
Computer Aided Geometric Design 25 (2008) 652–666
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Covering Minkowski sum boundary using points with applications

Jyh-Ming Lien ∗

MSN 4A5, 4400 University Drive, Fairfax, VA 22030, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 July 2008

PACS:
02.40.Dr

Keywords:
Point-based representation
Minkowski sum approximation
Parallelization
Geometric modeling
Motion planning
Penetration depth estimation

Minkowski sum is a fundamental operation in many geometric applications, including
robotic motion planning, penetration depth estimation, solid modeling, and virtual
prototyping. However, due to its high computational complexity and several non-trivial
implementation issues, computing the exact boundary of the Minkowski sum of two
arbitrary polyhedra is generally a difficult task. In this work, we propose to represent
the boundary of the Minkowski sum approximately using only points. Our results
show that this point-based representation can be generated efficiently. An important
feature of our method is its straightforward implementation and parallelization. We
demonstrate that the point-based representation of the Minkowski sum boundary can
indeed provide similar functionality as the mesh-based representations can. We show
several applications in motion planning, penetration depth approximation and geometric
modeling. An implementation of the proposed method can be obtained from our project
webpage.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Minkowski sum is an important operation due to it’s fundamental role in many geometric applications, including image
analysis, robotic motion planning, penetration depth estimation, solid modeling, and virtual prototyping, to name just a few.
In Fig. 1, we show the Minkowski sum of the David model and a sphere. The Minkowski sum of two sets P and Q in R

d is
defined as:

P ⊕ Q = {p + q | p ∈ P ,q ∈ Q }. (1)

Typically, P and Q represent polygons in R
2 or polyhedra in R

3.
During the last three decades, several methods have been proposed to compute the Minkowski sum and its boundary;

see surveys in Ghosh (1993), Varadhan and Manocha (2006), Fogel and Halperin (2006). In particular, due to the straight-
forward implementations for images, Minkowski operations comprise a wide spectrum of applications in mathematical
morphology (Serra, 1988). Even though computing the Minkowski sums for the continuous representations, e.g., polygons,
is more difficult than for the image-based representations, many efficient methods have been proposed, e.g., using convolu-
tions (Guibas and Seidel, 1987). Even in 3-dimensions, several methods (Kaul and Rossignac, 1991; Fogel and Halperin, 2006;
Gritzmann and Sturmfels, 1993; Fukuda, 2004) are known to compute the Minkowski sum of convex polyhedra efficiently.

For general 3-d polyhedra, a typical strategy for computing the Minkowski sum boundary of two polyhedra, denoted as
P and Q , is to first apply convex decompositions to P and Q , and then compute the pairwise Minkowski sums between
the decompositions of P and Q (Hachenberger, 2007). The final Minkowski sum boundary is extracted from the union of
all the pairwise Minkowski sums. Despite the popularity of this strategy, it has several disadvantages. First, because there

* Tel.: +1 703 993 9546.
E-mail address: jmlien@cs.gmu.edu.
0167-8396/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2008.06.006

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:jmlien@cs.gmu.edu
http://dx.doi.org/10.1016/j.cagd.2008.06.006

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 653
Fig. 1. The Minkowski sum boundary (right) of the “David” model (left) and a unit sphere. The Minkowski sum boundary is composed of 773 021 points
generated in 224 seconds using four threads. The David model is composed of 493 904 facets.

Fig. 2. An overview of our method. First, two point sets S P and S Q are sampled from the input polyhedra P and Q . Next, the Minkowski sum S P⊕Q of S P

and S Q is computed. Finally, the boundary points S are filtered (via normal filter, octree filter and collision detection (CD) filter) from S P⊕Q to represent
the Minkowski sum boundary of P and Q .

can be O(n + m) components produced by convex (surface) decomposition, the total number of the pairwise Minkowski
sums can be very large, i.e., O(mn), where m and n are the size of P and Q , respectively. For example, to compute the
Minkowski sum of the Stanford bunny and the David model, whose convex surface decompositions contain 16 549 and
85 132 components, resp., we have to compute more than 1.4 billion pairwise Minkowski sums. Second, it is generally difficult
to robustly generate the union of the pairwise Minkowski sums. Many degenerate cases need to be considered carefully in
implementation. The recently proposed approximation-based approach (Varadhan and Manocha, 2006) is designed to avoid
the union step.

It is these difficulties that motivate us to seek an alternative approach. Please note that this work does not attempt to
address all these existing issues. Instead, our goal is to provided a very simple method to robustly compute an approximate
(i.e., point based) and accurate (i.e., every point is a valid boundary point) representation of Minkowski sum boundary.

1.1. Our approach

In this work, we propose an efficient method to compute the Minkowski sum boundary of two polyhedra. Our strategy
is to represent the boundary of the Minkowski sum using only points without connecting them into meshes. Because of
this point-based representation, our method is more efficient and is easier to implement than the methods that attempt
to generate mesh-based representations. In particular, our approach does not require convex decomposition, thus does not
need to merge results from the sub-problems. Neither of these steps is trivial.

Our approach is simple. Given two polygons or polyhedra P and Q , our goal is to generate a point set S so that the
external boundary ∂(P ⊕ Q) of the Minkowski sum P ⊕ Q is well covered (this term will be defined later in Section 3)
by S .

