欢迎来到 “NeRF-Based-SLAM-Incredible-Insights” 仓库。 该项目旨在提供对各种基于 NeRF(神经辐射场)的 Slam(同时定位和建图)算法的全面见解。 如果您对基于 NeRF 的 Slam 算法充满热情并希望深入研究其功能和代码库,那么您来对地方了。
如果您发现此存储库有用,请考虑 引用 和 加星 此项目。 请随意与其他人分享这个项目!
该仓库包含:
- 详细文档介绍各种NeRF-Based Slam算法,阐明其基本原理和算法工作流程,见解和注解等内容详见在视觉SLAM见解和激光SLAM见解里的每个[Paper Insights]、[Code Notes]、[Tracking Insights]模块。
- 对于选中的NeRF-Based Slam算法,给出代码注释以方便理解其代码实现,详见Co-SLAM_Scene_Representation_Noted 和 Co-SLAM_Tracking_Noted。
- 更多视频解析链接如下。
- NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020. [Paper Insights] [Paper] [Tensorflow Code] [Webpage] [Video]
- NICE-SLAM: Neural Implicit Scalable Encoding for SLAM, CVPR, 2021. [Code Notes] [Tracking Insights] [Mapping Insights] [Paper] [Code] [Website]
- iMap: Implicit Mapping and Positioning in Real-Time, ICCV, 2021. [Paper Insights] [Paper] [Website] [Video]
- NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM, arXiv, 2023. [Paper Insights] [Paper] [Video]
- Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM, CVPR, 2023. [Mapping Insights] [Paper] [Website]
- NeRF-SLAM: Real-Time Dense Monocular SLAM with Neural Radiance Fields, arXiv, 2022. [Paper Insights] [Problem Record] [Paper] [Pytorch Code] [Video]
- vMAP: Vectorised Object Mapping for Neural Field SLAM, CVPR, 2023. [Paper Insights] [Paper] [Website] [Pytorch Code] [Video]
- RO-MAP: Real-Time Multi-Object Mapping with Neural Radiance Fields, RAL, 2023. [Paper Insights] [Paper] [Code] [Video]
- Neural Implicit Dense Semantic SLAM, arXiv, 2023. [Paper Insights] [Paper]
- Efficient Implicit Neural Reconstruction Using LiDAR, ICRA, 2023. [Paper Insights] [Paper] [Website] [Pytorch Code] [Video]
- NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental LiDAR Odometry and Mapping, ICCV, 2023. [Paper Insights] [Paper] [Code]
- [第01讲 田宇博-NeRF开篇论文解读 NeRF]
- [第02讲 田宇博-第一个稠密的实时NeRF SLAM iMAP论文解读]
- [第03讲 刘权祥-NICE SLAM论文解读]
- [第04讲 NICER SLAM论文解读]
- [第05讲(上)-刘权祥-NICE SLAM代码解读:整体代码框架及运行:跟踪]
- [第05讲(下)-刘权祥-NICE SLAM代码解读:整体代码框架及运行:跟踪]
- [第06讲(上)-汪寿安-NICE SLAM代码解读]
- [第06讲(下)-汪寿安-NICE SLAM代码解读]
- [第07讲 NICE SLAM代码解读:建图]
- [第08讲 钟至德-Co-SLAM论文解读]
- [第09讲 徐扬-Co-SLAM 代码解读:tracking]
- [第10讲 Co-SLAM 代码解读:mapping]
- [第11讲 张一 Co-SLAM 代码解读:Scene representation]
- [第12讲(上)-汪寿安-基于LiDAR的NeRF-LOAM论文解读]
- [第12讲(中)-汪寿安-基于LiDAR的NeRF-LOAM论文解读]
- [第12讲(下)-汪寿安-基于LiDAR的NeRF-LOAM论文解读]
- [第13讲 张一 NeRF-SLAM 论文框架梳理]
- [第14-15讲 陈安东 NeRF-SLAM 运行配置经验]
- [第16讲-夏宁宁-物体级vMAP 论文解读]
- [第17讲-徐扬-语义Neural Implicit Dense Semantic SLAM 论文解读]
- [第18讲-夏宁宁-实时多物体RO-MAP 论文解读]
- [第19讲-基于LiDAR的Efficient Implicit Neural Reconstruction Using LiDAR 论文解读]
- [第20讲-LiDAR全局定位 IRMCL Implicit Representation-based Online Global Localization论文解读]
知识星球成员可免费观看视频
本项目来自于计算机视觉life的“Nerf Based SLAM算法学习小组”,贡献成员包括(不区分先后顺序):
田宇博、刘权祥、史慧、汪寿安、万静怡、钟志德、徐扬、张一、陈安东、夏宁宁
@misc{electron2023nerfbasedslamincredibleinsights,
title = {NeRF-Based-SLAM-Incredible-Insights},
author = {electron6,shuttworth},
journal = {GitHub repository},
url = {https://github.com/electech6/NeRF-Based-SLAM-Incredible-Insights},
year = {2023}
}