple traceback allows for alternatives to be included,
and each of these may be scored on the basis of both alignment score and haplotype
matching score. His implementation is key to the development of haplotype aware
mapping, which is the subject of a paper currently in preparation by myself and
collaborators on the vg project. In the case of low-error reads, this limited exploration
of the DP problem allows for fast derivation of the optimal alignments, and so the
multipath mapper in vg mpmap achieves runtime comparable to or exceeding vg map.
Multipath mapping concepts also form the basis for alignment surjection, in which an
alignment to the graph is projected into the linear reference.

2.5.8 X-drop DP

As our query length |Q| increases, so does the practical complexity of deriving the
alignment using POA/GSSW. We align longer queries against larger graphs, and so we
effectively face a quadratic penalty with increasing alignment length, |Q| ∝ |L| =⇒
GSSW is O(|Q|2). The most direct solution to this is to use a banded alignment
method like banded global alignment, as described in section 2.5.7. However, this
method cannot exploit data parallel operations that allow dramatic speedups on modern
processors.

In the course of our work on vg, Eizenga and I explored the application of Hajime
Suzuki’s adaptive banded global alignment (libgaba)15 [259], which has been used in
minimap2 to greatly improve alignment speed with long single-molecule reads [150]. In
this approach, an antidiagonal band of cells is computed at each step, of a predetermined
width designed to fit into the word sizes of SIMD instructions. The band can move
either “right” or “down” at each step, depending on where the highest score is found.

15https://github.com/ocxtal/libgaba

https://github.com/ocxtal/libgaba
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A termination criterion is given, so that alignment stops when the maximum score
falls a given amount. This is similar to the X-drop parameter used in BLAST to stop
alignment extension. Although it improves performance, it can hurt sensitivity to
indels.

Suzki had already implemented a version of alignment over graphs by transforming
the graph into a tree through a dynamic unrolling process akin to that described in
2.5.5 and aligning to the tree using libgaba16. His implementation supports graph to
graph alignment as described in section 2.1.4, but the exponential expansion of the
alignment problem on trees is fundamentally limiting. Eizenga, Suzuki and I discussed
methods to merge the bands together after traversal of unifications in the graph, but
we could not establish a safe generic method to merge them. Furcated bands may
only be merged directly if they map to the same query coordinate. This is unlikely
to happen if the different paths in the graph that they have traversed have different
lengths or if there are indels in the alignment.

During a biohackathon meeting in Kyoto, Suzuki presented an alternative banding
model based on the “X-drop DP” algorithm from BLAST. In this model, the alignment
is matrix broken into vertical non-striped windows that tile across the DP matrices
over fixed subsequences in the query. To efficiently resolve the data dependencies
between successive steps, a SIMD shuffle operation is applied to the cell values stored
in each window. Forward progression of each window stops when the highest score in
the forefront cells drops X below the previously-observed maximum. This approach
thus allows the band to spread as wide as needed to accommodate larger insertions,
while being bounded by the X-drop parameter. The result is an approach that is more
sensitive than the antidiagonal banded alignment in libgaba, but runs a factor of 2
slower for equivalent band sizes.

I have since worked with Suzuki to integrate his implementation of this algorithm
dozeu17 into vg. Due to difficulties in handling paired end rescue, the approach is not
yet performing as well as GSSW for vg map. This remains a work in progress, but is a
promising approach to enable the direct alignment of long sequences against the graph.
It is orthogonal to the “chunked” alignment approach, and in principle, they can be
applied together to build a SV-aware, chunked and banded alignment process. Future
work in this direction may yield a new VG alignment algorithm, but this lies outside
the scope of this thesis.

16https://github.com/ocxtal/comb
17https://github.com/ocxtal/dozeu

https://github.com/ocxtal/comb
https://github.com/ocxtal/dozeu
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Fig. 2.7 The dozeu X-drop alignment algorithm. Black rectangles represent the
evaluated region of the score matrix, which each box corresponding to a SIMD vector
value. Grey cells represent the part of the score matrix for which our X-drop parameter
would allow evaluation if we were calculating the matrix one cell at a time. Reprinted
with permission from https://github.com/ocxtal/dozeu.

2.5.9 Chunked alignment

For long reads, where in the worst case the local dynamic programming can become
prohibitively expensive, we break the reads into “bands” of a fixed width w (default
256 base pairs) with overlap between successive bands of w/8. We align these bands
independently, trim the overlaps from the alignments, and build a Markov model
from them similar to that built for MEM chaining, only that here we consider sub
alignments as nodes in the model rather than MEMs. In this model we put weights
on transitions between alignments that relate to the estimated distance between the
alignments in the graph versus their distance in the read, with the objective of making
long co-linear chains be the highest-scoring walks through the Markov model. We take
the Viterbi path through the model to be the best alignment. Then, to obtain multiple
alignments, we mask out this path, re-score, and take the Viterbi path to get the 2nd-,
3rd-, and ultimately Nth-best alignment. After they have been extracted from the
model, alignments are “patched” using local alignment of unaligned regions anchored
in the graph near the end of previous mapped regions, so that sub-alignments which
may have been misaligned due to repeats may be locally aligned correctly. Although
this sounds complex, in a very high fraction of cases neighboring alignments overlap
exactly in the overlap region of size w/8, and chaining is trivial. This model allows vg
to map noisy reads of arbitrary length, and is used as a core component in the long
read progressive assembler vg msga.

https://github.com/ocxtal/dozeu
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2.5.10 Alignment surjection

Alignments to graphs that include linear reference sequences as paths can be transformed
into alignments against those paths. To be well-defined, this lossy transformation,
surjection, requires that the alignment path matches the reference path for some
portion of its length. The simplest surjection technique extracts the reference path
region matching an alignment and realigns the read against it. Doing so without
global alignment will often result in soft clipping, such as where non-reference alleles
in the graph have allowed full length alignment. This can be resolved to some extent
by applying global alignment of the alignment query sequence against the reference.
But a more rigorous approach rebuilds the alignment in parts. For each piece that
is not aligned to the reference, we extract the intervening reference sequence and
align only the subset of the query that is no longer matching to this region. A kind
of anchored semi-global alignment may be used on the ends of the reads, where the
opposite reference-matching end is not defined. The resulting alignment may easily
be expressed in the BAM format and thus be used by standard downstream variant
calling and analysis methods.

2.5.11 Base quality adjusted alignment

Base qualities are typically reported on the Phred scale so that the probability of error
for a given quality Q is ϵ = 10−Q/10. Assuming no bias in which bases are mistaken for
each other, this defines a posterior distribution over bases b for a base call x.

P (b|x, ϵ) =

1− ϵ b = x

1
3ϵ b ̸= x

(2.4)

We use this distribution to derive an adjusted score function. Normally, the match
score for two bases is defined as the logarithm of the likelihood ratio between seeing two
bases x and y aligned and seeing them occur at random according to their background
frequencies.

sx,y = log
(

px,y

qyqx

)
(2.5)

Next we marginalize over bases from the posterior distribution to obtain a quality
adjusted match score.
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s̃x,y(ϵ) = log
 (1− ϵ)px,y + ϵ

3
∑

b̸=x pb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b ̸=x qb

)
 (2.6)

vg works backwards from integer scoring functions to the probabilistic alignment
parameters in this equation. After doing so, the match scores are given by

s̃x,y(ϵ) = 1
λ

log
(1− ϵ)qxqyeλsx,y + ϵ

3
∑

b̸=x qbqyeλsb,y

qy

(
(1− ϵ)qx + ϵ

3
∑

b ̸=x qb

)
 . (2.7)

Here, λ is a scale factor that can be computed from the scoring parameters, and the
background frequencies qx are estimated by their frequency in the reference graph. Since
base quality scores are already discretized, the adjusted scores can be precomputed
and cached for all reasonable values of ϵ.

2.5.12 Mapping qualities

The algorithm for mapping qualities in vg is also motivated by a probabilistic in-
terpretation of alignment scores. The score of an alignment A of two sequences X

and Y is the sum of scores given in equation 2.5. This makes it a logarithm of a
joint likelihood ratio across bases, where the bases are assumed independent (a more
complete justification including gap penalties involves a hidden Markov model, but it
can be shown to approximate this formula). We denote this score S(A|X, Y ). Thus,
assuming a uniform prior over alignments, we can use Bayes’ Rule to motivate a formula
for the Phred scaled quality of the optimal alignment, Â.

Q(Â|X, Y ) = −10 log10(1− P (Â|X, Y ))

= −10 log10

(
1− P (X, Y |Â)∑

A P (X, Y |A)

)

= −10 log10

1− eλS(Â|X,Y )∑
A eλS(A|X,Y )


(2.8)

Using the close approximation of the LogSumExp function by element-wise maximum,
there is a fast approximation to this formula that does not involve transcendental
functions.
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Q(Â|X, Y ) ≈ 10λ

log 10

(
S(Â|X, Y )−max

A ̸=Â
S(A|X, Y )

)
(2.9)

In practice, we do not compare the optimal alignment to all possible alignments,
but to the optimal alignments from other seeds. Thus, the mapping quality indicates
the confidence that we have aligned the read to approximately the correct part of
the graph rather than that the fine-grained alignment in that part of the graph is
correct. Since this formula is based on alignment scores, it can incorporate base quality
information through the base quality adjusted alignment scores.

2.6 Visualization
Visualization helps enormously to understand variation graphs and algorithms on them.
While text-mode renderings are sufficient for evaluating results in resequencing against
the linear reference, they are simply impractical when the reference is a graph. A set of
dotplots can allow us to understand the relationship between many paths embedded in
a graph. But this scales quadratically with the number of embedded paths and quickly
becomes impossible to interpret. The alternative is to render graphs visually using a
coherent set of visual motifs.

Here I describe several such techniques designed specifically for variation graphs.
The simplest leverage standard utilities for graph drawing, and the most performant of
these are hierarchical models that benefit from linear ordering which is often available
in reference-ordered variation graphs. Force-directed layouts techniques developed for
assembly graph interpretation allow us to interrogate larger-scale graphs. While it may
be topologically complex, any graph is composed of sets which can be ordered linearly.
By exploiting a linear sort of the graph I provide a linear-time layout algorithm that
will scale to arbitrary data scales, allowing the visualization of both paths and read
coverage against any graph.

2.6.1 Hierarchical layout

To develop a visualization method quickly, I relied most heavily on the four-phase
hierarchical graph layout algorithm dot [86] that is part of the Graphviz package
[85, 73]. This approach tries to generate a layout in which hierarchical structures in the
graph are exposed, visual anomalies such as edge crossings and sharp edge bends are
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avoided, edges are short, and the layout is overall balanced or symmetric. It first uses
a partial sort on the graph to derive a rank for each node. This aspect of the algorithm
means it is best suited for DAGs. Then the unordered regions of the partially sorted
graph are ordered to reduce edge crossings. Finally, the actual layout is derived and
splines are drawn to show edges. The output of dot as well as other tools in Graphviz
is a vector graphic, so the resulting renderings may be viewed in a number of ways.

To generate a visualization that captures the structure of the variation graph, I
transform the graph into a visualization oriented structure in which the graph paths
are rendered as nodes and edges. The layout is then driven entirely by the chosen
algorithm in Graphviz, which is typically dot. This approach allows us to view rather
large chunks of graphs, up to tens of kilobases, provided the graph is partially orderable.

The set of nodes may be rendered as boxes labeled by id(ni) and seq(ni). Edges
have four types, and to indicate these we use the top and bottom of the node boxes.
The top left corner of each node ni receives incoming edges eji∀j : eji ∈ E. While
the bottom right corner of each node box represents edges arriving at ni and thus
eji∀j : eji ∈ E. Similarly, the top right corner of each node box represents edges
leaving ni, and we add an edge for each eij∀j : eij ∈ E. Finally, the bottom left corner
represents the “end” of the reverse complement of the node ni, and, so we add edges
for eij∀j : eij ∈ E. As each edge implies its own reverse complement, we tend to
replace edges eij with eji, and this is done both in normalization as in Graphviz based
rendering.