To generate the point set S , we uniformly sample two point sets from the boundaries of both P and Q and name them
S P and S Q . Then, each point in S Q is replaced by S P . We denote the resulting points of this step as S P⊕Q . Finally, in our
last step, we filter out (inner) points that are not on the Minkowski sum boundary. Later in this paper, we will introduce
three filters, namely collision detection filter (Section 4), normal filter (Section 5), and octree filter (Section 6). In Fig. 2, we
provide an overview of the proposed method.

654 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
It is clear that S P⊕Q has Θ(mn) points, where m and n are the size of S P and S Q , respectively. Therefore, in the worst
case (when both P and Q are convex), our approach takes O(mnTfilter) time to compute a Minkowski sum boundary, where
Tfilter is the time complexity of filtering a single point, which is dominated by the collision detection computation. Fortu-
nately, as it will become more clear when we show our results in Section 9, when the input models are non-convex, many
inner points will be filtered out before reaching the collision detection stage. Moreover, because the proposed approach
does not depend on the solutions obtained from the sub-problems, our method can be easily parallelized to handle large
geometric models.

Minkowski sum is an important operation because it can be applied to many geometric problems. Therefore, it is crucial
for us to show that our point-based representation can also provide a wide range of applications. In Section 9.2, we will
show that the point-based representation of the Minkowski sum boundary can indeed provide similar functionality as
mesh-based representations. We demonstrate the applications in motion planning, penetration depth approximation and
solid modeling using the proposed point-based Minkowski sum boundaries.

1.2. Key contributions

We propose an algorithm to compute Minkowski sum boundary. The resulting representation is point based. Our ap-
proach gives up exact and continuous representation but gains several benefits which have not been provided by existing
methods. These benefits include:

• efficiency (Section 9.1),
• robustness (can even work for non-manifold models with open surfaces) (Section 9.1),
• easy implementation (i.e., no convex decomposition and no need to perform union),
• easy parallelization (Section 7),
• multiresolution representations (Fig. 8), and
• similar functionality as mesh-based representations (Section 9.2).

The preliminary version of this work is presented in the proceedings of the Pacific Graphics 2007 (Lien, 2007). An
implementation of the proposed method can be obtained from our project webpage.

2. Related work

Our work is inspired by the increasingly popular work on point set data in computer graphics and computer vision, e.g.,
modeling (Pauly et al., 2003b), rendering (Rusinkiewicz and Levoy, 2000; Alexa et al., 2003), feature extraction (Pauly et
al., 2003a), collision detection (Klein and Zachmann, 2004), mesh offsetting (Chen et al., 2006), and surface analysis (Pauly
and Gross, 2001). One of the reasons for its popularity is that the connectivity information is not always easy to obtain and
maintain. Similarly, in Minkowski sum computation, while obtaining the point-based representation is easy, obtaining an
explicit or continuous representation, e.g., a mesh, can be difficult to compute.

Many methods have been proposed to compute Minkowski sum (see surveys in Ghosh, 1993; Varadhan and Manocha,
2006; Fogel and Halperin, 2006). Here, we focus on work that computes the polygonal and polyhedral Minkowski sum
boundaries.

Ghosh (Ghosh, 1993) proposed a unified approach to handle 2-d or 3-d convex and non-convex objects by introducing
negative shape and slope diagram representation. Slope diagram is closely related to Gaussian map, which has been used to
efficiently compute the Minkowski sum of convex objects by Fogel and Halperin (2006).

Several other methods have been proposed to handle convex objects. Guibas and Seidel (1987) proposed an output
sensitive method to compute convolution curves, a super-set of the Minkowski sum boundaries. Kaul and Rossignac (1991)
proposed a linear time method to generate a set of Minkowski sum facets. Output sensitive methods that compute the
Minkowski sum of polytopes in d-dimension have also been proposed by Gritzmann and Sturmfels (1993) and Fukuda
(2004).

Because the Minkowski sum of convex polyhedra is easy to compute, most methods that compute the Minkowski sum of
non-convex polyhedra first compute the convex decomposition and then compute the union of the Minkowski sums of the
convex components (Lozano-Pérez, 1983). Unfortunately, neither the convex decomposition nor the union of the Minkowski
sums is trivial. In this paper, we propose a new method to compute the point-based representation of the Minkowski sum
without computing the union and the convex decomposition.

Following the same divide-and-conquer technique, Varadhan and Manocha (2006) proposed an approach to generate
meshes that approximate Minkowski sum boundary using marching cube technique to extract iso-surface from the signed
distance field. They proposed an adaptive subdivision to improve the robustness and efficiency of their method. They demon-
strate several applications, including motion planning (Varadhan and Manocha, 2005), penetration depth estimation, and
morphological operations. Because their approach still depends on convex decomposition, this approximate method still
suffer from excessive number of convex components in the decomposition.

Peternell et al. (2005) proposed a method to compute the Minkowski sum of two solids using points densely sampled
from the solids, and compute local quadratic approximations of these points. However, their method only identifies the

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 655
outer boundary of the Minkowski sum using a regular grid, i.e., no hole boundaries are identified. This can be a serious
problem in particular when we study problems in motion planning and penetration depth computation.

3. Point-based Minkowski sum boundary

In this section, we will describe a method to compute the Minkowski sum boundary in the point-based representation.
Our goal is to produce a set of points to cover the boundary of the Minkowski sum of two given polyhedra. More specifically,
we will generate a point set S so that S is a d-covering of the Minkowski sum boundary, where d is a user specified
value. Intuitively, d controls the sampling density of a boundary. A smaller d will produce a denser “approximation” of the
boundary. A more precise definition of d-covering is provided below.

