-
Notifications
You must be signed in to change notification settings - Fork 1
/
words_mining.py
325 lines (265 loc) · 9.3 KB
/
words_mining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import re
import time
import math
def loda_word_dict():
"""
加载
结巴词典词性: https://github.com/elephantnose/words_mining/blob/master/dict.txt.big
停用词: https://github.com/elephantnose/words_mining/blob/master/stop_words
*结巴自带词典词性标注准确度一般, 可根据需要修改
"""
word_dict = {}
stop_words = {}
if os.path.exists("./dict.txt.big"):
with open("./dict.txt.big", "r", encoding="utf8") as fr:
word_dict = {word.strip().split(" ")[0]: word.strip().split(" ")[2] for word in fr}
if os.path.exists("./stop_words"):
with open("./stop_words", encoding="utf8") as fr:
stop_words = set([word.strip() for word in fr])
return word_dict, stop_words
class Config(object):
__author__ = "elephantnose"
__github__ = "https://github.com/elephantnose"
__jianshu__ = "https://www.jianshu.com/u/39efcd8e2587"
__segmentfault__ = "https://segmentfault.com/u/elephantnose"
"""
各阈值设定
words_length: 新词字数默认个字
pmi_limit: 凝固度阈值
left_entropy_limit: 左熵阈值
right_entropy_limit: 右熵阈值
word_frequency: 词频阈值
"""
words_length = 5
pmi_limit = 1.5
left_entropy_limit = 1
right_entropy_limit = 1
word_frequency_limit = 5
word_dict, stop_words = loda_word_dict()
class ContentHandler(object):
def __init__(self, content):
"""
length: 文本字数
book_content: 正序文本
r_book_content: 倒序文本
tire_tree: 正序文本 tire树
r_tire_tree: 倒序文本 tire树
"""
self.length = 0
self.book_content, self.r_book_content = self._preprocess(content=content)
self.tire_tree = TireTree(self.book_content)
self.r_tire_tree = TireTree(self.r_book_content)
def pmi(self, char_node):
"""计算凝固度"""
p_x_y = char_node.count / self.length
px_py_list = []
# 枚举所有组成词的情况, 并取最大概率值
for i in range(1, len(char_node.name)):
px = self.tire_tree.search_node(char_node.name[:i]).count / self.length
py = self.tire_tree.search_node(char_node.name[i:]).count / self.length
px_py_list.append(px*py)
px_py = max(px_py_list)
p = math.log10(p_x_y / px_py)
return p
def left_entropy(self, char_node):
"""计算左熵"""
r_char_node = self.r_tire_tree.search_node(char_node.name[::-1])
father_set = r_char_node.child
le = 0
for father_name, father_node in father_set.items():
p_father = father_node.count / r_char_node.child_counts
p = p_father * math.log10(p_father)
le += p
return -le
def right_entropy(self, char_node):
"""计算右熵"""
child_set = self.tire_tree.search_node(char_node.name).child
re = 0
for child_name, child_node in child_set.items():
p_child = child_node.count / char_node.child_counts
p = p_child * math.log10(p_child)
re += p
return -re
def word_frequency(self, char_node):
"""计算词频"""
return char_node.count
def get_words(self, node, layer, res_data):
if layer >= self.tire_tree.layer-1:
return
for c_name, c_node in node.child.items():
# 递归
self.get_words(c_node, layer+1, res_data)
# 纯小写英文及纯数字过滤
if (c_name.encode("utf8").isalpha() and c_name.encode("utf8").islower()) or c_name.encode("utf8").isdigit():
continue
# 词典过滤
is_continue = self.word_dict_filter(c_name)
if not is_continue:
continue
# 阈值过滤
plrf = self.limit_filter(c_node)
if not plrf:
continue
res_data.append(plrf)
def limit_filter(self, node):
wf = node.count
if wf < Config.word_frequency_limit:
return False
pmi = self.pmi(node)
if pmi < Config.pmi_limit:
return False
le = self.left_entropy(node)
if le < Config.left_entropy_limit:
return False
re = self.right_entropy(node)
if re < Config.right_entropy_limit:
return False
return [node.name, wf, pmi, le, re]
def word_dict_filter(self, chars):
"""词典过滤"""
for char in self.permutation(1, chars):
# 过滤掉已经收录于结巴词典的非名词
if not Config.word_dict.get(char, "n").startswith("n"):
return False
# 过滤停用词
if char in Config.stop_words:
return False
return True
def permutation(self, start_size, char):
"""字符排列组合"""
for size in range(start_size, len(char)+1):
for index in range(len(char)+1-size):
yield char[index: index+size]
def _preprocess(self, content):
"""返回正序文本及倒序文本列表, 按符号拆分"""
content_list = re.split("[^\u4E00-\u9FFFa-zA-Z0-9]", content)
r_content_list = re.split("[^\u4E00-\u9FFFa-zA-Z0-9]", content[::-1])
if not self.length:
self.length = sum([len(i) for i in content_list if i])
return content_list, r_content_list
class Node(object):
def __init__(self, name, father):
"""
节点名称
节点出现次数
父节点
子节点列表
未去重子集量
"""
self.name = name
self.count = 0
self.father = father
self.child = {}
self.child_counts = 0
class TireTree(object):
def __init__(self,
content,
layer_num=Config.words_length+1,
step=1):
"""
字典树对象
layer_num: 字典树层数
content: 构建字典树的字符串
"""
self.content = content
self.root = Node("ROOT", None)
self.layer = layer_num
self.step = step
self.word_counts = 0
self.build_tree()
def build_tree(self):
# 按层构建字典树, layer 从1开始, 表示第一层, 第0层为根节点
for layer in range(1, self.layer+1):
# 创建切割窗口对象
char_session = CharSession(size=layer, step=self.step)
for char in char_session.split_char(self.content):
# 判断 char 是否在该层 没有节点则添加, 有则更新
if not self.search_node(char, layer):
self.add_node(char, layer)
else:
self.update_node(char, layer)
def add_node(self, char, layer=None):
"""
在指定层添加指定字符串节点
"""
if not layer:
layer = len(char)
# 创建节点对象
if layer == 1:
father = self.root
else:
father = self.search_node(char[:-1])
node = Node(name=char, father=father)
node.count = 1
# 将此节点挂入tire树
father.child[char] = node
father.child_counts += 1
return True
def del_node(self, char, layer=None):
pass
def update_node(self, char, layer=None):
"""
更新指定节点信息
"""
if not layer:
layer = len(char)
node = self.search_node(char, layer)
node.count += 1
node.father.child_counts += 1
return True
def search_node(self, char, layer=None):
"""
指定字符串, 指定层 查找节点是否存在
"""
if char == "ROOT":
return self.root
elif not layer:
layer = len(char)
node = self.root
for layer_index in range(1, layer+1):
node = node.child.get(char[:layer_index], None)
if not node:
return None
return node
class CharSession(object):
def __init__(self, size, step=1):
"""
窗口对象
size: 窗口大小
step: 移动步长
"""
self.size = size
self.step = step
def split_char(self, content):
"""
按指定窗口大小及步长切割文本
"""
for seq in content:
while seq:
if len(seq) >= self.size:
yield seq[:self.size]
seq = seq[self.step:]
else:
break
def find_word(file_like):
"""
file_like: 文本内容或文本路径
"""
if os.path.exists(file_like):
with open(file_like, encoding="utf8") as fr:
content = fr.read()
else:
content = file_like
content_handler = ContentHandler(content)
words = []
for child_node in content_handler.tire_tree.search_node("ROOT").child.values():
content_handler.get_words(child_node, layer=1, res_data=words)
return words
if __name__ == '__main__':
stime = time.time()
res_data = find_word("./hongloumeng.txt")
for each_ele in res_data:
print(*each_ele, sep="\t")
etime = time.time()
print("ALL DONE! 耗时 {} s".format(etime-stime))