Paths are not naturally supported in the Graphviz data model, and must be added
as subgraphs with a different rendering style to identify them. In order to achieve
a visually meaningful layout, these subgraphs must be also anchored appropriately
into the graph. For each path, I hash the path name name(pi) into a set of colors
and Unicode emoji, yielding 8× 766 = 6128 possible color/symbol combinations. This
generates a symbol for each path that is unlikely to collide with another given the
typical application rendering a graph with tens of embedded paths. The hashing
process also ensures the same rendering is returned as long as the same path names
are given. For each mapping mi . . . m|pj | ∈ pj I add invisible edges to the graph that
link the mapping to the particular node it maps to as well as a visible edge in the
path color from mi−1 → mi when i > 1 and from mi → mi+1 when i < |pj|. A hint is
given to dot to force the rank of each mapping to be the same as the node it maps to.
Otherwise, the invisible edges encourage dot to render the path mappings close to the
node they refer to. The resulting layout tends to look like a kind of multiple alignment
matrix, as can be seen in figure 2.8.
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1:TCATGGCGCCCCGAACCCTCCTCCTGCTGCTC 2:TCAGGGGC
3:CCTGG

6:CCTGACCCAGACCTGGGC

4:CCCTGA

5:C

🏁 gi|157734152:29655387-29658695  1 🏁 2 

🏁 3 🏁 5 
🏁 6 

🖔 gi|528476637:29857650-29860980  1 🖔 2 

🖔 3 🖔 5 
🖔 6 

👔 gi|568815454:1147498-1150806  1 👔 2 

👔 3 👔 5 
👔 6 

💧 gi|568815529:1369172-1372480  1 💧 2 

💧 3 💧 5 
💧 6 

💄 gi|568815551:1144967-1148275  1 💄 2 

💄 3 💄 5 
💄 6 

🖰 gi|568815561:1144211-1147513  1 🖰 2 
🖰 6 

🐨 gi|568815564:1144604-1147912  1 🐨 2 

🐨 3 🐨 5 🐨 6 

🖋 gi|568815567:1144633-1147940  1 🖋 2 

🖋 3 🖋 5 🖋 6 

📹 gi|568815569:1187595-1190897  1 📹 2 
📹 6 

🌞 gi|568815592:29887759-29891079  1 
🌞 2 🌞 3 🌞 4 🌞 5 🌞 6 

Fig. 2.8 The beginning of a variation graph built by progressive assembly of the GRCh38
haplotypes in HLA gene H-3136 visualized using dot.
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2.6.2 Force directed models

Not all graphs yield easily to hierarchical layout algorithms. Graphviz also includes
a force-directed layout algorithm neato that simulates the layout which would occur
if connected nodes “pull” each other together and non-connected nodes “repel” each
other apart. While the same input to dot may be used with neato, in practice the
node labels become impossible to read and the edge types are confusing to infer, so a
simplified rendering is produced without specific sequence labels on the nodes. This
can still capture the overall structure of the graph as seen in figure 2.9.
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Fig. 2.9 A larger region of the same variation graph in figure 2.8 rendered using neato.

While this rendering captures the path space of the graph even in arbitrary graphs,
it cannot scale to graphs of significant size due to its approximately O(|N |3) scaling.
The largest graphs I have visualized using this method contain tens of kilobases of
sequence. Bandage [280] is an alternative method which is oriented towards visualizing
assembly graphs. It reads GFA as input and provides an interactive rendering of the
graph topology. This approach can render graphs of up to tens of megabases. Figure
2.10 shows the properties of this technique using the same region of H-3136.

2.6.3 Linear time visualization

Graph layout algorithms are computationally complex due to their need to iteratively
relate all components of the graph to all others. In these layouts, we can observe
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Fig. 2.10 The graph from figure 2.9 rendered using Bandage.

large scale features about the topology and organization of the graph. These views
are helpful in many contexts, but the computational complexity of obtaining them
prevents us from quickly visualizing larger graphs. Also, they do not scale efficiently to
large path sets, and it is often difficult to understand alignments or other path-related
on the graph using them.

To resolve these issues I developed a linear time rendering algorithm that projects a
given VG, as indexed by XG, into a vector graphics format using the widely-available
graphics library libcairo. This visualization algorithm uses the sequence basis vector
Siv as a coordinate system to position all elements of the graph. The graph topology
itself is laid out in accordance with the node representation in Siv, flowing from left
to right at the top of the rendering. Node lengths are shown using a black bar, with
the sequence labels given below. The graph topology is rendered above the node set,
and layout of these edges can be completed in linear time as they are rendered as
simple splines connecting node ends. Paths, or other annotations such as coverage per
read set, are displayed below as colored bars matching the subset of the node space
that they cover. Where paths traverse a given node multiple times, an annotation is
added to indicate the copy number. This technique is implemented as vg viz, and an
example rendering is given in figure 2.11.

It is important to recognize that this approach is lossy. Path ordering is not clearly
represented, as the paths are treated like masks over the sequence space of the graph.
Furthermore, it can be difficult to interpret complex graphs as the topology of the
graph is obscured in the simplistic rendering. vg viz’s linear layout treats the graph
sequences as a basis space in which other paths or alignments may be interpreted. This
simplistic view is central to many potential applications of vg, which I further discuss
in section 2.8. The linear scaling of the algorithm should allow it to be applied to
whole genomes, provided suitable front-end visualization software can be built, such as
in a web interface.
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Fig. 2.11 The same variation graph in figure 2.8 rendered using vg viz.

2.7 Graph mutating algorithms
To use variation graphs as reference systems, we need to be able to modify them.
Algorithms in graph theory are frequently based on graph transformations, and I have
discussed some of them in the context of assembly and whole genome alignment. vg
implements many algorithms that alter the graph, but a number are of importance to
its development as a system for resequencing, and I detail them here.

2.7.1 Edit

As discussed in section 2.1.6, the extension of a variation graph to include new sequences
and paths can be thought of as a transformation yielding a bijection between the new
and old graphs edit(G, A)→ (G′, Φ). The main issue which adds complexity to this
process is that nodes represent more than a single character.

If nodes did represent a single character, then they would remain atomic through
graph extension. It is simple to edit a “basepair” graph of this type: G = (N, E, P ),
where ∀n∈N |seq(n)| = 1. We walk through the alignments to it A = a1 . . . a|A|, adding
novel bases represented in them (seq(A) /∈ G = NA) as new nodes. Then for each
alignment ai, we add edges connecting nodes in the order they would be traversed by
the path of the alignment embedded in the graph pai

∈ G′, yielding EA. Finally, we
add paths representing the embedded alignments PA. The resulting graph unifies these
additions G′ = (N ∪NA, E ∪ EA, P ∪ PA).

To achieve lower representation costs in graphs with sparse variation, we usually
compress the graph so that nodes cover multiple bases and thus we must consider
the editing process in multiple phases. We first modify graph G so that every novel
sequence will be added at the start or end of a node. We do this by breaking nodes
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into multiple derivative nodes when they overlap mappings that do not match the
graph using break(G, A)→ (G′, Φ). For instance, if seq(ni) = GATTACA and we have a
SNP T→ C at offset 4, we would obtain ni → n′

i, n′′
i , n′′′

i : seq(n′
i) = GAT, seq(n′′

i ) = T,
seq(n′′

i ) = ACA. We can then apply translate(A, Φ)→ A′, and add edges to G′ implied
by the alignments as we would when editing a graph with single character nodes.

2.7.2 Pruning

The number of paths in a sequence graph grows exponentially with the number of
variable sites. As I have discussed, this causes problems for alignment algorithms and
graph sequence indexing. While we can use efficient disk-backed index construction
algorithms like GCSA2 to mitigate the effects of this exponential scaling, only a handful
of dense clusters of variation in the graph can increase the memory requirements of
path enumeration beyond any reasonable level. To control this we restructure the
graph to limit recombinations in the global sequence index.

We have explored two main techniques for the reduction of graph complexity. In the
first, we prune regions of the graph which have high path complexity using a depth-first
search (DFS). We can optionally add back known haplotypes, in order to mitigate the
loss of information from the index. For VCF-based VGs, where we have haplotype
panels, the performance of local alignment is unaffected by the topological complexity,
so we only need to apply this pruning to the graph input to GCSA2 indexing. In
assembly graphs, we find that nodes which represent repeats can sometimes have
extremely high degree, which causes problems both for indexing and local alignment
to the graph. There, we must remove these nodes in order to use the graph even for
local alignment.

2.7.2.1 k-mer m-edge crossing complexity reduction

In k-mer complexity reduction, we enumerate the k-mers of the graph, removing
edges when a given k-mer crossing them would cross > m edges. We implement
this filter, prune(G, k, m) → Gsimple, using the k-mer enumeration algorithm that
generates a DBG from the variation graph, only that our walks through the graph
are bounded at m edge crossings. For each offset in each node ni and ni, we run
a DFS forward until we have read k characters of the graph. During the pruning
operation, instead of emitting the k-mers with their contexts, we stop the DFS
when we have crossed m edges. We record the edge in Ecomplex. We thus derive
the subgraph from the current graph by removing the complexity-inducing edges:
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(N, E \ Ecomplex, P ) → Gsimple. It can be helpful to remove any small isolated
components that result from this pruning, which can be done with a linear subgraph
enumeration algorithm and the measurement of the sequence length of each. A
disjoint component Gsub ∈ Gsimple : ∀eij∈Nsubni ∈ Nsub ∧ nj ∈ Nsub must have length∑

∀n∈Nsub |seq(n)| ≥ J . By default, we use k = 24, m = 3, and J = 33.

2.7.2.2 Filling gaps with haplotypes

Although removing complex regions will reduce the number of recombinant haplotypes
represented by the graph, it is likely to also remove sections of known haplotypes. We
can retain the complexity reduction without losing sequences in known haplotypes by
replacing the pruned regions in Gsimple with unfolded copies of each haplotype sequence.
When we have a single reference path in Gref, we can accomplish this by overlaying
Gsimple and Gref. However, this will not achieve the desired result with even two
overlapping paths, as where these differ they would reintroduce the re-combinatorial
explosion that we hope to resolve with pruning. An alternative is to copy the haplotypes
in the GBWT index that stretch from one border to the other of each removed region
into the removed subgraphs in Gsimple. Doing so, we must preserve a mapping between
the new nodes and the previous underlying ones in G. This allows matches to the
haplotypes to be converted into matches in the base graph. The exact method by
which this filling implemented is described in [250].

2.7.2.3 High degree filter

Because they separate dense variation into heterozygous bubbles, assembly graphs
may feature greater “smoothness” than VCF-based graphs locally. But, in the context
of repeats, they can contain nodes with exceptionally high degree. If these cluster
together then they generate highly-connected regions that introduce degeneracy in
the path space of the graph, and cause problems for k-mer enumeration and GCSA2
indexing. Furthermore, the local alignment methods in VG do not support efficient
alignment through such dense regions. Preventing this is relatively simple, in that we
remove nodes with more than D edges linking them to the graph, yielding Gprune :
∀ni∈NpruneD ≥ |{e∗i ∪ ei∗ ∪ ei∗ ∪ e∗i}|.

It is not necessary that our local alignment suffers from high-degree nodes. The
problem is that GSSW is provided an alignable graph that is an extracted subset of
the full graph. If this subgraph is extracted using context expansion in the graph, then
high-degree nodes will generate extremely large subgraphs. One solution would be
to use the bit-parallel string to graph alignment approach in [219], as this achieves
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optimal bounds in the size of transformed graph to which we align. Alternatively,
the graph exploration should be more directly linked to the alignment process. The
X-drop aligner dozeu could be adapted to this approach, as the X-drop parameter
would provide a natural limit to the graph exploration. Such approaches may allow us
to tolerate a larger D, but it seems unlikely that they will allow alignment to be driven
through the most-tangled areas of the graph without a large performance penalty
relative to graphs with lower maximum degree.

2.7.3 Graph sorting

To achieve as much partial ordering as possible, we order and orient the nodes in the
graph using a topological sort. The sort is guaranteed to be machine-independent
given the initial graph’s node and edge ordering. The algorithm is well-defined on
non-DAG graphs, but in these cases the order is necessarily not a topological order.
Our approach is a bidirected adaptation of Kahn’s topological sort [119], which is
extended to handle graph components with no heads or tails. This algorithm can be
understood as a kind of seeded depth first search through the graph. Where the graph
has nodes which are pure heads, it begins there. Otherwise, a set of seed nodes which
are stably selected given a particular graph are used to begin the sort. The details of
this procedure are provided in algorithm 1.

Sorting can provide a simple optimization during read alignment. If the reference
graph has been sorted, then we can use the given order to generate node identifiers,
embedding the rank of each node in its id. We can detect if a given subgraph is possibly
non-acyclic if ∃eij ∈ E : i > j, and if so submit the graph to sorting, unfolding, and
DAGification before applying local alignment.

Similarly, the sort allows us to project data in the context of the graph into a
single dimension. Provided the graph is regionally partially ordered, this projection
preserves local structures, which is a desirable property. This makes the sort applicable
to visualization techniques as in figure 2.11.

