Самое очевидное и простое решение какой-либо задачи называется «наивный алгоритм» — это устоявшийся термин.
Или сортировка простыми обменами. Бессмертная классика жанра. Принцип действий прост: обходим массив от начала до конца, попутно меняя местами неотсортированные соседние элементы. В результате первого прохода на последнее место «всплывёт» максимальный элемент. Теперь снова обходим неотсортированную часть массива (от первого элемента до предпоследнего) и меняем по пути неотсортированных соседей. Второй по величине элемент окажется на предпоследнем месте. Продолжая в том же духе, будем обходить всё уменьшающуюся неотсортированную часть массива, запихивая найденные максимумы в конец.
Если не только в конец задвигать максимумы, а ещё и в начало перебрасывать минимумы то у нас получается…
Она же сортировка перемешиванием, она же коктейльная сортировка. Начинается процесс как в «пузырьке»: выдавливаем максимум на самые задворки. После этого разворачиваемся на 1800 и идём в обратную сторону, при этом уже перекатывая в начало не максимум, а минимум. Отсортировав в массиве первый и последний элементы, снова делаем кульбит. Обойдя туда-обратно несколько раз, в итоге заканчиваем процесс, оказавшись в середине списка.
Шейкерная сортировка работает немного быстрее чем пузырьковая, поскольку по массиву в нужных направлениях попеременно мигрируют и максимумы и минимумы. Улучшения, как говорится, налицо.
Как видите, если к процессу перебора подойти творчески, то выталкивание тяжёлых (лёгких) элементов к концам массива происходит быстрее. Поэтому умельцы предложили для обхода списка ещё одну нестандартную «дорожную карту».
В «пузырьке», «шейкере» и «чёт-нечете» при переборе массива сравниваются соседние элементы. Основная идея «расчёски» в том, чтобы первоначально брать достаточно большое расстояние между сравниваемыми элементами и по мере упорядочивания массива сужать это расстояние вплоть до минимального. Таким образом мы как бы причёсываем массив, постепенно разглаживая на всё более аккуратные пряди.
Модификация сортировки пузырьком. Для того, чтобы избавиться от «черепах», будем переставлять элементы, стоящие на расстоянии. Зафиксируем его и будем идти слева направо, сравнивая элементы, стоящие на этом расстоянии, переставляя их, если необходимо. Очевидно, это позволит «черепахам» быстро добраться в начало массива. Оптимально изначально взять расстояние равным длине массива, а далее делить его на некоторый коэффициент, равный примерно 1.247. Когда расстояние станет равно единице, выполняется сортировка пузырьком.
В лучшем случае асимптотика равна O(nlogn), в худшем – O(n2). Какая асимптотика в среднем мне не очень понятно, на практике похоже на O(nlogn).
Просто и незатейливо — проходим по массиву в поисках максимального элемента. Найденный максимум меняем местами с последним элементом. Неотсортированная часть массива уменьшилась на один элемент (не включает последний элемент, куда мы переставили найденный максимум). К этой неотсортированной части применяем те же действия — находим максимум и ставим его на последнее место в неотсортированной части массива. И так продолжаем до тех пор, пока неотсортированная часть массива не уменьшится до одного элемента.
Сортировка простым выбором представляет из себя грубый двойной перебор. Можно ли её улучшить? Разберём несколько модификаций.
Похожая идея используется в шейкерной сортировке, которая является вариантом пузырьковой сортировки. Проходя по неотсортированной части массива, мы кроме максимума также попутно находим и минимум. Минимум ставим на первое место, максимум на последнее. Таким образом, неотсортированная часть при каждой итерации уменьшается сразу на два элемента.
Быстрый метод сортировки функционирует по принципу "разделяй и властвуй".
Синяя линия — это значение опорного элемента, а серый блок показывает, какую часть массива сортирует алгоритм
Так как на третьем шаге мы разбиваем массив на два и для каждой части делаем то же самое, и так снова и снова, то это значит, что в нём используется рекурсия.
2.1.4 Leetcode Theme Folder | Back To iOSWiki Contents | 2.2 Languages Theme Folder