Definition 1 (d-covering). We say a set of points S is a d-covering of a surface M if, for every point m of M , there exists a
point in S whose distance to m is less than d.

Our strategy to accomplish this goal is straightforward. Our approach is composed of three main steps. First, we sample
two point sets from the input P and Q . Second, we generate the Minkowski sum of the point sets simply using the
definition in Eq. (1). Third, we separate the boundary points (both hole and external boundaries) from the internal points.
Algorithm 3.1 outlines this strategy. In the following, we will discuss each of these main steps in detail.

Sample points. Let P and Q be two polyhedra. We generate two point sets from P and Q , denoted as S P and S Q . The
point set S representing the Minkowski sum boundary of P and Q is simply

(S P ⊕ S Q) ∩ ∂(P ⊕ Q).

Because we want the point set S to cover the entire Minkowski sum boundary w.r.t. a user specified value d, we have to
make sure that the points S P form a dp -covering of ∂ P and the points S Q form a dq-covering of ∂ Q . It is our task to
determine the values of dp and dq from the input d.

Fortunately, as shown in Theorem 2, we can guarantee that the final point set is at least a d-covering of the Minkowski
sum boundary of P and Q by simply letting dp = dq = d. Moreover, since the boundaries of P and Q are known, we can
easily make sure that S P and S Q cover ∂ P and ∂ Q , respectively.

Theorem 2. Let S P and S Q be two d-covering point sets sampled from two polyhedral surfaces ∂ P and ∂ Q and let S P⊕Q = S P ⊕ S Q
and S = S P⊕Q ∩ ∂(P ⊕ Q). Then, S must form a d-covering of ∂(P ⊕ Q).

Proof. A facet f on the Minkowski sum boundary can only come from two sources: A facet of P or Q or a pair of edges
from P and Q (Kaul and Rossignac, 1991). It is obvious that when the facet f is from a facet of P or Q , S P⊕Q must have
enough points to d-cover the facet f . When the facet f is formed by two edges from P and Q , we should consider the
worst case. Since the points from the edges are d-covering, in worst case, these points will be vertices of a grid and each
cell in the grid is a d × d square. In this case, the longest distance from an arbitrary point on the facet f to a grid point is√(

d

2

)2

+
(

d

2

)2

= d√
2

< d.

Therefore, in worst case, the grid and therefore S P⊕Q is a d-covering of the facet f . We conclude that S P⊕Q (thus S) must
be a d-covering point set of ∂(P ⊕ Q) if S P and S Q are d-covering of ∂ P and ∂ Q . �
Compute the Minkowski sum. This step is straightforward. Using S P and S Q , we compute S P⊕Q by simply following the
Minkowski sum definition in Eq. (1). It is obvious that the size of S P⊕Q is Θ(mn), where m and n are the size of S P and S Q ,
respectively. Because of this quadratic order of growth, storing the coordinates of the entire point set S P⊕Q in memory may
become unpractical when m and n are both large. Fortunately, this problem can be easily addressed, i.e., we can always
compute the point coordinates when needed without storing it.

Algorithm 3.1 (Point-based-Msum P , Q ,d).
comment: P and Q are input polyhedra and d defines the sampling density

S P ← sample(P ,d)

S Q ← sample(Q ,d)

S P⊕Q ← ∅
for each p ∈ S P

do
{

for each q ∈ S Q

do S P⊕Q ← S P⊕Q ∪ (p + q)

S ← Filter(P , Q , S P⊕Q) (i)

656 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
Extract the boundary points. In this final step, we separate (filter) points to two groups: boundary points and inner points.
The boundary points will be returned as our final answer and the inner points will be discarded.

We propose three filters in this paper. The first filter, named normal filter discussed in Section 5, determines if a pair
of sampled points (from P and Q , resp.) is an inner point by examining their origins (defined later in Definition 3) and
orientations. The second filter, named octree filter described in Section 6, constructs an octree, which allows us to explore
only points near the boundary and avoid the definite inner points. These two filters are efficient, but they alone cannot
filter out all the inner points. The third filter, named CD filter described in Section 4, uses collision detection to separate
the boundary points from the inner points. This last filter is computational more expensive but it provides an unambiguous
decision.

These three filters can be combined to form the filter subroutine on line (i) of Algorithm 3.1. Several combinations of
these filters are further studied in our experiments (Fig. 5 in Section 9). Because CD filter is the simplest, we will discuss it
first next.

4. Collision Detection (CD) filter

In Robotics, the contact space, in which every point represents a configuration that places the robot in contact with (but
without colliding with) the obstacles, can be computed using Minkowski sum. Given a translational robot P and obstacles Q ,
the contact space of P and Q can be represented as ∂((−P) ⊕ Q), where −P = {−p | p ∈ P }. In other words, if a point x is
on the boundary of the Minkowski sum of two polyhedra P and Q , then the following condition must be true:

(−P ◦ + x) ∩ Q ◦ = ∅,

where Q ◦ is the open set of Q and P + x denotes translating P to x. Using this observation, the CD filter simply places
−P at a point of S P⊕Q and test if −P is in collision with Q . If −P is collision free, the point is reported as a point on the
Minkowski sum boundary.

5. Normal filter

In normal filter, we check a pair of points from S P and S Q and determine if it will form an inner point. Kaul and
Rossignac (1991) have shown that a facet of the Minkowski sum boundary can only come from a facet of P and a vertex
from Q (or vice versa) or from a new facet formed by two edges of P and Q if the facet, vertex and edges are properly
oriented (Kaul and Rossignac, 1991). Our strategy is derived directly from their observation. Since our points are sampled
from the polyhedral surface, we first define the origin of a sample to ease our discussion.