2.7.4 Graph simplification

Assembly algorithms often employ a bubble popping phase, in which small bubbles,
which are graph components connected to the rest of the graph through a single source
and sink node, are replaced by linear components representing the most-likely path
through the bubble given the read data. In vg we can carry out a similar operation
based on the bubble decomposition of the graph. Unlike assembly graph bubble
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Algorithm 1 Pseudo-topological sort
G = (N, E, P ) ▷ A copy of our input graph which we will destructively modify
L← [. . .] ▷ Stores the pseudo-topological order
S ← ∅ ▷ Set of nodes which have been oriented but not yet traversed
V ← {ni} ∈ N :̸ ∃eji∀nj ∈ N ▷ We start from the head nodes of the graph
if V = ∅ then ▷ If there are no head nodes, we use “seed” nodes

V ← Stably-selected seed nodes ∈ N
end if
while V ̸= ∅ do

n← n ∈ V ▷ Select a seed node
V ← V \ {n} ▷ Remove it from the input node set V
S ← S ∪ {n} ▷ Store it in our working set S
while S ̸= ∅ do

ni ← ni ∈ S ▷ Remove an oriented node from S
S ← S \ {ni}
L← [L[1] . . . L[|L|], ni] ▷ Append it to our output order L
for ∀nj : eij ∈ E do

E ← E \ {eij} ▷ Remove the edge from our edge set
if ̸ ∃ekj∀k ∈ N then ▷ nj has no other edges to that side

if eij then
nj ← nj ▷ Orient nj so the side the edge comes to is first

end if
N ← N \ {nj} ▷ Remove nj from N
S ← S ∪ {nj} ▷ Insert nj into S

else ▷ This helps start at natural entry points to cycles
V ← V ∪ {nj} ▷ Record nj as a place to start when S is empty

end if
end for

end while
end while
return L ▷ Return our pseudo-topologically sorted order and orientation
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popping, we must retain information about the embedded paths and annotations in
the variation graph. Simplification has a number of potential applications, for instance
in reducing the complexity of visualizations of large variation graphs.

2.8 Graphs as basis spaces for sequence data
If we can construct a graph which embeds all the sequences of all genomes which we
are interested in, we resolves the separation between reference sequence and variation
that is present in standard resequencing. This suggests that the intermediate steps
in resequencing may be made redundant. If variation is already available during
alignment then there is no need for a variant detection phase. However, if the graph
does not include variation in our samples, then variant calling is required. In vg we
have implemented several methods to do so. Similarly, we have implemented coverage
summaries of read sets that may be used directly in downstream analyses.

2.8.1 Coverage maps

Numerous population genetic analyses are based on matrix representations of a collec-
tion of genomes. Such models can be used to infer population structure and phylogeny,
as well as to associate phenotypes to genomic variants. If the variation graph used as
a reference contains all sequences relevant to our analysis, then a matrix of per-base
coverage of the graph by sample will provide highly representative information to
downstream analyses. Exceptions include structural variation that does not result in
coverage changes, such as balanced events like inversions. Also, some local patterns of
variation between successive small variation will not be distinguishable. If we were to
annotate edges with their coverage, this method would produce a result equivalent in
information content to a Markov model. It is thus clear that any coverage based index
will be lossy relative to the full read set. However, the lossiness reduces the information
cost of storing and processing these coverage maps. As I described in section 2.4.6, in
vg I developed an efficient method to accumulate coverage information of this kind
across the graph.

2.8.2 Bubbles

In a sequence graph, a bubble is a pair of paths which start and end at the same
nodes (s, t) but are otherwise disjoint in the graph [285]. Bubbles encompass our
intuition about genetic variation in graphs. A homologous sequence corresponding to
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the common start and end nodes in the bubble flanks two or more alternative alleles
in the middle. These structures were first considered in the context of finding small
variation, and it was only in recent years that methods were developed to efficiently
enumerate all bubbles of any size in DAGs [19].

Bubbles can nest and contain more complicated internal structures between the
paths through them. The bubble may be generalized to the idea of a superbubble,
which is a directed, acyclic component of a graph with a single head and tail node
[200]. As for bubbles, efficient enumeration of superbubbles is possible in a DAG [24].
The optimal method relies on a recursive topological sort of the graph to structure
the nested bubbles. Candidate node starts (s) and ends (t) are found following the
definition of a superbubble. The set of candidates is then validated by range min
queries (RMQ) to produce the set of superbubbles. As sort is linear O(|N |+ |E|), and
the candidate enumeration and RMQ may be implemented on the sorted graph in O(1)
each, this yields a linear time algorithm for the enumeration of superbubbles.

The DAG requirement of this method is a significant limitation. In order to apply
the superbubble enumeration to an arbitrary graph we must first DAGify it. In response,
I worked with Benedict Paten and others to generalize the idea of a genetic site to
support arbitrary bidirectional sequence graphs [206]. To formulate a generalization
of superbubbles, we introduce the concept of a snarl, which is any graph component
connected to the rest of the graph by two or fewer bordering nodes18. Snarls whose
internal separated component is acyclic and does not contain any tips are ultrabubbles.

Paten observed that trees embedded in the Cactus graph transformation of a
variation graph corresponded to the standard concept of superbubbles. Specifically,
the cactus graph is transformed into a cactus tree in which each simple cycle in the
cactus graph becomes a special kind of node. Various rootings of this tree may then
be used to define a hierarchy of bubbles. The bidirectional nature of the variation
graph mean that snarls can embed each other in a manner akin to how the twist
used to generate an Möbius strip results in it having a single surface and border. In
these cases the resulting cactus tree will support multiple alternative ultrabubble tree
rootings, and so unlike the bubble and superbubble decompositions for DAGs the
ultrabubble decomposition is not unique. We can enumerate a subset of these by
identifying bridge edges (typically representing tips) in the “bridge forest”, which is
the result of a contraction of the cycles in the cactus graph into a set of top-level cycle
representing nodes, and then use them to produce various rootings of the cactus tree.

18In the paper the formulation is based on a bi-edged graph akin to the Enredo graph, but we note
that a node-based formulation is equivalent and matches the other models in this section.
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Ultrabubbles and superbubbles provide a natural framework in which to reason
about the hierarchy of variable genetic sites embedded in a graph. As such they provide
the basis for generic models of genotype inference based on variation graphs which are
capable of genotyping any kind of genetic variation, including structural variation as
well as nested variation, in the same model as SNPs and indels.

2.8.3 Variant calling and genotyping

Given a definition of variable genetic loci in the graph, we can build a genotyping
system capable of generating genotype calls in the context of the graph. In vg we have
explored two such methods. The first, originally implemented in vg call, generalizes
the concepts first implemented in samtools mpileup to work on the graph. A set of
alignments are first reduced to pointwise edits against the graph and per base coverage
of the graph. This graph “pileup” is then processed by a genotyping algorithm that
considers genetic sites using the ultrabubble model. A schematic overview of the
method is shown in figure 2.12.

a
a
a
c
a
c
c a

Read alignment Graph pileup Variant calls Augmented graph

Sample graph

Fig. 2.12 Pileup variant calling with vg call

The second model, implemented in vg genotype, embeds the alignments in the
variation graph using edit(A, Gbase)→ (Gaug, Φaug→base), and then genotypes across
the ultrabubbles of Gaug which are supported by reference paths in Gbase or reads. As
the resulting genotypes are represented as unordered sets of paths in Gaug, they are
projected back into the coordinate space of Gbase using the translation Φaug→base. An
overview of the process is shown in figure 2.13.

While principled, the full augmentation model in vg genotype is very expensive
to compute. The pileup model has proven to be more efficient. Over time vg call
has been adjusted to implement some features of the full graph augmentation model
in vg genotype where the graph is augmented only with sequences supported by
some number of alignments at a given quality threshold. Both methods employ a
diploid specification of the genotyping model in freebayes [88] to develop their posterior
estimates of variant quality. The generalization of SNP and indel calling to haplotype
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Fig. 2.13 Graph augmentation-based variant calling in vg genotype
.

calling implemented in freebayes corresponds to the same allele model used in both
vg variant calling methods. Alleles correspond to DNA sequences of arbitrary length,
anchored at the ends to the reference genome (in the case of freebayes) or to the rest
of the graph (as in the ultrabubbles used in vg).

The complexity of running and evaluating genotyping in the graph has slowed
development of these methods. Currently they are still outperformed by standard
variant calling methods based on the linear reference, as indicated by our results in
the PrecisionFDA variant calling challenge that I will describe in the next chapter.





Chapter 3

Applications

In the first two chapters I have provided an overview of the theoretical basis of my
work and placed it within the history of related approaches. Here, I will demonstrate
how the methods I develop can aid biological insight in a number of species domains.
To do so, I will use methods described in chapter 2 as implemented in vg.

The small genome of Saccharomyces cerevisiae and ready availability of sources
for pangenomic data models made it very useful to my development of vg. I begin by
illustrating this for a variety of pangenome constructions and also a variety of read
lengths.

However, much interest in bioinformatics is with larger genomes, specifically human.
I use evaluations based on the human genome to validate the ability of vg to scale to
large genomes. Through simulation and the analysis of real genomes, I show that the
aligner I implement, vg map, yields the same quality of alignment as bwa mem against
linear genomes. Although vg map’s runtime is between five to ten-fold slower than bwa
mem, it provides improved, less biased alignment against variation graphs. I develop a
variation graph for the reference-guided genome assemblies from the HGSVC project
and demonstrate the strong effect of reference bias in ChIP-seq data.

One context where reference bias has very significant effects is in the analysis of
ancient DNA (aDNA). Here short reads and high intrinsic error rates encourage a high
rate of reference bias. I show that alignment against a pangenome graph ameliorates
this issue.

vg can be applied to any kind of variation graph. To demonstrate the utility of this,
I use de Bruijn assemblers to generate reference variation graphs from collections of raw
sequencing reads in the absence of a prior reference. I recreate a classical pangenomic
analysis of core and accessory pangenome by analyzing the coverage of alignments
mapped to an assembly graph built from 10 Escheria coli strains. To illustrate the
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application of vg to metagenomic data containing unknown source genomes, I show
that vg enables the full length alignment of reads to a complex assembly graph built
from an arctic viral metagenome, and similarly improves alignment to an assembly
graph built from a human gut microbiome. Finally, I demonstrate that the data models
and indexes in vg are capable of encoding splicing graphs, and that aligning to these
splicing graphs allows the direct observation of the transcriptome.

3.1 Yeast
Saccharomyces cerevisiae, commonly known as baker’s or brewer’s yeast due to its
gastronomic applications, has long been among the most important model organisms in
biology, and its small genome attracted some of the first population scale whole genome
surveys of variation to be undertaken using low-cost sequencing. The genome of S.
cerevisiae was the first eukaryotic genome sequenced, in 1996 [91]. Resequencing studies
followed that used cerevisiae as a model system to understand genome evolution. The
Saccharomyces Genome Resequencing Project (SGRP) [162], which used low-coverage
capillary Sanger sequencing to generate a population survey for cerevisiae can be seen
as a precursor to the 1000GP, in its use of low-coverage sequencing and imputation to
establish the panel1. A followup project, the SGRP2, used resequencing and whole
genome assembly of high coverage, low cost Illumina sequencing to establish that the
greater phenotypic diversity in S. cerevisiae relative to its wild relative S. paradoxus is
likely due to structural variation (as measured by presence/absence and copy number)
rather than SNP diversity [17]. Recently, whole genome de novo assembly with
long single-molecule reads has further refined this conclusion by demonstrating that
the structural diversity is non-uniformly distributed throughout the genomes of S.
cerevisiae, concentrating in subtelomeric regions [283]. In this section, I use data from
independent sequencing of the UK’s National Center for Yeast Collections (NCYC) as
well as long reads from [283] to demonstrate the capabilities of vg and compare the
utility of various variation graph models built from these population surveys.

3.1.1 A SNP-based SGRP2 graph

The earliest rigorous testing of vg’s alignment method was against a variation graph
constructed from the SGRP2’s released VCF for S. cerevisiae2. This early population

1https://www.sanger.ac.uk/research/projects/genomeinformatics/assets/sgrp_manual.pdf
2http://www.moseslab.csb.utoronto.ca/sgrp/data/SGRP2-cerevisiae-freebayes-snps-Q30-GQ30.vcf.gz

https://www.sanger.ac.uk/research/projects/genomeinformatics/assets/sgrp_manual.pdf
http://www.moseslab.csb.utoronto.ca/sgrp/data/SGRP2-cerevisiae-freebayes-snps-Q30-GQ30.vcf.gz
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resequencing project produced a VCF including only SNPs, yet using it already pre-
sented problems typical even when working with larger scale genomes. The transposable
elements in the genome generate rich patterns of repeats which make alignment difficult
and require the development of mapping quality. Dense variation is also present in the
results and this necessitates the application of pruning strategies to the graph to mask
out high-complexity regions for indexing. Mistakes in the mapper could be readily
observed and testing could easily be done on a laptop, whereas larger genomes require
longer runtimes for indexing and larger servers in order to support the indexes during
alignment.

