forked from cxy1997/MNIST-baselines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcanet.py
389 lines (315 loc) · 12.1 KB
/
pcanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# [the original paper](https://arxiv.org/abs/1404.3606)
import itertools
from chainer.cuda import to_gpu, to_cpu
from chainer.functions import convolution_2d
import numpy as np
from sklearn.decomposition import IncrementalPCA
# from utils import gpu_enabled
# if gpu_enabled():
# try:
# import cupy as xp
# except ImportError:
# import numpy as xp
# else:
import numpy as xp
def steps(image_shape, filter_shape, step_shape):
h, w = image_shape
fh, fw = filter_shape
sh, sw = step_shape
ys = range(0, h-fh+1, sh)
xs = range(0, w-fw+1, sw)
return ys, xs
def components_to_filters(components, n_channels, filter_shape):
n_filters = components.shape[0]
return components.reshape(n_filters, n_channels, *filter_shape)
def output_shape(ys, xs):
return len(ys), len(xs)
class Patches(object):
def __init__(self, image, filter_shape, step_shape):
assert(image.ndim == 2)
# should be either numpy.ndarray or cupy.ndarray
self.ndarray = type(image)
self.image = image
self.filter_shape = filter_shape
self.ys, self.xs = steps(image.shape[0:2], filter_shape, step_shape)
@property
def patches(self):
"""
Return image patches of shape
(n_patches, filter_height, filter_width)
"""
fh, fw = self.filter_shape
it = list(itertools.product(self.ys, self.xs))
patches = self.ndarray((len(it), fh, fw), dtype=self.image.dtype)
for i, (y, x) in enumerate(it):
patches[i, :, :] = self.image[y:y+fh, x:x+fw]
return patches
@property
def output_shape(self):
return output_shape(self.ys, self.xs)
def atleast_4d(images):
"""Regard gray-scale images as 1-channel images"""
assert(np.ndim(images) == 3)
n, h, w = images.shape
return images.reshape(n, h, w, 1)
def to_channels_first(images):
# images.shape == (n_images, y, x, n_channels)
images = np.swapaxes(images, 1, 3)
images = np.swapaxes(images, 2, 3)
# images.shape == (n_images, n_channels, y, x)
return images
def image_to_patch_vectors(image, filter_shape, step_shape):
"""
Parameters
----------
image: np.array
Image to extract patch vectors
filter_shape: tuple of ints
The shape of a filter
step_shape: tuple of ints
Step height/width of a filter
Returns
-------
X: np.array
A set of normalized and flattened patches
"""
X = Patches(image, filter_shape, step_shape).patches
# X.shape == (n_patches, filter_height, filter_width)
X = X.reshape(X.shape[0], -1) # flatten each patch
X = X - X.mean(axis=1, keepdims=True) # Remove mean from each patch.
return X # \overline{X}_i in the original paper
def binarize(X):
X[X > 0] = 1
X[X <= 0] = 0
return X
def binary_to_decimal(X):
"""
Parameters
----------
X: xp.ndarray
Feature maps
"""
# This function expects X of shape (n_images, L2, y, x)
# as an argument.
# Let's say that X[k] (0 <= k < n_images) can be represented like
# X[k] = [map_k[0], map_k[1], ..., map_k[L2-1]]
# where the shape of each map_k is (y, x).
# Then we calculate
# a[0] * map_k[0] + a[1] * map_k[1] + ... + a[L2-1] * map_k[L2-1]
# for each X[k], where a = [2^(L2-1), 2^(L2-2), ..., 2^0]
# Therefore, the output shape must be (n_images, y, x)
a = xp.arange(X.shape[1])[::-1]
a = xp.power(2, a)
return xp.tensordot(X, a, axes=([1], [0]))
def to_tuple_if_int(value):
"""
If int is given, duplicate it and return as a 2 element tuple.
"""
if isinstance(value, int):
return (value, value)
return value
class PCANet(object):
def __init__(self, image_shape,
filter_shape_l1, step_shape_l1, n_l1_output,
filter_shape_l2, step_shape_l2, n_l2_output,
filter_shape_pooling, step_shape_pooling):
"""
Parameters
----------
image_shape: int or sequence of ints
Input image shape.
filter_shape_l1: int or sequence of ints
The shape of the kernel in the first convolution layer.
If the value is int, a filter of the square shape is applied.
If you want to apply a filter of a different aspect ratio, just
pass a tuple of shape (height, width).
step_shape_l1: int or sequence of ints
The shape of kernel step in the first convolution layer.
If the value is int, a step of the square shape is applied.
If you want to apply a step of a different aspect ratio, just
pass a tuple of shape (height, width).
n_l1_output:
L1 in the original paper. The number of outputs obtained
from a set of input images.
filter_shape_l2: int or sequence of ints
The shape of the kernel in the second convolution layer.
If the value is int, a filter of the square shape is applied.
If you want to apply a filter of a different aspect ratio, just
pass a tuple of shape (height, width).
step_shape_l2: int or sequence of ints
The shape of kernel step in the second convolution layer.
If the value is int, a step of the square shape is applied.
If you want to apply a step of a different aspect ratio, just
pass a tuple of shape (height, width).
n_l2_output:
L2 in the original paper. The number of outputs obtained
from each L1 output.
filter_shape_pooling: int or sequence of ints
The shape of the filter in the pooling layer.
step_shape_pooling: int or sequence of ints
The shape of the filter step in the pooling layer.