Definition 3. The origin of a sample x, denoted as O(x), is a facet, an edge or a vertex of a polyhedron from which x is
sampled.

Let p and q be a pair of points sampled from P and Q , respectively. We decide if p +q is an inner point by checking the
orientation of O(p) and O(q). There are only five cases we need to consider (the first two cases are illustrated in Fig. 3):

(1) O(p) is a vertex and O(q) is a facet or vice versa.
(2) O(p) and O(q) are both edges.
(3) O(p) is a vertex and O(q) is an edge or vice versa.
(4) O(p) and O(q) are both vertices.
(5) Otherwise.

Fig. 3. Normal filter. (a) An example of four points sampled from P and Q . Points p1 and p2 are sampled from a facet and an edge of P , respectively.
Points q1 and q2 are sampled from a vertex and an edge of Q , respectively. (b) The point p1 + q1 is an example of the case 1. (c) The point p2 + q2 is an
example of the case 2.

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 657
Case 1. First, we define a supporting plane P at the point p + q parallel to facet O(q). Then, we translate P by q so that
vertex O(p) coincides with the point p + q. The point p + q must be an inner point when the (open) half space
defined by the plane P intersects any edges incident to vertex O(p). An example of case 1 is shown in Fig. 3(b).

Case 2. Similarly, we define a supporting plane P at point p +q whose outward normal is the cross product of two vectors
parallel to edges O(p) and O(q). Then, we translate P by q and Q by p so that edges O(p) and O(q) coincide
with the plane P . The point p + q must be an inner point when the facets that incident to edges O(p) and O(p)

are on the different sides of the plane P . An example of this case is shown in Fig. 3(c).
Case 3. Case 3 can be divided into two Case 1 and several Case 2. The point p + q must be an inner point when Case 1

reports vertex O(p) and two incident facets of O(q) at p + q as inner point and when Case 2 reports all edges
incident to vertex O(p) and edge O(q) at p + q as inner point.

Case 4. Case 4 can be divided into several Case 1 and Case 2. The point p + q must be an inner point when Case 1 reports
vertex O(p) and all incident facets of O(q) as inner point and also reports all incident facets of O(p) and vertex
O(q) as inner points and when Case 2 reports all incident edges of O(p), all incident edges of O(q) at p + q as
inner point.

Case 5. All points in this category are considered as inner points.

Lemma 4. Normal filter eliminates only inner points.

Proof. Since boundary points can only exist on a subset of the supporting planes defined by a vertex and a facet or by two
edges with properties described above (Kaul and Rossignac, 1991), points that are not on these supporting planes must be
inner points. �

Lemma 4 shows the correctness of the filter. Note that normal filter will not identify all inner points (unless P and Q
are both convex), thus it needs to be used with the CD filter.

6. Octree filter

The goal of this octree filter is to reject points that are far away from the boundary. Our plan is to use a few known
boundary points as “seeds” to guide (propagate) the search of unknown boundary points. For the rest of the section, we will
first describe how the filter applies to the external boundary (Section 6.1) and then to the hole boundaries (Section 6.2).

6.1. Extract external boundary

The octree filter has two main steps: Obtain initial boundary points (seeds) and explore boundary using seeds.

Initial boundary points (seeds). External boundary can be extracted more easily (than hole boundaries) because we can
quickly compute some initial boundary points (seeds) from S P⊕Q . In our implementation we simply use points on the
minimum axis-aligned bounding box of S P⊕Q as our seeds.

Explore boundary. Another reason why exacting external boundary is easier is stated in the following lemma.

Lemma 5. If the Minkowski sum has only one (external) boundary, a point p must be an inner point, if all other points in a ball centered
at p with radius d (which is the sampling density in Algorithm 3.1) are all inner points.

Imagine superimposing a regular grid on S P⊕Q with cell size d. Initially, each cell is marked as unknown cells except
those that contain seeds and are marked as boundary cells. Now, we can start to explore the boundary by examining the
points in the unknown cells that are neighboring to boundary cells. If all points in an unknown cell are reported as inner
points by the CD filter, then this cell is marked as an internal cell. Otherwise the cell is marked as a boundary cell. This
process is repeated until no unknown cells are next to a boundary cell.

Adaptive octree. Instead of using a regular grid, we use an adaptive octree. In the adaptive octree, all boundary and internal
cells in the octree have size d, however unknown cells can have size larger than d. An unknown cell will be subdivided when
it is next to a boundary cell unless the size of the unknown cell is smaller than d. A benefit of using an adaptive octree is to
avoid producing a huge number of cells. Exploration of the boundary using the adaptive octree is done in the same manner
as using a regular grid. Note that this approach is similar to the surface-tracking algorithms, e.g., Shekhar et al. (1996), in
Marching Cubes method.

In Lemma 6, we show that the octree filter correctly extracts the external boundary.

Lemma 6. The octree filter extracts all points on the external boundary.

Proof. For simplicity we consider only the approach using a regular grid. The method using an octree can be proved in a
similar way.

658 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
Fig. 4. A 2D example shows four hole boundaries. Three small holes are difficult to generate seeds inside. The largest hole can be found more easily because
two of its vertices (one circled) are from the vertices of P and Q . (This example is a simplified version of Halperin’s Fig. 5 (Halperin, 2002).)