The SGRP2 graph can be built and indexed in around 10 minutes on a commodity
compute server, including the construction of the GBWT index and the generation
of an order-256 GCSA2 index using a pruned and refilled version of the graph. It
contains exactly the number of bases in the SGD_2010 reference plus the number of
SNP alternate alleles in the SGRP2 VCF: 12163423 + 243629 = 12407052. The graph
itself uses 23MB on disk, in contrast to that of the SGD_2010 reference, which takes
only 7.6MB. Much of this difference is due to the larger number of entities required by
to represent the variation-containing graph. The SGD_2010 graph is linear, with a gap
for each chromosome, and contains 380,115 nodes and 380,097 edges after splitting into
nodes of typical size 32bp, while the SGRP2 graph contains SNPs and is represented
with 714,533 nodes and 969,690 edges. Note that by default, GCSA2 indexing works
on nodes with a maximum length less than 1024, and vg map performs better if the
maximum node size is limited further, with 32bp usually the standard maximum
length in experiments I will present here. The resulting indexes also differ in size,
with the SGRP2 graph’s xg index requiring 71MB, while the SGD_2010 graph’s only
38MB. The full GCSA index for the SGRP2 graph is substantially larger, at 220MB,
in contrast to only 50MB for the linear reference, which reflects the greater complexity
required to include all the recombination in the pruned and haplotype re-filled graph
used for indexing.

To validate that the SGRP2 reference is a closer match to real read sets, I then
mapped subsets of reads from cerevisiae samples that were in the NCYC collection but
were not part of SGRP2. I aligned 100K read pairs from each of 12 samples (N = 2.4M
total reads) to both the SGD_2010 reference graph and the SGRP2 pangenome graph.
For each read, we can compare the alignment score and identity between the two
graphs to evaluate the gain provided by using the pangenome as a reference. When we
map the real reads from new strains not used to build the graph, 24.5% of the reads
map better to the pangenome than to the linear reference (figure 3.1). A small fraction
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of reads (0.46%) map better to the linear than to the pangenome graph, which could
result from changes in paired alignment rescue, the effects of the pruning process, the
slightly different minimum MEM size calculated for the two graphs, or errors in the
SGRP2.

3.1.2 Cactus progressive assembly

Variation graphs are generic objects capable of representing any kind of alignment
between genomes or assembly of read data from them. To test the ability of vg to use
graphs of complex topology, we constructed a whole genome alignment graph of de novo
assemblies produced from PacBio sequencing of seven strains of S. cerevisiae. In this
assembly each chromosome of each assembly in [283] was progressively aligned using
the phylogenetic guide tree methodology implemented in Cactus [205]. As illustrated
in figure 3.2, this graph encodes a complex global topology that captures the structural
variation between the species also reported in [283] as well as a local DAG-like topology
which we expect when homologous sequences are represented compactly in a graph.
This illustrates the ability of vg to represent paths corresponding to both collinear
(inset) and structurally rearranged (main figure) regions of genomic variation.

A simulation study based on the SK1 strain provides some insight into the capabili-
ties of vg and tradeoffs inherent in different graph designs. I compared four vg graphs:
a linear reference graph from the standard S288c strain, a linear reference from the SK1
strain, a pangenome graph of all seven strains, and a “drop SK1” variation graph in
which all sequence private to the strain SK1 was removed from the pangenome graph.
The multiple genome graphs were constructed with the Cactus progressive aligner,
which generates graphs that typically contain cycles and are not partially ordered, and
then filtered down to the various subgraphs using path subsetting facilities in vg mod.

We simulated 100,000 150-bp paired-end reads from the SK1 reference, modeling
sequencing errors, and mapped them to the four references (ROC curves, Figure 3.3).
Not surprisingly, the best performance was obtained by mapping to a linear reference of
the SK1 strain from which the data were simulated, with substantially higher sensitivity
and specificity compared to mapping to the standard linear reference from the strain
S288c with either vg or bwa mem. Mapping to the variation graphs gave intermediate
performance, with >1% more sensitivity and lower false-positive rates than mapping
to the standard reference. There was surprisingly little difference between mapping to
graphs with and without the SK1 private variation, probably because much of what
is novel in SK1 compared to the reference is also seen in other strains. Mapping to
either graph had lower sensitivity compared to mapping just to the SK1 sequence,
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Fig. 3.1 Alignment of 100k read pairs from 12 NCYC S. cerevisiae strains against the
reference genome (SGD) or the pangenome (SGRP2). In (3.1a) alignment scores are
plotted for each read. The shift in density to the right relative to y = x indicates
improved alignments to the pangenome. In (3.1b) we observe the same pattern when
using alignment identity rather than score. Subfigures 3.1c and 3.1d provide a stacked
log-scaled histogram of the difference in score and identity between the two graphs.
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Fig. 3.2 A region of a yeast genome variation graph. This displays the start of the
subtelomeric region on the left arm of chromosome 9 in a multiple alignment of the
strains sequenced in [283] as assembled by Cactus [205]. The inset shows a subregion of
the alignment at single-base level. The colored paths correspond to separate contiguous
chromosomal segments of these strains. Reprinted from [89].
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Fig. 3.3 Mapping short reads with vg to yeast genome references. ROC curves obtained
by mapping 100,000 simulated SK1 yeast strain 150-bp paired-end reads against a
variety of references described in the text. Reprinted from [89].
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likely because of suppression of GCSA2 index k-mers in complex or duplicated regions,
which our indexing strategy was not designed to address.

3.1.3 Constructing diverse cerevisiae variation graphs

With vg, our goal is to build a toolkit that allows the use of any genome graph as a
reference. To validate this capability, I used data sources for S. cerevisiae to build
seven variation graphs, whose dimensions are listed in table 3.1. In the next section
(3.1.4) I present an evaluation of these graphs using long reads from the SK1 strain.

name size (MB) length nodes edges subgraphs
SGD_2010 7.3 12163423 380115 380097 18
S288c 7.3 12249246 382797 382781 18
SGRP2 21 12407052 714533 969690 18
minia unitigs 15 14419206 1232804 1332994 46131
minia contigs 6.4 12233279 421125 425683 2961
Cactus 31 13243056 1059173 1304205 580
vg msga 42 13793955 1156295 1387903 2

Table 3.1 A summary of seven different variation graphs constructed to represent
variation in S. cerevisiae. As described in section 3.1.1, the SGD_2010 graph is built
from the reference, while SGRP2 adds SNPs in the SGRP2 population survey. The
Illumina data from [283] was used to build the minia unitigs and minia contigs graphs,
while the whole genome, chromosome-resolved PacBio assemblies from the same work
were used to build the Cactus and vg msga progressive assemblies. S288c is the de
novo assembly of the reference strain produced in [283].

Three of the graphs are effectively linear or DAG-like, except for their mitochondria
and plasmid chromosomes, which are included as circular components. SGD_2010
and S288c represent two assemblies of the reference genome, the former from the
SGD genome sequencing project, and the latter is a de novo assembly from [283].
The difference in quality between the two approaches will be made apparent in the
subsequent section. As described in section 3.1.1, the SGRP2 graph adds SNP variation
from the population survey in [17] to build a pangenome reference. The SGD_2010
reference contains the mitochondria and 6 kbp plasmid sequence, while the S288c
assembly excludes them due to the sequencing protocol, where size selection in the
library preparation stage removed these short sequences, so to enable direct comparison
in later tests these were added to the S288c graph.

The remaining four graphs are different forms of assembly graph. Using the Illumina
data published in [283], I build two assemblies with minia3, using a k-mer size of 51
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and a high abundance threshold (50) to limit the resulting graph complexity. In the
first, I take the unitig graph that represents all non-branching paths in the compacted
DBG as nodes. The second is the result of the minia contigification process that pops
bubbles and cleans the graph to attempt to arrive at longer contigs. Both results are
expressed as overlap graphs in GFA, and I can import them as variation graphs using
bluntification and graph pseudotopological sorting. As shown in table 3.1, the unitig
graph is considerably more complex in terms of node density than the contig graph. It
also contains more sequence, presumably because some regions that are separated in
the unitig graph are collapsed in the contig graph. The number of disjoint components
in these graphs is very high (2961 for the contig graph and 46131 for the unitig graph),
suggesting that pruning of the assembly graph has yielded a greatly fragmented result.
The resulting graphs are difficult to align long reads to. I conclude that further tuning
of the parameters used during de novo assembly from short reads will be required to
use assemblies like this as reference graphs.

Finally, I used the whole genome de novo assemblies of long read data from [283] to
build whole genome alignment graphs using Cactus (as described in section 3.1.2) and
vg msga. The multiple sequence to graph alignment (MSGA) process implemented in
vg msga is akin to the progressive POA method, but generalized to arbitrary graphs of
any size. Rather than using a local alignment algorithm to expand the graph, the long
read alignment algorithm described in section 2.5.9 allows the direct alignment of whole
chromosomes to the graph. Where the Cactus progressive assembly uses a phylogenetic
guide tree to structure its construction, vg msga simply aligns the chromosomes in
order from longest to shortest to the growing graph. The long read alignment in vg
is structured to enforce long range synteny, and the resulting graph is substantially
different in structure than that of Cactus. I find that vg msga is less likely to collapse
repeats than Cactus, at least in the configuration used for this assembly. We can see
this in figure 3.4, where the Cactus graph (3.4a) shows two dense repeat structures
in its core connected by loops of unique sequence, while the vg msga graph appears
to have much longer loops, with collapsed repeats embedded in these loops. This
observation is supported by the length statistics in table 3.1, with vg msga producing
a graph that is 550,899bp longer than that of Cactus. At the same time, the node
count of the vg msga graph is higher, which perhaps reflects a different local alignment
result.
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(a) Cactus assembly

(b) vg msga assembly

Fig. 3.4 Whole genome alignment graphs for S. cerevisiae visualized using Bandage.
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3.1.4 Using long read mapping to evaluate cerevisiae graphs

In this section I evaluate the graphs I constructed in section 3.1.3 and simultaneously
demonstrate the ability of vg to align long reads to graphs of any type. For each of
the seven graphs I aligned a set of 43,337 Pacific Biosciences SK1 reads (mean length
4.7 kbp) from [283] to the graph. We can then compare the alignment identity for
each read across the various graphs. I do so using the same dot plot technique used to
demonstrate alignment quality improvement using the Illumina data from the NCYC
strains. In figure 3.5 I present a number of pairwise comparisons based on this read set.

I find that the SGD_2010 reference provides a better match for the SK1 PacBio
reads than the S288c assembly (top left), which can be seen in a subset of reads that
map nearly perfectly to the SGD_2010 graph but not to the S288c one. This may be
due to the higher quality and curation of the SGD reference, which was initially based
on BACs and capillary sequencing, but I have not determined the exact cause of this
discrepancy. This same effect is clear in the comparison of S288c and the SGRP2 (top
middle, figure 3.5), although there the SNPs in the SGRP2 graph tend to improve
the overall match between the SK1 reads and the graph, which can be seen in a shift
in density upwards from the diagonal. For other comparisons I focused on using the
S288c reference, as it forms a part of the progressive alignments and the source data
for the minia assemblies comes from the same paper.

The minia graphs appear to provide very low quality as a reference for the alignment
of long reads (bottom left and middle, figure 3.5). The minia unitig graph is too
fragmented for any practical use. In almost no case does it provide a better match
for the long reads. However, while the minia contig graph is also outperformed by
the S288c graph, for a notable subset of the reads it provides a perfect match, while
the S288c graph fails to match them at all. This suggests that some contigs in the
Illumina assembly match the SK1 strain, which is to be expected and demonstrates
that in principle this kind of graph can represent multiple genomes.

Finally, the whole genome alignment graphs are notable in their similarity. Despite
the fact that they were constructed using different algorithms, both provide a similar
basis for alignment of the SK1 reads. It is notable that alignment time against the vg
msga graph was the highest of the tested graphs, and significantly higher than that
for the Cactus graph. This may relate to the un-collapsed state of the repeats in the
graph. The alignment algorithm will attempt more alignments for each band where
there is ambiguity, and the “patching” at the end of the alignment process will be more
intensive.
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Fig. 3.5 Density plots of alignment identity when mapping 43,337 Pacific Biosciences
long reads from the SK1 strain to different variation graphs. Linear assemblies: (Top
left) the SGD_2010 reference vs. the S288c assembly from [283]. (Top middle) the
S288c assembly vs. the SGRP2 SNP pangenome. Assembly graphs from Illumina data:
(Bottom left) the minia contig graph vs. the S288c assembly. (Bottom middle) the
minia unitig graph vs. the S288c assembly. Whole genome alignment graphs: (Top
right) the Cactus alignment vs. the S288c assembly. (Bottom right) the vg msga
alignment vs. the S288c assembly.
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3.2 Human
For a species such as human, with only 0.1% nucleotide divergence on average between
individual genome sequences, over 90% of 100-bp reads will derive from sequence
exactly matching the reference. Therefore, new mappers should perform at least as
well for linear reference mapping as the current standard, which we take to be bwa
mem with default parameters. We show that vg does this, and then that vg maps more
informatively around divergent sites.

