forked from ManivannanMurugavel/YOLO-Annotation-Tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
process.py
31 lines (23 loc) · 932 Bytes
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import glob, os
# Current directory
current_dir = os.path.dirname(os.path.abspath(__file__))
print(current_dir)
current_dir = '/home/manivannan/YOLO-Annotation-Tool/Multi-Image-Train'
# Directory where the data will reside, relative to 'darknet.exe'
#path_data = './NFPAdataset/'
# Percentage of images to be used for the test set
percentage_test = 10;
# Create and/or truncate train.txt and test.txt
file_train = open('train.txt', 'w')
file_test = open('test.txt', 'w')
# Populate train.txt and test.txt
counter = 1
index_test = round(100 / percentage_test)
for pathAndFilename in glob.iglob(os.path.join(current_dir, "*.jpg")):
title, ext = os.path.splitext(os.path.basename(pathAndFilename))
if counter == index_test:
counter = 1
file_test.write(current_dir + "/" + title + '.jpg' + "\n")
else:
file_train.write(current_dir + "/" + title + '.jpg' + "\n")
counter = counter + 1