Because each grid cell has size at most d and the point set S P⊕Q is a d-covering of the Minkowski boundary, a grid
cell that intersects the boundary must contain at least one boundary point. Therefore, it is not possible for us to find an
empty or a non-boundary cell on the boundary. This means we can always find all boundary cells (and boundary points) by
propagating from one boundary cell. �
6.2. Extract hole boundaries

Hole boundaries are the boundaries entirely enclosed in the external boundary. In many applications, such as animation
(Kaul and Rossignac, 1991), hole boundaries are less important because they are not “visible” from outside. However, for
other applications, such as motion planning, hole boundaries usually represent critical pathways and cannot be ignored.

It is more difficult to efficiently extract hole boundary using the method we described above. The reason is that seeds
for some hole boundaries are not easy to obtain. If we can find seeds for all hole boundaries, we can explore all boundaries
as what we did for the external boundary. In fact, we can classify holes into easy holes and difficult holes. An easy hole
has at least one vertex which is formed by a vertex of P and a vertex of Q . Otherwise, a hole is considered as difficult.
A difficult hole has vertices formed as the intersections of edges or facets instead of the from the existing vertices. Fig. 4
shows an example with one easy hole and three difficult holes.

Initial boundary points (seeds). We can still efficiently identify seeds for many hole boundaries. We identify a small set of
boundary points using CD filter with the points that pass the test in the case 4 of the normal filter, i.e., points whose origins
are vertices in P and Q . This set of points, in many cases, are small and scattered on the external and the hole boundaries
and will be used as seeds for boundary exploration.

7. Speedup via parallelization

More and more dual-core, quad-core and even multi-core processors are commercially available and make access to
parallel computing more easily than ever. One advantage of our approach is the simplicity of parallelizing the method. In
fact, parallelizing Algorithm 3.1 is an example of the so called embarrassingly parallel problem, i.e., we simply need to
divide S P⊕Q into k even-size point sets for k processors and put together the results computed by each processor without
worrying about any dependency problems. In our current implementation, we parallelized the proposed method with less
than 30 lines (including preparation and synchronization) of C++ code using the POSIX thread library. Our experimental
results in Fig. 9 show a near linear speedup. Details of the results will be discussed in Section 9.

8. Detecting collisions

For detecting collisions, we use a modified version of RAPID (Gottschalk et al., 1996). The modification is mainly for the
purpose of parallelization.

Another issue that we have to deal with when working with RAPID is that RAPID cannot distinguish if two polyhedra are
in a contact configuration or are in fact in collision. To work around this problem, we perturb each point that we sampled
with an infinitesimally small vector pointing in the outward direction of the facet where the point is sampled from. After
the perturbation, the point will most likely become collision free if it is indeed on the Minkowski sum boundary. On the
other hand, if the point is an inner point, the point will most likely remain inside the Minkowski sum after the perturbation.
The exceptions to the above cases rarely occur, i.e., when the boundary degenerates to an isolated vertex, an edge or a sliver
(a very small volume). Since our method focuses on providing an approximation to the Minkowski sum boundary, we do
not consider these rare cases in this work.

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 659
A (Fig. 2) B (Fig. 10) C (Fig. 11) D (Fig. 13)
Y ⊕ Y dancing ⊕ cube pig ⊕ line octopus ⊕ dragon

np (7 K, 7 K) (0.7 K, 334 K) (13 K, 1 K) (19 K, 5 K)
n⊕ 67 K 275 K 90 K 80 K

E (Fig. 8) F (Fig. 9) G (Fig. 6) H (Fig. 15)
baby ⊕ torus hook ⊕ hook blocks ⊕ cube grate ⊕ grate

np (17 K,5 K) (0.6 K,0.6 K) (41 K,0.9 K) (5 K,4 K)
n⊕ 58 K 5 K 192 K 601 K

Fig. 5. Comparisons of Minkowski sum computations with CD filter, CD + norm (CDn) filter and CD + norm + oct (CDno) filter using eight examples. The top
two plots show the computation time (using one thread) and the collision detection calls of these three filters. The bottom table shows information of each
example including the size of the sampled points np and the size of the Minkowski sum boundary points n⊕ . For all the computations in this experiment,
we use d = 0.1.

9. Experimental results and applications

In this section, we show experimental results. All the experiments are performed on a PC with two Intel Core 2 CPUs at
2.13 GHz with 4 GB RAM. Our implementation is coded in C++. In Section 9.1, we study the efficiency and robustness of the
proposed method using eight examples. In Section 9.2, we demonstrate the applications of the point-based Minkowski sum
boundary, including offsetting, sweeping, motion planning and penetration depth approximation.

9.1. Experimental results

Boundary point filters. In this set of experiments, we compare three filters: CD filter, CD + normal (denoted as CDn) filter,
and CD + normal + oct (denoted as CDno) filter. Two sets of experimental results using eight examples are shown in Fig. 5.
Please notice that the plots in Fig. 5 are in logarithmic scale. From the results, we observe that, in all eight examples, the
computations using CDn and CDno filters are significantly faster (by 1 ∼ 4 orders of magnitude) than the computations using
CD filter alone. From Fig. 5 we can see that CDno filter takes at most 240 seconds for all eight examples while CD filter
(except for hooks) requires at least 440 seconds. Similar results can also be observed from the collision detection counts.

660 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
Fig. 6. Top: A blocks model built from a 1
2 checkerboard and its Minkowski sum with a cube with size of a checkerboard square. A close view reveals that

the blocks model is non-manifold. Bottom: These two images show the dramatic difference between the Minkowski sums with the cube and with a 5%
smaller cube. These images are taken from the same point of view inside of the Minkowski sum boundaries.