3.2.1 1000GP graph construction and indexing

The final phase of the 1000 Genomes Project (1000GP) produced a data set of ∼80
million variants in 2,504 humans [45]. We made a series of vg graphs containing all
variants or those above minor allele frequency thresholds of 0.1%, 1%, or 10%, as well
as a graph corresponding to the standard GRCh37 linear reference sequence without
any variation. The full vg graph uses 3.92 GB when serialized to disk, and contains
3.181 Gbp of sequence, which is exactly equivalent to the length of the input reference
plus the length of the novel alleles in the VCF file. Complete file sizes including indices
range from 25 GB to 63 GB, with details including build and mapping times given in
table 3.2.

Reference set N vars vg index search time
(M) time size time size PE SE

GRCh37 0 1:09:54 1.76 23:30:41 25.11 33:34 28:33
1000GP AF0 84.8 3:42:01 3.92 51:05:07 63.28 45:10 39:46
1000GP AF0.001 30.2 2:00:08 2.58 31:45:12 38.10 39:33 32:53
1000GP AF0.01 14.3 1:35:02 2.17 27:18:53 30.94 33:13 27:09
1000GP AF0.1 6.8 1:23:04 1.97 26:06:38 27.79 32:35 28:43

Table 3.2 Numbers of variants, file sizes in gigabytes (GB) and build and search
times in hours:minutes:seconds for various human vg graphs and associated indexes.
Reference sets are the linear reference GRCh37, the full 1000 Genomes Project set
1000GP AF0, and subsets of 1000GP AF0 including only variants with allele frequency
above thresholds 0.001 (0.1%), 0.01 (1%) and 0.1 (10%) respectively. The number of
variants in millions for each of these data sets is shown. Search times are for 10 million
150+150bp read pairs simulated from NA24385. Reprinted from [89].
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3.2.2 Simulations based on phased HG002

We next aligned ten million 150-bp paired-end reads simulated with errors3 from the
parentally phased haplotypes of an Ashkenazim male NA24385, sequenced by the
Genome in a Bottle (GIAB) Consortium [291] and not included in the 1000GP sample
set, to each of these graphs as well as to the linear reference using bwa mem. Figure
3.6 shows the accuracy of these alignments compared with bwa mem for the full range
of frequency thresholded graphs, in terms of receiver operating characteristic (ROC)
curves.

Reads that come from parts of the sequence without differences from the reference
(middle panels of Figure 3.6) mapped slightly better to the reference sequence (green)
than to the 1000GP graph (red), which we attribute to a combination of the increase
in options for alternative places to map reads provided by the variation graph, and the
fact that we needed to prune some search index k-mers in the most complex regions
of the graph. The best balance of performance appears at the threshold of 0.01. As
expected, this difference increased as the allele frequency threshold was lowered and
more variants were included in the graph.

For reads that were simulated from segments containing non-reference alleles (∼10%
of reads), which are the reads relevant to variant calling, vg mapping to the 1000GP
graph (red) gave better performance than either vg (green) or bwa mem (blue) mapping
to the linear reference (right panels of Figure 3.6), because many variants present
in NA24385 are already represented in the 1000GP graph. This is particularly clear
for single-end mapping, since many paired-end reads are rescued by the mate read
mapping. Overall, vg performed at least as well as bwa mem, even on reference-derived
reads, and substantially better on reads containing non-reference variants.

3.2.3 Aligning and analyzing a real genome

We also mapped a real human genome read set with ∼50× coverage of Illumina 150-
bp paired-end reads from the NA24385 sample to the 1000GP graph. vg produced
mappings for 98.7% of the reads, 88.7% with reported mapping quality score 30 on
the Phred scale, and 76.8% with perfect, full-length sequence identity to the reported
path on the graph. For comparison, we also used vg to map these reads to the linear
reference. Similar proportions of reads mapped (98.7%) and with reported quality score
30 (88.8%), but considerably fewer with perfect identity (67.6%). Markedly different
mappings were found for 1.0% of reads (0.9% mapping to widely separated positions

3SNP errors are introduced at a rate of 0.01 per base and indels at a rate of 0.002 per base.
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Fig. 3.6 ROC curves parameterized by mapping quality for 10M read pairs simulated
from NA24385 as mapped by bwa mem, vg to various 1000GP pangenome references,
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subpanel is based on all reads, middle on reads simulated from segments with no genetic
variants from the linear reference, and the right on reads simulated from segments
containing variants. Reprinted from [89].
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on the two graphs, and 0.1% mapping to one graph but not the other). The reads
mapping to widely separated positions were strongly enriched for repetitive DNA. For
example, the linear reference mappings for 27.5% of these read pairs overlapped various
types of satellite DNA identified by RepeatMasker, compared to 3.0% of all read pairs.

To illustrate the consequences of mapping to a reference graph rather than a linear
reference, we stratified the sites independently called as heterozygous in NA24385 by
deletion or insertion length (0 for single-nucleotide variants) and by whether the site
was present in 1000GP, and measured the fraction of reads mapped to the alternate
allele for each category. The results show that mapping with vg to the population
graph when the variant was present in 1000GP (95.4% of sites) gave nearly balanced
coverage of alternate and reference alleles independent of variant size, whereas mapping
to the linear reference either with vg or bwa mem led to a progressively increasing
bias with increasing deletion and (especially) insertion length (Figure 3.7), so that for
insertions around 30 bp, a majority of insertions containing reads were missing (there
were over twice as many reference reads as alternate reads).
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Fig. 3.7 The mean alternate allele fraction at heterozygous variants previously called
in HG002/NA24385 as a function of deletion or insertion size (SNPs at 0). Error bars
are ± 1 s.e.m. Reprinted from [89].

3.2.4 Whole genome variant calling experiments

During the development phase of vg, we explored its application to whole genome
alignment and variant calling in the PrecisionFDA Truth Challenge, in which the team
which developed the Genome in a Bottle truth set developed and held out a new sample.
Methods were first tested against publicly available truth sets on NA12878 in the
“consistency” challenge, in which the vg development team received a star for “heroic
effort” in completing the first whole-genome graph based alignment and variant calling
analysis. The results for this first iteration were very poor, with F-scores for indels
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and SNPs around 95%. The computational costs were high, with the run consuming
around $1000 in resources on Amazon’s Elastic Compute cloud (AWS EC2).

In the final round of the challenge, we obtained results as described in table
3.3. We find that the vg pipeline had similar performance to the de novo assembly
pipeline fermikit for SNPs. Methods that are not explicitly based on the GATK indel
calling method perform notably worse on indels, including egarrison-hhga4, which used
Platypus, fermikit, and freebayes to generate candidate variants and implemented a
genotyper using a machine learning method, and mlin-fermikit, which was a direct
application of fermikit’s standard pipeline to the data for HG002. However, vg call’s
indel calling results were very poor, and likely caused by bugs in the variant caller and
aligner at this stage rather than conceptual problems with graph based variant calling.

Submission SNPs indels
F-score recall precision F-score recall precision

anovak-vg 98.4545 98.3357 98.5736 70.4960 69.7491 71.2591
astatham-gatk 99.5934 99.2091 99.9807 99.3424 99.2404 99.4446
bgallagher-sentieon 99.9296 99.9673 99.8919 99.2678 99.2143 99.3213
dgrover-gatk 99.9456 99.9631 99.9282 99.4009 99.3458 99.4561
egarrison-hhga 99.8985 99.8365 99.9607 97.4253 97.1646 97.6874
hfeng-pmm3 99.9548 99.9339 99.9756 99.3628 99.0161 99.7120
mlin-fermikit 98.8629 98.2311 99.5029 95.5997 94.8918 96.3183
rpoplin-dv42 99.9587 99.9447 99.9728 98.9802 98.7882 99.1728

Table 3.3 A selected subset of PrecisionFDA Truth Challenge results showing the
best-performing methods as well as a number of other notable submissions.

We also explored integration of vg with the recently published GraphTyper [71]
method, which calls genotypes by remapping reads to a local, partially ordered variation
graph built from a VCF file, relying on initial global assignment to a region of the
genome by mapping with bwa to a linear reference. Therefore, although GraphTyper
also scales to the whole human genome because it is essentially a local method, its
functionality is complementary to that of vg, which maps to a global variation graph
and does not directly call genotypes. In experiments where we used vg rather than bwa
as the primary mapper for GraphTyper, true positives increased marginally (0.02%
for single-nucleotide polymorphisms (SNPs) and 0.06% for indels) while false positives
increased for SNPs by 0.15% and decreased for indels by 0.03%. We note, however,
that GraphTyper was developed by its authors for bwa mem mapping.

4This was my work along with Nicolas Della Penna, https://github.com/ekg/hhga. Unfortunately,
it remains unpublished.

https://github.com/ekg/hhga
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3.2.5 A graph of structural variation in humans

The Human Genome Structural Variation Consortium (HGSVC)5 has continued the
difficult process of cataloging structural variation in humans. Recently, the group
has developed a set of haplotype-resolved structural variation callsets for the children
in three parent-child trios from diverse populations: NA19240 (Yoruban Nigerian),
HG00733 (Puerto Rican), and HG00514 (Han Chinese) [34]. These variant calls are
derived from many sources, and are unified into a common framework in phased VCF
files. I built a graph from these variants and the GRCh38 reference against which they
are represented, then used vg map to align short reads from a sample in the HGSVC
set (NA19240) as well as a sample that was not included (HG002/NA24385).

Although I mapped only 1M read pairs, alignments to the HGSVC graph were
significantly better (when measured via the identity metric) than alignments to the
GRCh38 linear reference (figure 3.8). This was much more significant in the case
of NA19240 (two sample T-test p-value = 0.008529) than for NA24385 (p-value =
0.06813). Presumably the lower number of shared alleles with NA24385 means a larger
set of reads would need to be mapped to obtain a clear result. The HGSVC graph did
not significantly improve alignment scores for 1M random reads (only 2.4% align, with
p-value = 0.9889), or for reads sampled without error (p-value = 0.4665) or with 0.5%
SNP error and 0.1% indel error from GRCh38 (p-value = 0.9106).

These results are statistically significant and our negative controls validate that
the representation in the reference of recurrent SV polymorphisms contributes to the
improvement in alignment performance. However, it would be most interesting to see
that the variant calling process implemented in vg call could genotype the structural
variants in these samples. Investigations into this are ongoing, and although the results
are promising they are not yet complete. As the HGSVC graph is produced from SV
calls in a VCF, we retain the original problems of representing structural variation in
VCF. We cannot represent nested variation, and so alleles that are only marginally
different are represented as completely separate paths in the resulting graph. This
adds ambiguity to the mapping and apparently causes problems when attempting to
use the graph for variant calling.

3.2.6 Progressive alignment of human chromosomes

There are only a few truly de novo human genome assemblies which achieve near-
complete chromosomes, and so a reference-guided variant detection approach has

5http://www.internationalgenome.org/human-genome-structural-variation-consortium/

http://www.internationalgenome.org/human-genome-structural-variation-consortium/
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(a) NA19240 HGSVC vs. GRCh38 (b) NA24385 HGSVC vs. GRCh38

(c) NA19240 HGSVC - GRCh38 (d) NA24385 HGSVC - GRCh38

Fig. 3.8 1M 2x150bp Illumina read pairs from NA19240 (which is in the HGSVC
graph) and NA24385/HG002, which is not, aligned against both the HGSVC graph
and the GRCh38 reference, then compared. In panels 3.8a and 3.8b the difference in
performance is seen by the alignments which have positive identity against the HGSVC
graph but 0 identity against the GRCh38 reference. Panels 3.8c and 3.8d are log-scaled
histograms of the difference in alignment score. In these we can observe a small subset
of reads which map to the HGSVC graph but not GRCh38 as increased density at 1.0.
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prevailed for the discovery of novel structural variation [75]. Using vg msga, I explored
if it would be possible to use the HGSVC reference-guided assemblies directly in
progressive alignment. It was possible to produce the progressive alignment of the
six haplotypes for chr20 on system I used at the Sanger for most experiments, which
has 256 GB of RAM and 32 vCPUs. However, doing so took more than week of wall
clock time, suggesting that this approach is untenable in its current form. I was not
able to complete the progressive alignment of the six haplotypes of chromosome 2.
Optimization may improve the performance of vg msga, but the linear nature of the
approach suggests that aligning more than a handful of sequences will never be feasible.