"""
self.image_shape = to_tuple_if_int(image_shape)
self.filter_shape_l1 = to_tuple_if_int(filter_shape_l1)
self.step_shape_l1 = to_tuple_if_int(step_shape_l1)
self.n_l1_output = n_l1_output
self.filter_shape_l2 = to_tuple_if_int(filter_shape_l2)
self.step_shape_l2 = to_tuple_if_int(step_shape_l2)
self.n_l2_output = n_l2_output
self.filter_shape_pooling = to_tuple_if_int(filter_shape_pooling)
self.step_shape_pooling = to_tuple_if_int(step_shape_pooling)
self.n_bins = None # TODO make n_bins specifiable
self.pca_l1 = IncrementalPCA(n_l1_output)
self.pca_l2 = IncrementalPCA(n_l2_output)
def histogram(self, binary_images):
"""
Separate a given image into blocks and calculate a histogram
in each block.
Supporse data in a block is in range [0, 3] and the acutual
values are
::
[0 0 1]
[2 2 2]
[2 3 3]
If default bins ``[-0.5 0.5 1.5 2.5 3.5]`` applied,
then the histogram will be ``[2 1 4 2]``.
If ``n_bins`` is specified, the range of data divided equally.
For example, if the data is in range ``[0, 3]`` and
``n_bins = 2``, bins will be ``[-0.5 1.5 3.5]`` and
the histogram will be ``[3 6]``.
"""
k = pow(2, self.n_l2_output)
if self.n_bins is None:
self.n_bins = k + 1
bins = xp.linspace(-0.5, k - 0.5, self.n_bins)
def bhist(image):
# calculate Bhist(T) in the original paper
ps = Patches(
image,
self.filter_shape_pooling,
self.step_shape_pooling).patches
H = [xp.histogram(p.flatten(), bins)[0] for p in ps]
return xp.concatenate(H)
return xp.vstack([bhist(image) for image in binary_images])
def process_input(self, images):
assert(np.ndim(images) >= 3)
assert(images.shape[1:3] == self.image_shape)
if np.ndim(images) == 3:
# forcibly convert to multi-channel images
images = atleast_4d(images)
images = to_channels_first(images)
return images
def fit(self, images):
images = self.process_input(images)
# images.shape == (n_images, n_channels, y, x)
for image in images:
X = []
for channel in image:
patches = image_to_patch_vectors(
channel,
self.filter_shape_l1,
self.step_shape_l1
)
X.append(patches)
patches = np.hstack(X)
# patches.shape = (n_patches, n_patches * vector length)
self.pca_l1.partial_fit(patches)
filters_l1 = components_to_filters(
self.pca_l1.components_,
n_channels=images.shape[1],
filter_shape=self.filter_shape_l1,
)
# if gpu_enabled():
# images = to_gpu(images)
# filters_l1 = to_gpu(filters_l1)
images = convolution_2d(
images,
filters_l1,
stride=self.step_shape_l1
).data
# if gpu_enabled():
# images = to_cpu(images)
# filters_l1 = to_cpu(filters_l1)
# images.shape == (n_images, L1, y, x)
images = images.reshape(-1, *images.shape[2:4])
for image in images:
patches = image_to_patch_vectors(
image,
self.filter_shape_l2,
self.step_shape_l2
)
self.pca_l2.partial_fit(patches)
return self
def transform(self, images):
images = self.process_input(images)
# images.shape == (n_images, n_channels, y, x)
filters_l1 = components_to_filters(
self.pca_l1.components_,
n_channels=images.shape[1],
filter_shape=self.filter_shape_l1,
)
filters_l2 = components_to_filters(
self.pca_l2.components_,
n_channels=1,
filter_shape=self.filter_shape_l2
)
# if gpu_enabled():
# images = to_gpu(images)
# filters_l1 = to_gpu(filters_l1)
# filters_l2 = to_gpu(filters_l2)
images = convolution_2d(
images,
filters_l1,
stride=self.step_shape_l1
).data
images = xp.swapaxes(images, 0, 1)
# L1.shape == (L1, n_images, y, x)
# iterate over each L1 output
X = []
for maps in images:
n_images, h, w = maps.shape
maps = convolution_2d(
maps.reshape(n_images, 1, h, w), # 1 channel images
filters_l2,
stride=self.step_shape_l2
).data
# maps.shape == (n_images, L2, y, x) right here
maps = binarize(maps)
maps = binary_to_decimal(maps)
# maps.shape == (n_images, y, x)
x = self.histogram(maps)
# x is a set of feature vectors.
# The shape of x is (n_images, vector length)
X.append(x)
# concatenate over L1
X = xp.hstack(X)
# if gpu_enabled():
# X = to_cpu(X)
X = X.astype(np.float64)
# The shape of X is (n_images, L1 * vector length)
return X
def validate_structure(self):
"""
Check that the filter visits all pixels of input images without
dropping any information.
Raise ValueError if the network structure does not satisfy the
above constraint.
"""
def is_valid_(input_shape, filter_shape, step_shape):
ys, xs = steps(input_shape, filter_shape, step_shape)
fh, fw = filter_shape
h, w = input_shape
if ys[-1]+fh != h or xs[-1]+fw != w:
raise ValueError("Invalid network structure.")
return output_shape(ys, xs)
output_shape_l1 = is_valid_(self.image_shape,
self.filter_shape_l1,
self.step_shape_l1)
output_shape_l2 = is_valid_(output_shape_l1,
self.filter_shape_l2,
self.step_shape_l2)
is_valid_(
output_shape_l2,
self.filter_shape_pooling,
self.filter_shape_pooling
)