forked from asteroid-team/asteroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
143 lines (127 loc) · 5.14 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import random
import soundfile as sf
import torch
import yaml
import json
import argparse
import pandas as pd
from tqdm import tqdm
from pprint import pprint
from asteroid import DPRNNTasNet
from asteroid.metrics import get_metrics
from asteroid.losses import PITLossWrapper, pairwise_neg_sisdr
from asteroid.data.wham_dataset import WhamDataset
from asteroid.models import save_publishable
from asteroid.utils import tensors_to_device
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
type=str,
required=True,
help="One of `enh_single`, `enh_both`, " "`sep_clean` or `sep_noisy`",
)
parser.add_argument(
"--test_dir", type=str, required=True, help="Test directory including the json files"
)
parser.add_argument(
"--use_gpu", type=int, default=0, help="Whether to use the GPU for model execution"
)
parser.add_argument("--exp_dir", default="exp/tmp", help="Experiment root")
parser.add_argument(
"--n_save_ex", type=int, default=50, help="Number of audio examples to save, -1 means all"
)
compute_metrics = ["si_sdr", "sdr", "sir", "sar", "stoi"]
def main(conf):
model_path = os.path.join(conf["exp_dir"], "best_model.pth")
model = DPRNNTasNet.from_pretrained(model_path)
# Handle device placement
if conf["use_gpu"]:
model.cuda()
model_device = next(model.parameters()).device
test_set = WhamDataset(
conf["test_dir"],
conf["task"],
sample_rate=conf["sample_rate"],
nondefault_nsrc=model.masker.n_src,
segment=None,
) # Uses all segment length
# Used to reorder sources only
loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")
# Randomly choose the indexes of sentences to save.
ex_save_dir = os.path.join(conf["exp_dir"], "examples/")
if conf["n_save_ex"] == -1:
conf["n_save_ex"] = len(test_set)
save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
series_list = []
torch.no_grad().__enter__()
for idx in tqdm(range(len(test_set))):
# Forward the network on the mixture.
mix, sources = tensors_to_device(test_set[idx], device=model_device)
est_sources = model(mix[None, None])
loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True)
mix_np = mix[None].cpu().data.numpy()
sources_np = sources.cpu().data.numpy()
est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
utt_metrics = get_metrics(
mix_np,
sources_np,
est_sources_np,
sample_rate=conf["sample_rate"],
metrics_list=compute_metrics,
)
utt_metrics["mix_path"] = test_set.mix[idx][0]
series_list.append(pd.Series(utt_metrics))
# Save some examples in a folder. Wav files and metrics as text.
if idx in save_idx:
local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
os.makedirs(local_save_dir, exist_ok=True)
sf.write(local_save_dir + "mixture.wav", mix_np[0], conf["sample_rate"])
# Loop over the sources and estimates
for src_idx, src in enumerate(sources_np):
sf.write(local_save_dir + "s{}.wav".format(src_idx + 1), src, conf["sample_rate"])
for src_idx, est_src in enumerate(est_sources_np):
sf.write(
local_save_dir + "s{}_estimate.wav".format(src_idx + 1),
est_src,
conf["sample_rate"],
)
# Write local metrics to the example folder.
with open(local_save_dir + "metrics.json", "w") as f:
json.dump(utt_metrics, f, indent=0)
# Save all metrics to the experiment folder.
all_metrics_df = pd.DataFrame(series_list)
all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics.csv"))
# Print and save summary metrics
final_results = {}
for metric_name in compute_metrics:
input_metric_name = "input_" + metric_name
ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
final_results[metric_name] = all_metrics_df[metric_name].mean()
final_results[metric_name + "_imp"] = ldf.mean()
print("Overall metrics :")
pprint(final_results)
with open(os.path.join(conf["exp_dir"], "final_metrics.json"), "w") as f:
json.dump(final_results, f, indent=0)
model_dict = torch.load(model_path, map_location="cpu")
publishable = save_publishable(
os.path.join(conf["exp_dir"], "publish_dir"),
model_dict,
metrics=final_results,
train_conf=train_conf,
)
if __name__ == "__main__":
args = parser.parse_args()
arg_dic = dict(vars(args))
# Load training config
conf_path = os.path.join(args.exp_dir, "conf.yml")
with open(conf_path) as f:
train_conf = yaml.safe_load(f)
arg_dic["sample_rate"] = train_conf["data"]["sample_rate"]
arg_dic["train_conf"] = train_conf
if args.task != arg_dic["train_conf"]["data"]["task"]:
print(
"Warning : the task used to test is different than "
"the one from training, be sure this is what you want."
)
main(arg_dic)