The progressive assembly can be seen to compress the input. The resulting graph
contains 76,875,262bp of sequence, while the input FASTA file of the six haplotypes
contains 386,748,228bp, around a 5-fold compression. This result serves to demonstrate
that the hierarchical alignment process can scale to many tens of megabases. The low
performance of the method prevented its application to the whole genome.

3.2.7 Building graphs from the MHC

In [196] we explored methods to build graphs from the GRCh38’s ALT sequences and
reference genome. One of the most challenging regions is the Major Histocompatibility
Complex (MHC) on chromosome 6. In this ∼5Mb region, balancing selection has
generated a high level of genetic diversity, and today we observe up to 40 million years
of divergence between alternative copies of the locus, dating far back into the primate
lineage. Previous efforts to build reference graphs from this region have often required
hand curation to achieve reliable results [63].

Automatically building a sensible MHC graph with tools in vg requires that the
tools work correctly, and over the course of my work I have used this region as an
important test case. It took nearly a year for vg msga to mature enough to build the
MHC graph without crashing, and another two years before my long read alignment
implementation became capable of developing a sensible result.

My further interest in the problem of building graphs from sequences yielded
seqwish (section 2.2.6). seqwish losslessly induces the variation graph implied by
a set of sequence alignments. It implements a disk-backed bidirectional alignment
graph akin to that described in [124], and with a similar objective as tools developed
in [117]. The goal is to build a pangenome graph in which pairwise alignments between
the sequences define the graph. Unlike vg msga, it is fully dependent on an input
alignment set, and is not progressive.
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As an exposition of the differing solutions to this problem offered by these two
methods, I built the MHC graph from the 9 haplotypes overlapping the MHC in
GRCh386. To build the seqwish graph, I used [150] to generate an all versus all
alignment7, and induce the graph from this8. With vg msga I supplied suitable
parameters to encourage greater colliniearity in the alignment, but otherwise used
defaults9. seqwish used very little memory, never more than around a gigabyte, but
wrote 12 GB of intermediate files to disk during graph induction. vg msga used several
times this much RAM at peak, indicating that it will be difficult to scale its application
beyond small genomic regions. Both processes took around 2 hours to complete on the
256GB/32vCPU server I used for most of the experiments in this thesis.

The seqwish MHC graph contains 9,764,108bp of sequence, in 224,873 nodes and
321,990 edges, while the vg msga assembly is larger, with 10,900,412bp of sequence
in 480,734 nodes and 536,592 edges. Unlike the vg msga graph, whose nodes are cut
to be shorter than 32bp to enable GCSA2 indexing during progressive construction,
the seqwish graph is fully compressed by default, and this results in its much lower
node count. We can compare the aggregate results for seqwish (figure 3.9a) to those
for vg msga (figure 3.10). It becomes clear from these visualizations that the seqwish
graph compresses its repeats much more than vg msga (figure 3.9b). However, the
alignment in general is sensible in that unique alignments between the input sequences
generate linear components, as seen in panel 3.9c. This compression tends to confuse
operations on the graph, as it reduces the distance between all positions in the graph
and causes overlaps of many genomic regions in the pangenome graph. A different
parameterization of the aligner might need to be used to reconstruct the approximately
nature of this genomic locus.

To appreciate the effect of repeat collapse on the resulting graph, I applied vg
dotplot, which generates dotplots from indexed variation graphs, to compare the
in-graph alignments of the same pair of sequences in both the seqwish and vg msga
graphs. These results are presented in figure 3.11. It is clear (in 3.11a) that the
minimap2 based alignment process encorages the collapse of repeats, which results
in the large off-diagonal blocks of graph positional matches between the sequences.
In contrast, (panel 3.11b) shows that the sequences can naturally align through the
graph in an approximately linear fashion, with little repeat collapse. This linearity is

6These were collected for use in the GA4GH-DWG by the human genome variation map (HGVM)
project [22].

7minimap2 MHC.fa MHC.fa -c -X -x asm20 -t 32 >MHC.paf
8seqwish -s MHC.fa -a MHC.paf -b MHC.seqwish >MHC.gfa
9vg msga -f MHC.fa -w 512 -J 16384 -b ref -D >MHC.vg
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(a) The full seqwish MHC graph
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(b) A repeat in the seqwish MHC graph

(c) A linear component in the seqwish MHC graph

Fig. 3.9 Seqwish assembly of the MHC in GRCh38. In panel 3.9a Bandage was used
to gain a view of the full graph. The fine structure of the graph is similar as for the
earlier yeast assemblies. The core of the graph forms a hairball of repeats, as in panel
3.9b flanked by low-copy loops which are locally directed and acyclic as in panel 3.9c,
which adjoins the subgraph plotted in panel 3.9b.

Fig. 3.10 vg msga assembly of the MHC in GRCh38 as visualized by Bandage.
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enforced by setting a high alignment chain model “bandwidth” parameter (-J 16384)
(described in section 2.5.9), which limits the size of an insertion or deletion that can be
tolerated in collinear chaining. With a primary alignment chunk size of 512 and overlap
of 64, this yields an alignment chain model bandwidth of approximately 6Mb, which
roughly covers the entire MHC for any input sequence. Setting a shorter bandwidth
allows repeat collapse to occur in a manner similar to what occurs when inducing the
graph from the minimap2 alignments.

(a) seqwish (b) vg msga

Fig. 3.11 Comparing seqwish and vg msga assemblies of the MHC in GRCh38. In
both panels we see a dotplot between GI568335954 (x-axis) and GI568335994 (y-axis)
as they are embedded in each graph, with 3.11a showing the dotplot for seqwish and
3.11b that for vg msga.

3.2.8 CHiP-Seq

The removal of mapping bias is important when working with functional genomics
data such as ChIP-seq data, where allele-specific expression analysis can reveal genetic
variation that affects function but is confounded by reference mapping bias [175],
especially given that read lengths are typically shorter for these experiments. We com-
pared mapping with bwa mem and vg for data set ENCFF000ATK from the ENCODE
project [47], which contains 14.9 million 51-bp ChIP-seq reads for the H3K4me1 histone
methylation mark from the NA12878 cell line. When mapping with bwa the ratio of
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reference to alternate allele matches at heterozygous sites was 1.20, whereas with vg to
the 1000GP graph the ratio was 1.01, effectively eliminating reference bias.

(a) Reference observations (b) Alternate observations

Fig. 3.12 Resolving reference bias in 36-bp CHiP-seq data from ENCODE sample
ENCDO115AAA, using CHiP-seq targeting H3K4me1 (experiment ENCFF000ATK).
We compare the counts of reference-supporting (panel 3.12a) or alternate-supporting
(panel 3.12b) alignments between vg map and bwa mem at sites called as heterozygous
in the sample which were also polymorphic in the 1000GP. To shown density we have
jittered the points in the unit square centered on the integral values taken by the
counts.

The effect is dramatically stronger when using 36-bp reads. To illustrate, I aligned
the ultra-short reads from ENCODE experiment ENCSR290YLQ10 to the full 1000GP
graph using vg map and to the GRCh37 reference genome using bwa mem. To simplify
analysis, the vg mappings were surjected to the GRCh37 reference. This sample came
from an adult donor, and so we have no “truth” set as with NA12878, but we can
use a subset of sites called as variable using freebayes which also are known to be
polymorphic in the 1000GP to examine the effect of reference bias. By plotting the
reference and alternate counts obtained from each aligner relative to each other, we
can observe the effect of reference bias on a per-site basis. I find that bwa mem and vg
map obtain insignificantly different counts of reference observations at the heterozygous
sites (panel 3.12a), but as can be seen in panel 3.12b, aligning to the graph uncovers
dramatically more alternate observations at these loci, as is shown by the strong

10https://www.encodeproject.org/experiments/ENCSR290YLQ/

https://www.encodeproject.org/experiments/ENCSR290YLQ/
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increase in density below the diagonal. The strength of this effect indicates that small
variation will disrupt alignment of very short reads of relatively high quality and low
error rates. The issue becomes even more dramatic when we consider data sources
with higher error.

3.3 Ancient DNA
In suitable conditions, DNA can survive for tens or even hundreds of thousands of
years ex vivo, providing a unique window into the past history of life [52]. However, the
sequencing analysis of Ancient DNA poses several significant challenges. The amount
of DNA available is often limited, and sequencing costs are increased in the presence
of high rates of contamination by organisms that inhabit the sample after its death.
Read lengths are limited by the degradation of DNA due to necrotic processes and
subsequent environmental exposure. Post-mortem damage (PMD) of the DNA occurs
at a high rate, introducing mutations in the tails of the short DNA molecules, which
occur in a single-stranded and relatively unprotected state [160]. This manifests mostly
as the conversion of cytosines to uracil, but also can lead to apurination [52]. Ancient
DNA data is thus often of short length, low coverage, and high intrinsic error rate.

In combination these issues cause a strong bias against non-reference variation,
which can have a significant effect on population genetic inference and implications for
many aDNA studies. Ancient DNA may be treated with uracil-DNA-glycosylase (UDG)
and endonuclease VIII to remove uracil residues and abasic sites, leaving undamaged
portions of the DNA fragments intact [26]. However, this process results in a reduction
of read length and library depth, which is disadvantageous, and it is not guaranteed
to proceed without introducing new bias. There have also been many attempts to
mitigate the effects of reference bias and low coverage, such as by implementing a
model of reference bias in gentoyping [213], or by working with genotype likelihoods
throughout all downstream population genetic analyses [160]. To avoid genotyping or
even the generation of genotype likelihoods, standard practice often involves modeling
each genome as a collection of haploid chromosomes modeled by reads.

Here I report on the results of an ongoing collaboration with Rui Martiniano and
Eppie Jones to explore the use of vg to mitigate reference bias in ancient DNA samples.
They have completed most of the analyses, while I have supported their work and
developed the alignment (and surjection) algorithms that are essential to them.
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3.3.1 Evaluating reference bias in aDNA using simulation

Using simulation, Eppie Jones and I completed an exploratory analysis which demon-
strates that the high degree of reference bias inherent in ancient DNA analysis may
be mitigated at known sites by aligning against a pangenome graph. We simulated
all possible 50 bp reads which spanned variant sites on chromosome 11 of the Human
Origins SNP panel [207, 139], which is a set of SNPs designed to be highly informative
about ancient genomes and human ancestors. In half of the simulated reads the SNP
position was mutated to the alternate allele. We then mapped these reads back to
the 1000GP graph or GRCh37 linear genome using vg map and bwa aln respectively,
with vg’s surjection process used to produce a BAM file from the alignment for direct
comparison. Different levels of ancient DNA damage estimated using 100 ancient
genomes from [5] were simulated in these data using gargammel [220]. We filtered the
resulting alignments for those above mapping quality 30, which has approximately the
same significance in both vg and bwa. Our results are shown in figure 3.13.
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Fig. 3.13 Comparing bwa aln and vg map performance when aligning reads simulated
from chromosome 11 of the Human Origins panel. Lines represent OLS regression
results for the allele/aligner conditions corresponding to their colors.
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At high levels of error, alignment against the linear reference prevents the observation
of non-reference alleles in a large fraction of cases. This effect is notable at deamination
rates as low as 10%, and with 30% PMD error the rate of alignment to non-reference
alleles is reduced by nearly 15% relative to the total. While bwa aln suffers a significant
reference bias with increasing simulated PMD rates (dashed dark blue versus orange
fit lines representing alternate and reference alleles), we observe no such effect for vg
map (light blue and yellow) (figure 3.13). Most of the alleles in the Human Origins
panel are also in the 1000GP, which suggests that modern sources are useful when
constructing a pangenomic reference for ancient samples.

3.3.2 Aligning ancient samples to the 1000GP pangenome

To evaluate whether pangenomic read mapping techniques could mitigate reference
bias in real samples, we collected data from a number of recently published ancient
DNA studies. This includes Iron Age, Roman, and Anglo-Saxon individuals sequenced
at low coverage in [231] and [174], and high-coverage Yamnaya and Botai individuals
from [55]. We used vg map to align the samples to the 1000GP pangenome of variants
above 0.1% frequency, and bwa aln to align them to the GRCh37 reference plus decoys,
using standard parameters for the analysis of ancient DNA (-l1024 -q15 -n0.02).
For both alignment results we filtered the resulting BAMs using samtools view -q30
to remove reads with mapping quality less than 30, and removed duplicates using
sambamba markdup [260].