Fig. 7. The Minkowski sum of meshes with boundary. The cube’s top is removed to create a boundary. The resulting Minkowski sum of the open cube and
an ellipsoid is generated with an opening at the top.

Filters CDn and CDno make significantly fewer collision detection calls than CD filter does. It is obvious that these significant
improvements are due to the normal filter. Even though the octree filter can always improve the efficiency even further, the
improvement is not as dramatic.

Robustness. Our goal here is to show that the proposed method is robust under difficult conditions, i.e., our method can
generate correct results even for non-manifold models or models with surface openings. In Fig. 6, we show the Minkowski
sum of a cube and a model made of blocks. The blocks model is constructed by extruding (black) squares from a 1

2 checker-
board and the cube has the same size of a checkerboard square. If look closer, you should find that the blocks model is
non-manifold (all blocks touch other blocks along their vertical edges). As shown in Fig. 6 our method correctly generates
the Minkowski sum boundary.

Furthermore, we show that our method is sensitive enough to detect a small change that we made to this example.
Instead of using the cube described above, we use a slightly (5%) smaller cube. As shown in the bottom two images of
Fig. 6, our method correctly produces the narrow columns as expected.

In Fig. 7, we show the Minkowski sum of an ellipsoid and a cube with its top facet removed. In this case, as one
may expect, their Minkowski sum boundary is no longer closed. Even though the Minkowski sum of open meshes is ill-
defined (i.e., adding a 3-d volume and a 2-manifold with boundary in 3-d), the proposed method successfully generates a
natural solution. This feature can be useful to some geometric operations, such as offsetting, when the input models are not
watertight.

Multiresolution. Our method provides an easy way to generate multiresolution representations. By specifying a large d-
covering value, we can create a low resolution boundary efficiently. The user can use this low resolution boundary as a
quick preview. When the user decides a higher resolution boundary is needed, more sampled can be added. Fig. 8 shows
an example with four levels of detail.

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 661
Fig. 8. Multiresolution Minkowski sum of a baby model with a torus. Computing 0.5-, 0.1-, 0.05- and 0.01-covering (using four threads) take 15.2, 26.0, 47.9
and 443.9 seconds, respectively, and generate 23 K, 58 K, 146 K and 2652 K points, respectively.

Multithreading. As mentioned in Section 7, the proposed method can be easily parallelized. This advantage allows us to
fully utilize the computation power provided by the multi-core processors. An experimental results obtained from a PC with
two dual-core processors is shown in Fig. 9. An interesting fact that we observe from Fig. 9 is that the gap between the
efficiency of filters CDn and CDno becomes smaller when we increase the number of threads.

9.2. Applications

Modeling. Our method can be used to perform operations such as offsetting, erosion, and sweeping. Figs. 1 and 10 show
examples of the offsetting operation of the David and the “dancing children” model. Offsetting is done by computing its
Minkowski sum with a unit cube or a sphere. Fig. 11 shows an example of sweeping operation of a pig model. The swept
volume is generated by computing the Minkowski sum of the pig model and a thin tube representing a trajectory.

Motion planning. A motion planning problem, which asks us to find a feasible path to bring an object from the start to the
goal, can always be reduced to the problem of finding a sequence of consecutive points in the collision-free configuration
space (denoted as Cfree) (Latombe, 1991). The boundary of the Cfree (called contact space) is closely related to the Minkowski
sum boundary. Let P and Q be a translational robot and obstacle, respectively. The contact space of P and Q is ∂(−P ⊕ Q).

Sampling-based motion planners have been shown to solve difficult motion planning problems; see a survey in (Bar-
raquand et al., 1997). These methods approximate the Cfree by sampling and connecting random configurations to form a
graph (or a tree). However, they also have the difficulty of finding paths that are required to pass through narrow pas-
sages. Methods (Amato et al., 1998; Boor et al., 1999) have been proposed to increase the random configurations in narrow
passages by carefully sampling around obstacles. However, as far as we know, none of these obstacle-based methods can
guarantee to increase sampling ratio in narrow passages. On the other hand, our Minkowski sum method can generate points
to “cover” the contact space with a desired interval d (see Theorem 2) and therefore can guarantee to increase the sampling
ratio in narrow passages even when the volume of the narrow passage is near zero. Points produced by our method can be
connected into a graph (using simple local planners) as in sampling-based planners.

More specifically, the key idea of our planner is that we can in fact decompose the point-based Minkowski sum boundary
into a set of (approximately) star-shaped components. A point set is star shaped if and only if there exists at least one point
in the set which can see all the points of the set (Lien, 2007). Fig. 12(a) shows an approximate start shape of the point
x. Due to this interesting property, multiple overlapping star-shaped components covering Cfree can easily form a network
to represent the topology of Cfree. Such a network is usually called a roadmap (Latombe, 1991) and the motion planning
problem can be solved by connecting the start and the goal configurations through the roadmap.

662 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
Fig. 9. Multithreading. One to four threads are used to compute a 0.01-covering point set of the Minkowski sum boundary of two hook-like models.

Fig. 10. The Minkowski sum boundary (right) of the “dancing children” model (left) and a unit cube. The Minkowski sum boundary is composed of 274 976
points generated in 34.5 seconds using four parallel threads.

The motion planning problem shown in Fig. 12(b) has a robot tightly fit into the hole of the obstacle. Our goal is to
remove the robot from the holes. To generate the points covering the contact space, we sample 48 points from the robot
and 74 points from the obstacle. The Minkowski sum has 1327 points on its boundary and the proposed method solves the
problem in 0.58 seconds.