We first considered the high-coverage Yamnaya sample from [55], which provides
approximately 20-fold coverage of the genome. This is very high for ancient samples
and thus allows us to complete some experiments which would be otherwise very
difficult. We called variants on chromosome 21 using bcftools [154] for both vg and
bwa alignments. To evaluate the effect of reference bias with decreasing coverage,
we then used these callsets as ground truth and measured our ability to recover the
heterozygous variants in the full coverage set at coverage levels of 0.1, 0.2, 0.3, 0.4, 0.5
of the original. As seen in figure 3.14, at lower coverages common in ancient DNA
sequencing, bwa aln recovers notably fewer heterozygous SNPs than vg map alignment
to the 1000GP graph. At the sampling rate of 0.2, which corresponds to coverage ≈4,
vg map recovers 8% more heterozygotes as a fraction of the total. vg map recovers
more heterozygous SNPs than bwa aln at all the coverage levels, although at higher
levels the difference is less pronounced. We expect this would have a significant effect
on population genetic analyses depending on these alignments.
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Fig. 3.14 The comparative effect of downsampling of an ancient DNA sample on bwa
aln and vg map alignment.

In an illustrative, if less well-controlled experiment, we simply examined the dis-
tribution of the ratio between reference and alternate allele observations in the set
of variants called by freebayes from the surjected vg map Yamnaya alignments. We
first subset the called alleles into heterozygous transversions, and further divided the
resulting set of putative transversions into those alleles in the 1000GP graph, and those
which are not. As shown in figure 3.15, we observe that if the variant is in the graph
(N ≈ 1M) we have effectively removed bias towards the reference allele. This is not the
case for those called alleles (N ≈ 300K) which are not in the graph.

We expect reference bias of the degree demonstrated in these experiments to affect
population genetic inference. To evaluate this, we apply the ABBA BABA test of
phylogenetic tree topology based on Patterson’s D-statistic of population relationship
[98]. To do so, we used the Human Origins dataset distributed with [139]. For each
sample we ran samtools pileup yielding ∼1.2 million SNPs. We converted the pileup
results to plink format, selecting one allele at random from the confidently mapped
reads spanning each site, as is standard in the field. This was done 5 times, generating
5 replicates of randomly selected alleles for each sample. We then filtered by genotyping
rate, excluding poorly genotyped SNPs11, resulting in 1,142,867 SNPs. Finally, we
merged individual plink files with those for GRCh37 and Chimpanzee, converted plink

11We used the plink filter –geno 0.05.
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Fig. 3.15 Allele balance in the vg alignment of the Yamnaya sample to the 1000GP
graph versus its presence in the 1000GP graph.

to eigenstrat format using convertf and calculated D-statistics using qpDstat [207] of
the form D(vg, bwa; GRCh37, Chimp) to test for excess of shared alleles between vg
and bwa-aligned samples with the reference.

Our results, summarized in figure 3.16, indicate an excess of allele sharing between
the bwa-aligned samples and GRCh37 relative to the vg-aligned ones and GRCh37. All
but a handful of replicates have negative D-statistics, which implies that alignment
against GRCh37 makes the samples appear more like the reference (subfigure 3.16a).
We conclude that reference bias is strong enough to affect common population genetic
analysis completed with ancient DNA, and this can be mitigated at least for known
alleles by aligning against a pangenomic reference.

3.4 Neoclassical bacterial pangenomics
As I discussed in the introduction (section 1.3), during much of the past decade pange-
nomic concepts have been employed in microbiology to characterize the relationship
between strains that frequently share DNA through horizontal gene transfer and exhibit
wide variability in gene content. It is often helpful to consider the “core” and “accessory”
pangenome of a given clade, with core genes being those present in all strains and
accessory ones those present in only a subset. Techniques to evaluate these features
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(b) D-statistic z-scores

Fig. 3.16 D-statistic based ABBA-BABA test of reference bias in aDNA. Panel 3.16a
provides the absolute values for the given D-statistic, calculated as described in the
text, while panel 3.16b shows estimated significance level for the various samples. On
both panels, points to the left of the dashed line at 0 indicate excess allele sharing
between bwa alignments of the samples and GRCh37 (the ABBA pattern), while those
to the right indicate an excess of sharing between vg alignments and GRCh37 (the
BABA pattern). The two patterns are illustrated by the trees above the panels, where
A alleles are given as blue lines on the tree and B alleles that arose between the split
with the outgroup (Chimpanzee) are shown in red.
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of a pangenome are often based on gene counting approaches that can be driven by
simple k-mer matching.

In this section I demonstrate that vg can be applied to derive the same kind of
result by directly working on a pangenome graph reference built from diverse strains
of Escheria coli12. The basic idea is to build a pangenome using a standard DBG
assembler, then align all the strain level data we have available against the resulting
assembly graph. The advance that vg offers is precision. Rather than considering gene-
level counts, alignment with vg provides per-base, per-sample coverage information.
The results can be used as in resequencing to find new variants, and to genotype
existing ones in the graph. This approach is similar to colored de Bruijn graphs [113],
but it allows for out-of-core computation, retains full alignment information, and is
consequently (in principle) lossless with respect to the input reads.

3.4.1 An E. coli pangenome assembly

In line with early work on bacterial pangenomics [176], I used a handful of genomes to
demonstrate the utility of pangenomic approaches in E. coli. I collected Illumina data
from 10 strains published in [68]13. These data total 2.3 GB of compressed FASTQ
in 2x151bp paired end format. I built a compressed DBG using minia with k = 51
and an abundance minimum of 10, which was selected due to the very high genomic
coverage offered by this data, although I did not observe large changes in assembly
structure when varying it. I then processed the resulting graph with vg to decompress
long nodes into nodes with a maximum length of 32bp, then sort it pseudotopologically
and compact its node identifier space. These steps are required for efficient mapping
given the absence of any annotated reference paths to provide distance estimates.
As seen in figure 3.17, the assembly graph features a giant component representing
most of the input sequencing data. Other fragments could represent plasmids or other
contaminating elements. The normalized graph contains 10,456,557bp of sequence, in
429,377 nodes and 455,892 edges. The facts that the average node length is over 24bp
and that there are only 1.06 edges per node suggest that despite its tangled appearance,
it is mostly composed of linear components. It took less than an hour to assemble and

12I developed this technique during the Computational Pangenomics (CPANG18) course at the
Instituto Gulbenkian de Ciéncia in Oieras, Portugal. See https://gtpb.github.io/CPANG18/. This
particular practical was explored on the third day of the course https://gtpb.github.io/CPANG18/
pages/bacteria.html.

13SRA accessions SRR3050857, SRR3050919, SRR3050929, SRR3050978, SRR3050990, SRR3050992,
SRR3050994, SRR3051002, SRR3051049, and SRR3051079.

https://gtpb.github.io/CPANG18/
https://gtpb.github.io/CPANG18/pages/bacteria.html
https://gtpb.github.io/CPANG18/pages/bacteria.html
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(a) The full E. coli assembly graph.
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(b) A linear region of the assembly graph, with variation.
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(c) A semi-tangled region of the assembly graph.

Fig. 3.17 An assembly graph built from 10 E. coli strains using minia. In the full graph
we observe a single giant component (panel 3.17a). The graph is largely linear (3.17b).
However, in some regions it is densely tangled (3.17c).
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index the graph, yielding a 6.3MB vg graph, a 37MB xg index, and a 47MB GCSA2
index.

3.4.2 Evaluating the core and accessory pangenome

The generation of the compressed DBG loses the read-level relationships to the graph,
but these may be obtained trivially with vg by aligning the read set back to the
assembly graph. Doing so required around 5 minutes per sample, yielding 3.3 GB of
GAM files in around an hour. To obtain coverage counts per sample across the graph
I then applied the vg pack utility to project the alignment GAMs into coverage maps
for each sample, which I collated for processing in R.

Figure 3.18a shows the coverage across a typical region of the pangenome. We see
regions shared by all strains, as well as others which are particular to a single or small
number of strains. This is exactly in line with our expectations based on observations
from “classical” bacterial pangenomics. To quantify this over the whole pangenome,
I computed the histogram of graph positions by the number of strains mapping to
each position, as summarized in figure 3.18b. I find that 26.9% of the pangenome is
covered by all ten strains, while 25.6% is covered by only one strain. The remaining
47.5% of the pangenome has intermediate numbers of strains mapping to it. As such
we can conclude that around 1

4 of the pangenome is the conserved “core,” and 1
4 is

purely “accessory,” occuring in only a single strain.
Virtually all the graph is covered by some strain, with only 80bp receiving no

mappings, which indicates that the pangenome object is complete. However, the read
sets are not equivalently contained in the pangenome, and a significant (p = 0.00534)
correlation exists between the realignment rate of the reads to the pangenome and the
number of raw reads from each strain, as seen in figure 3.18c. This statistic suggests
that a few strain-specific regions are not assembled. Naturally, the rate at which this
failure occurs is dependent on read depth. It is possible that this effect is driven by the
high abundance count (10) used in constructing the compressed DBG, and possibly it
could be mitigated by tuning this parameter and the k-mer length.

3.5 Metagenomics
Metagenomics is conceptually close to pangenomics. But, where pangenomics considers
a single clade, metagenomics considers the total DNA in an environmental context.
This adds significant complexity to the analysis of metagenomic data. To obtain high
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(a) Per-strain coverage across 100 kbp of the E. coli pangenome
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(c) Realignment rate versus input read count

Fig. 3.18 Evaluating alignment to the E. coli pangenome. Panel 3.18a shows per-strain
coverage across a selected region of the ≈10MB pangenome, including several regions
specific to a subset of the strains. Panel 3.18b provides a histogram of the number of
genomes covering each base of the pangenome demonstrates that much of the genome
is in all strains or in single strains. Although the alignment rate of the input reads to
the pangenome graph is in all cases is above 99.5%, we see a significant correlation
between this rate and the number of input reads from each strain used to construct
the graph (panel 3.18c).
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coverage across all the extant genomes in a sample may be impossible, as many exist at
extremely low copy. Furthermore, doing so could be extremely expensive. In response,
reductive approaches focused on sequencing 16S ribosomal DNA or other conserved
gene sequences have been popular [266]. These methods are only applicable where
such homologous sequences are available, and so cannot be applied to viral contexts
[70]. As sequencing costs have decreased, assembly techniques have become more
important to metagenomics [197]. A typical workflow involves assembling contigs out
of a DBG, mapping these contigs into annotated databases using sensitive alignment
with BLAT or BLAST, and computing abundance by aligning the read set back to the
contig set. Contigs, in being unary, suppress variation that could be useful in analysis.
Furthermore, in graphs that are dense, contigs will be very short, and linear read
alignment will fail to completely capture the set of contigs that a given read maps to.
This will result in distortion in coverage estimates, and at very least loss of information
due to the breakage of sequences that cross contigs boundaries. The information loss
suggests that a technique based on alignment to the assembly graph itself could benefit
downstream analysis. In this section I use analyses of viral and bacterial metagenomes
to demonstrate that vg enables contiguous alignments against topologically complex
metagenomic assembly graphs.

3.5.1 Arctic viral metagenome

To explore this issue, I built an assembly graph from a single sequencing data set
from a study of freshwater viruses in Svalbard [57]14 and compared the performance
of alignment against the graph with alignment against the contig set. As with other
assembly graph based variation graphs, I used minia to construct the graph, with
k = 51 and a minimum abundance of 3. To enable efficient alignment against the
graph, I chopped its long nodes into nodes of a maximum of 32bp. The resulting graph
has 39,503,775bp of sequence in 1,387,287 nodes and 1,326,573 edges. The low ratio
of edges to nodes suggests a locally linear structure, which enables direct use of the
graph by vg. In fact there are fewer edges than nodes, which also means the graph
contains many isolated components. To successfully index the graph I found I had to
remove complex regions using vg prune, cutting edges that induced 3 bifurcations in
any 16-mer. Indexing yielded a 119MB xg index and 158MB GCSA2 index.

As expected given the small genome size of most viruses, the graph contains many
small components (figure 3.19). The graph also contains a few large components, and

14Data from https://www.ebi.ac.uk/ena/data/view/ERS396648

https://www.ebi.ac.uk/ena/data/view/ERS396648
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Fig. 3.19 An arctic freshwater viral metagenome visualized with Bandage.
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many of the medium-sized components are circular, which is expected given the nature
of many DNA viruses. Some components are topologically complex, which can be seen
in figure 3.19 as “hairball” like structures. When using k = 31, indexing and alignment
against the graph were impossible without a high-degree filter which removed nodes in
such regions, however in the case of k = 51 it is possible to index with only standard
pruning of the DBG.