The main benefit of this motion planner is a deterministic method that can be potentially applied to solve problems
involving high dimensional configuration spaces. In addition, our recent work also shows that when a problem can be solved
by reusing some critical configurations (e.g., configurations in narrow passages), point-based Minkowski sum boundary can
even further improve the efficiency of the existing motion planning methods (Lien, 2008).

Penetration depth approximation. Penetration depth can be easily approximated using the point-based Minkowski bound-
ary. Given a query configuration of two polyhedra P and Q , the penetration depth is the minimum translational distance of
moving P away from colliding with Q .

Using the point-based Minkowski boundary, we can find the penetration depth of P by computing the closest point in
S to the position of P , where S is a point set covering ∂(−P ⊕ Q). Because S is a d-covering of the true Minkowski sum

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 663
Fig. 11. Our proposed method can be used to generate “swept volume.” Figure (a) shows an example of creating a swept volume by moving a pig model
along a line. Figure (b) shows a swept volume of a more complex dragon model (822 504 facets) with the same path.

Fig. 12. (a) We identify a set of visible points (shown as the dark dots) of the point x by defining ‘thick’ viewing lines. The point p is invisible from x
because p is blocked by other visible points of x. (b) The start and the goal configurations are shown along with the points that cover the contact space.
A path that connects the start and the goal is shown in the thick line. The path is exacted from a set of 6 overlapping start-shape components.

Fig. 13. Top: (left) An octopus model is in collision with a dragon model. (right) Models are separated using the closest point on the point-based
∂(octopus⊕-dragon). Bottom: Two different views of the Minkowski sum of the models. The penetration depth is computed as the distance from (0,0,0) to
the closest point (−2.4, −3.8, 2.6) in the point set.

664 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
Fig. 14. A (slightly) harder PD problem. The Minkowski of two high genus models: the frame and the (-knot). Their Minkowski sum contains many hole
boundaries.

boundary, we can be sure that |P D ′ − P D| < d when d is small, where P D and P D ′ are the true and the approximate
penetration depths, respectively.

An example of this approach is illustrated in Fig. 13. The Minkowski sum of an octopus (8276 facets) and a dragon
(2328 facets) contains 226 773 points when d = 0.05. We then use the ANN library (Arya et al., 1998) to compute the
closest point from a query point. The distance between the closest point and a query point is the approximate penetration
depth. On average, each penetration depth query takes only 0.1 milliseconds (after the k-d tree in the ANN is initialized).

Another (slightly harder) example is shown in Fig. 14. In this example, both P (knot) and Q (frame) have several handles.
When placing the knot in the center of the frame, it is not as intuitive as the previous example what the penetration depth
of the knot will be. The main reason for this is because their Minkowski sum has many hole boundaries. Our method solves
this problem by generating 769 969 points using d = 0.1. By moving the knot from (0,0,0) to (−3.2,1.1,−0.04), the knot
and the will frame become collision free.

In addition, when we decrease the value of d to 0.05, the number of points increases to 3 108 892 and the closest point
becomes (−3.21,1.09,−0.008), which is in fact very close to the previous estimation when d = 0.1. On average, for both
d = 0.1 or d = 0.05, each penetration depth query between the knot and the frame takes about 0.1 milliseconds using the
proposed method and the ANN.

10. Conclusion and discussion

In this paper, we propose a method that generates point-based Minkowski sum boundaries. We show that generating
points on the surface of the Minkowski sum of two models is easier than generating a mesh that represents the Minkowski

J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666 665
Fig. 15. Minkowski sum of two grate-like models. These models imitate the grate models created by Varadhan and Manocha (Varadhan and Manocha, 2006).

sum. We proposed three filters, i.e., CD filter, octree filter, and normal filter, to identify boundary points. In the experiments,
we observe that the combination of these three filters performs significantly faster by several orders of magnitude than
using only the CD filter. We showed that our method is robust and provides multiresolution and parallelization. We also
demonstrate several applications using only points (i.e., without connecting them into a mesh) on the Minkowski sum
boundary. These applications provide an evidence that the point-based representation can have similar functionality as the
mesh-based representations.

Limitation and future work. There are two major drawbacks in the current implementation. First, even though we proved
that our method generates a d-covering point set, we may generate much more points than needed. Because points that
pass tests in the case 1 or the case 2 in Section 5 may overlap. This overlapping can make points in some areas become
d
3 -covering. It is unclear to us how we can minimize the number points and still provide a d-covering point set. Second,
our current implementation does not have any mechanism to create more points to enhance “new” sharp features on the
Minkowski sum boundary (i.e., features that do not exist in the input polyhedra). For example, in Fig. 15, many points are
needed to capture the small but important features of the grate models. We speculate that both of these two drawbacks are
strongly related (sampling) issues.

Finally, point-based representation may not be used in some situations, such as in CAD, where continuous boundary
representations are usually used. Therefore, we are interested in possible approaches and benefits of generating meshes
from the points produced by our method.

Acknowledgement

The “dancing children” model is provided courtesy of IMATI-GE by the AIMSHAPE Shape Repository. The “David” and the
“Dragon” models are obtained from the Stanford 3D Scanning Repository. The author also thanks anonymous reviewers for
their valuable comments.

666 J.-M. Lien / Computer Aided Geometric Design 25 (2008) 652–666
References

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., 2003. Computing and rendering point set surfaces. IEEE Trans. Visualization and Computer
Graphics 9 (1), 3–15.

Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C.V., Vallejo, D., 1998. OBPRM: An obstacle-based PRM for 3D workspaces. In: Robotics: The Algorithmic
Perspective, Natick, MA, Proc. Third Workshop on Algorithmic Foundations of Robotics (WAFR). Houston, TX. A.K. Peters, pp. 155–168.

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A., 1998. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions.
J. ACM 45, 891–923.

Barraquand, J., Kavraki, L.E., Latombe, J.-C., Li, T.-Y., Motwani, R., Raghavan, P., 1997. A random sampling scheme for path planning. Int. J. Robot. Res. 16 (6),
759–774.

Boor, V., Overmars, M.H., van der Stappen, A.F., 1999. The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), vol. 2, May 1999, pp. 1018–1023.

Chen, Y., Wang, H., Rosen, D.W., Rossignac, J., 2006. A point-based offsetting method of polygonal meshes. ASME Journal of Computing and Information
Science in Engineering, submitted for publication.

Fogel, E., Halperin D., 2006. Exact and efficient construction of Minkowski sums of convex polyhedra with applications. In: Proc. 8th Workshp. Alg. Eng.
Exper., Alenex ’06, pp. 3–15.

Fukuda, K., 2004. From the zonotope construction to the Minkowski addition of convex polytopes. J. Symbolic Comput. 38 (4), 1261–1272.
Ghosh, P.K., 1993. A unified computational framework for Minkowski operations. Computers and Graphics 17 (4), 357–378.
Gottschalk, S., Lin, M.C., Manocha, D., 1996. OBBTree: A hierarchical structure for rapid interference detection. Computer Graphics, 30 (Annual Conference

Series), pp. 171–180.
Gritzmann, P., Sturmfels, B., 1993. Minkowski addition of polytopes: computational complexity and applications to Gröbner bases. SIAM J. Discret. Math. 6

(2), 246–269.
Guibas, L.J., Seidel, R., 1987. Computing convolutions by reciprocal search. Discrete Comput. Geom. 2, 175–193.
Hachenberger, P., 2007. Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces. In: Proc. 15th Annual

European Symposium on Algorithms (ESA), pp. 669–680.
Halperin, D., 2002. Robust geometric computing in motion. Int. J. Robot. Res. 21 (3), 219–232.
Kaul, A., Rossignac, J., 1991. Solid-interpolating deformations: construction and animation of PIPs. In: Proc. Eurographics ’91, pp. 493–505.
Klein, J., Zachmann, G., 2004. Point cloud collision detection. In: Computer Graphics Forum (EUROGRAPHICS), pp. 567–576.
Latombe, J.-C., 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA.
Lien, J.-M., 2007. Approximate star-shaped decomposition of point set data. In: Proceedings of the IEEE/Eurographics Symposium on Point Based Graphics

(PBG).
Lien, J.-M., 2007. Point-based Minkowski sum boundary. In: PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications,

Washington, DC, USA, IEEE Computer Society, pp. 261–270.
Lien, J.-M., 2008. Hybrid motion planning using Minkowski sums. In: Proc. Robotics: Sci. Syst. IV, Zurich, Switzerland, http://www.roboticsproceedings.org/

rss04/p13.html.
Lozano-Pérez, T., 1983. Spatial planning: A configuration space approach. IEEE Trans. Comput. C-32, 108–120.
Pauly, M., Gross, M., 2001. Spectral processing of point-sampled geometry. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques. ACM Press, New York, NY, pp. 379–386.
Pauly, M., Keiser, R., Gross, M., 2003a. Multi-scale feature extraction on point-sampled surfaces. In: Proceedings of the Eurographics/ACM SIGGRAPH Sym-

posium on Geometry Processing, pp. 281–289.
Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M., 2003b. Shape modeling with point-sampled geometry. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 641–

650.
Peternell, M., Pottmann, H., Steiner, T., 2005. Minkowski sum boundary surfaces of 3d-objects, Technical report, Vienna Univ. of Technology, August.
Rusinkiewicz, S., Levoy, M., 2000. Qsplat: a multiresolution point rendering system for large meshes. In: SIGGRAPH ’00: Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co, New York, NY, pp. 343–352.
Serra, J. (Ed.), 1988. Image Analysis and Mathematical Morphology, vol. 2: Theoretical Advances. Academic Press, New York.
Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J.F., 1996. Octree-based decimation of marching cubes surfaces. In: Proceedings of the 7th Conference on Visual-

ization ’96. VIS ’96, Los Alamitos, CA, USA. IEEE Computer Society Press, pp. 335–342.
Varadhan, G., Manocha, D., 2005. Star-shaped roadmaps – a deterministic sampling approach for complete motion planning. In: Proc. Robotics: Sci. Syst.

(RSS).
Varadhan, G., Manocha, D., 2006. Accurate Minkowski sum approximation of polyhedral models. Graph. Models 68 (4), 343–355.

http://www.roboticsproceedings.org/rss04/p13.html
http://www.roboticsproceedings.org/rss04/p13.html

	Covering Minkowski sum boundary using points with applications
	Introduction
	Our approach
	Key contributions

	Related work
	Point-based Minkowski sum boundary
	Collision Detection (CD) filter
	Normal filter
	Octree filter
	Extract external boundary
	Extract hole boundaries

	Speedup via parallelization
	Detecting collisions
	Experimental results and applications
	Experimental results
	Applications

	Conclusion and discussion
	Acknowledgement
	References