I held out 100,000 reads from the input to the assembly graph. To evaluate the
utility of using this graph as a reference for alignment, I aligned these 100,000 reads
using vg map and bwa mem to the assembly graph and linear contig set respectively.
Although both methods mapped ∼96% of the reads, vg had an average identity score
of 95% compared to 87% for bwa, reflecting that the bwa alignments in many cases are
not full length while those of vg are. Furthermore, many reads mapped with higher
scores (longer matches) to the graph than to the contig set (figure 3.20).

Fig. 3.20 Comparison of alignment score between vg map and bwa mem when aligning
against the pangenome graph or assembled contig set of the graph.
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3.5.2 Human gut microbiome

As a counterpoint to the viral metagenomic sample used in the previous section, here I
present a similar analysis based on a predominantly bacterial human gut microbiome
obtained from a stool sample15 as part of the Human Microbiome Project (HMP)
[267, 209].

As with other assembly graph based analyses, I applied minia with k = 51 and a
minimum abundance filter of 3 to the 29 GB of compressed FASTQs from this sample.
The resulting assembly graph is shown in figure 3.21. It contains 144,829,925bp of
sequence in 4,788,652 nodes and 4,665,919 edges, and as with other DBG assemblies
I have discussed is locally linear. Building and indexing the graph took around an
hour on the 32vCPU/256GB server used in other experiments, and yielded a 74MB vg
graph with a 403MB xg index and 606MB GCSA2 index, which was built with pruning
with a 3 edge crossing limit in k = 16.

Human gut flora are primarily comprised of two main phyla, the Firmicutes and
the Bacteroidetes [167]. We can observe their presence in this sample in the structure
of this assembly graph. By aligning the node sequences in the graph against a subset
of RefSeq Genomes which are commonly found in the human git microbiome, I verify
that the two ends of dumbbell-like main component of the graph (figure 3.21) represent
these phyla. The connection between them may be generated by horizontal transfer of
genes or spurious correlation due to recurrent k-mers in the assembly graph, and it
is notable that many of the nodes in the bridge between the two components show a
high depth in the assembly graph, as shown by the node width in the figure. E. coli
can be found on a small component connected to this bridge, shown at the top middle
of the rendering.

To evaluate the utility of this graph for read alignment, I aligned 100k of the
held-out reads with vg map and bwa mem to the graph and the contig set respectively.
This contig set would appear to be more suited to use as a linear reference and bwa mem
alignment than the viral metagenome in described in the previous section. Alignment
to the graph marginally improves the number of aligned reads, with bwa mem aligning
95.7% of them and vg map aligning 96.3%. Overall, we can observe a similar level of
change in the alignment score, with vg’s mean score at 92.5 and bwa’s at 92.0, which is
a small but significant difference (two-tailed T -test p = 3.62× 10−7). The longer length
of contigs in this graph and the lack of small circular contigs apparently contribute
to the reduction in relative improvement offered by alignment to the graph in this

15Sample described at https://portal.hmpdacc.org/cases/3674d95cd0d27e1de94ddf4d2e0398c4, with
data from http://downloads.hmpdacc.org/data/Illumina/PHASEII/stool/SRS105153.tar.bz2.

https://portal.hmpdacc.org/cases/3674d95cd0d27e1de94ddf4d2e0398c4
http://downloads.hmpdacc.org/data/Illumina/PHASEII/stool/SRS105153.tar.bz2
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Fig. 3.21 The largest components in a human gut microbiome assembly graph. Node
width shows coverage in the assembly. Nodes that match to RefSeq genomes for nine
given phyla are colored in the graph as described here with abundances: Bacteroides
(red) 34827, Clostridium (green) 9521, Faecalibacterium (blue) 5921, Bifidobacterium
(magenta) 373, Enterococcus (cyan) 73, Enterobacter (orange) 25, Klebsiella (purple)
21, Escherichia (yellow) 17, and Enterobacteriaceae (brown) 2.
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Fig. 3.22 Comparing alignment performance between vg map and bwa mem to the
human gut microbiome assembly graph or its contigs.
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bacterial context. A scatterplot of alignment scores between the two methods reveals
a slight shift in density below the diagonal in vg’s favor (figure 3.22). It is possible
that an assembly designed to capture more variation in the strains might benefit more
greatly from the use of vg. A number of issues appear when inspecting these results, for
instance that vg does not align some reads that bwa does. This could represent a bug
in the aligner or the effect of pruning on the gut metagenome graph’s GCSA2 index.
We can conclude that while this method shows promise in a variety of metagenomic
applications, improvements may be required for it to yield benefits in some contexts.

3.6 RNA-seq
As described in section 1.4.2.4, graphs have been used as a description of transcriptomes.
A transcript graph can encode alternatively spliced transcripts in a DAG. By recording
the transcripts as paths in this graph we can build a coherent annotation describing all
the known transcripts and their sequences, and by indexing the graph with vg we can
align RNA-seq reads directly to it. To build a splicing graph in vg requires a linear
reference and a gene model encoded in GFF, and uses the edit function to augment
the graph with alignments representing each gene annotation, thus incorporating edges
for each spliced intron (section 2.2.3).

3.6.1 Yeast transcriptome graph

An obvious application of vg is to the direct alignment of reads to a splicing graph. I
have only begun to explore this at the end of my studentship. Once again, I started
with yeast, which has only a small number (∼280) of spliced genes. I built a gene model
graph (SGD+CDS) using the yeast reference genome from the Saccharomyces Genome
Database (SGD) and its gene annotations16. At 8.8MB, the serialized SGD+CDS vg
graph itself is only slightly larger than the SGD linear reference graph, which is 7.3MB.
However, its xg index is much larger, 642MB, in contrast to the linear index at 38MB.
This index suffers a large penalty for the ∼5000 embedded transcript annotations,
as each becomes a full reference path, usable in alignment for positional inference.
To verify that the splicing graph would allow reads to align full length across splice
junctions, I aligned 100k reads from a yeast mRNA sequencing data set17.

16I used the 20150113 release from https://downloads.yeastgenome.org/sequence/S288C_reference/
genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz.

17SRR2069949 in SRA, https://www.ncbi.nlm.nih.gov/sra/?term=SRR2069949

https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
https://www.ncbi.nlm.nih.gov/sra/?term=SRR2069949
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The low rate of alternative splicing in yeast means that only a handful of reads map
across splice junctions encoded in the graph, but those that do now align full length,
as seen in figure 3.23. The difference in aggregate alignment identity is small (0.91 vs
0.912) but marginally significant (two-tailed T -test p = 0.03927). This provides a basic
proof of principle that the splicing graph can be represented as a variation graph and
that vg can align reads to it without any particular RNA-specific considerations. Due
to time constraints I was unable to further explore this topic. One major concern was
the runtime and memory costs to construct the xg index. These suggest that it may not
be possible to build a splicing graph for a large genome with the transcripts encoded as
positional paths, which further implies that improvements in the approximate positional
metric in the graph will be required to scale RNA-seq alignment with vg. Further, the
results shown in figure 3.23 indicate that there may be a positional offset bug in the
conversion of the GFF files representing the transcriptome into the graph. In summary,
future work will be required to explore the use of vg for RNA-seq data.

Fig. 3.23 Comparing alignment identity between vg map on the linear SGD reference
(y-axis) and the SGD reference augmented by the transcripts in the annotated CDS
(x-axis).
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Conclusions

Genomics is driven by comparison. It is rare that we have reason to consider a
single genome in isolation. We apply alignment algorithms to infer the sequence-level
relationship between genomes, or between additional sequence data and genomes. As
data scales have increased, we have required incomplete methods to determine these
relationships among many individuals. Contemporary resequencing techniques focus
on the placement of new sequencing information into a reference system which is
typically linear and representative of only a single copy of each genomic locus. A
pangenomic reference system allows us to represent multiple versions of each locus, but
until recently such techniques have been difficult to apply at scales commonly reached
in current analyses.

I propose the use of variation graphs as reference systems in resequencing. These
path-labeled, bidirectional DNA sequence graphs allow us to represent collections
of genomes in a single, coherent structure which fully capture the sequences and
variation between them. They support the direct representation of all kinds of genomic
variation. By building a software system supporting the construction, manipulation,
indexing, and alignment of new read sets and genomes to variation graphs, I am
able to show that this model reduces bias towards the reference in alignment in a
wide array of genomic contexts. These methods achieve a level of performance that
will make them usable for large-scale resequencing analyses. As I have shown, their
modular implementation, based around a handful of core data models, enables the
rapid construction of novel graph-based analysis processes that provide conceptual
unity to alignment, assembly, and variant calling. Although other methods for aligning
sequences against pangenome data structures exist, vg is the first set of tools that does
so in a completely coherent manner against arbitrary bidirectional sequence graphs.
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This is also the first framework to provide graph based analogs of many of the data
types standardly used in resequencing.

In addition to developing methods to support alignment to variation graphs, we
have explored a variety of related analyses. We developed new techniques for visualizing
variation graphs that will help to build the genome browsers necessary to navigate
data placed in the context of the graph. To record and interface with annotations
embedded in a variation graphs, we have linked the variation graph data model to
RDF. To simplify their construction, I provide a method to losslessly induce variation
graphs from a set of aligned sequences. We built systems that allow for the efficient
summarization of alignment data sets against variation graph. And we worked on
methods to support genotyping known and novel variation in graphs. Throughout my
work I have supported and worked with a growing group of researchers focused on
these techniques, collaborating in the development of graph sequence and haplotype
indexing techniques, the evaluation of diverse variation graph models, and the study of
ancient DNA using variation graphs.

Graphical models are often regarded with apprehension by members of the bioin-
formatics community who are accustomed to working with linear reference genomes. I
show that arbitrary variation graphs may be consistently linearized for visualization
and analysis. Variation graphs built from related sequences tend to have a regional
linear property despite the frequent presence of large scale variation. I show that this
holds for graphs constructed from a variety of sources using alignment or assembly
techniques. They retain relatively linear structures locally, and as such can be used for
efficient alignment. The linearization of the graph suggests a projection of sequencing
information in the graph into a basis vector space defined by the graph itself. Such an
approach may greatly simplify genomic analyses by removing the complicated variant
calling step. If the variation we want to consider is already embedded in the graph, we
do not need to genotype novel variation or engage in filtering our results. As variation
is now embedded in the graph, we can perhaps avoid variant calling altogether where
downstream it is possible to work with a normalized coverage model across this graph
basis vector. Doing so practically will require the development of techniques that can
scale genetic analyses to the large matrix representations implied by such maps.

It is not clear how to build the best graph for a given analysis context. The results
I present show that the addition of variation to a graph does not necessarily improve
alignment performance in all contexts. Additional variation increases graph complexity,
and this can make results more ambiguous. One important step is likely to be the use of
haplotype information at the level of alignment. Ongoing work suggests that doing so
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may mitigate scaling issues that will occur as we build graphs from tens and hundreds
of thousands of genomes, but there is still much work to be done. We can expect that,
with time, practices will arise that capture the ideal patterns for constructing variation
graphs. I found a number of potential input sources unreliable in their current form,
and I hope to explore them as variation graph analysis techniques mature. Progressive
and multiple whole genome alignment algorithms look to be the most promising way to
merge haplotype resolved genome assemblies that new genome inference technologies
are enabling. However, as they have difficulty scaling to more than single human
chromosomes, I am interested in exploring ways of building variation graphs from
networks of pairwise alignments. Given improvement of the input alignment process,
this technique could also serve as a scalable way to construct variation graphs in any
context where collections of sequenced genomes exist.

I believe that reference genomes should be replaced with pangenomic structures.
This is the clearest way to resolve representational issues that arise as we collect large
collections of genomes in the species we examine. The variation graph is a natural
model with which to do this. Its adoption is now a social as well as a technical question.
Can the community generate a unified set of data structures that encapsulate the
ideas I have presented here? Large distributed projects like the 1000GP gave rise
to the current generation of genomic data formats. It seems natural that the next,
graphical, pangenomic phase will require the same. At present, it is not clear what
project might support this. Top-down approaches like that presented by the GA4GH
have not proven as capable of promoting standards as analysis-oriented projects like the
1000GP, although they have served a coordinating role for the community of researchers
interested in these topics. One obvious target for the widespread introduction of
variation graph data models would be in the generation of a new reference genome
system based on a collection of fully-resolved genomes. Motivation for such an advance
increases as evidence mounts that a substantial and important fraction of genetic
variation is neither small nor simple. I am hopeful that my work may support such
an effort, and that the ideas which arise therein may follow at least in part from the
generic graphical pangenomic models I have proposed and demonstrated here.
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