-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKernelKMeans.java
161 lines (123 loc) · 5.72 KB
/
KernelKMeans.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
* Created by Eliyahu Kiperwasser on 13/05/2014.
* Simple command line clustering tool using a variant of kernel k-kmeans.
*/
import java.io.*;
import java.util.*;
public class KernelKMeans {
public static double dot(double []a, double []b, double c)
{
int dims = Math.min(a.length, b.length);
double result = 0.0;
for( int i = 0 ; i < dims ; i++)
result += Math.pow(a[i] - b[i], 2);
return 1.0 - (result / (result + c));
}
public static HashMap<String, String> parseFlags(String []args)
{
HashMap<String, String> flags = new HashMap<String, String>();
for(int i = 0 ; i < args.length; i += 2)
flags.put(args[i].toLowerCase(), args[i+1]);
return flags;
}
public static HashMap<String, double[]> parseData(BufferedReader reader) throws IOException
{
HashMap<String, double[]> data = new HashMap<String, double[]>();
String line;
while((line = reader.readLine()) != null)
{
String []parts = line.split(" ");
double []vec = new double[parts.length - 1];
for(int i = 1 ; i < parts.length ; i++)
vec[i-1] = Double.parseDouble(parts[i]);
data.put(parts[0], vec);
}
return data;
}
public static HashMap<String, Integer> initLabels(Collection<String> keys, int nClusters)
{
HashMap<String, Integer> labels = new HashMap<String, Integer>();
for(String key : keys)
labels.put(key, Math.abs(key.hashCode()) % nClusters);
return labels;
}
public static boolean improveLabels(HashMap<String, Integer> labels, HashMap<String, double[]> distances, int nClusters)
{
double []norm = new double[nClusters];
for (double[] dists : distances.values())
for(int iCluster = 0 ; iCluster < nClusters ; iCluster++)
norm[iCluster] += dists[iCluster];
double err = 0.0;
boolean stop = true;
for (Map.Entry<String, double[]> distEntry : distances.entrySet()) {
int argMin = 0;
double[] dists = distEntry.getValue();
for (int iCluster = 1 ; iCluster < nClusters ; iCluster++)
if ( dists[argMin] / (norm[argMin] + 0.0001) > dists[iCluster] / (norm[iCluster] + 0.0001) )
argMin = iCluster;
if(argMin != labels.get(distEntry.getKey()))
stop = false;
labels.put(distEntry.getKey(), argMin);
err += dists[argMin];
}
System.out.println("Current error " + err);
return stop;
}
public static HashMap<String, double[]> calculateDistances(HashMap<String, double[]> data, HashMap<String, Integer> labels, double c, int nClusters)
{
HashMap<String, double[]> distances = new HashMap<String, double[]>();
HashMap<String, double[]> dots = new HashMap<String, double[]>();
int[] clusterHist = new int[nClusters];
double[] interCluster = new double[nClusters];
for (String key : data.keySet()) {
distances.put(key, new double[nClusters]);
dots.put(key, new double[nClusters]);
clusterHist[labels.get(key)]++;
}
for (Map.Entry<String, double[]> firstWordEntry : data.entrySet()) {
String wordA = firstWordEntry.getKey();
double[] valA = firstWordEntry.getValue();
int labelA = labels.get(wordA);
for (Map.Entry<String, double[]> secondWordEntry : data.entrySet()) {
double temp = dot(valA, secondWordEntry.getValue(), c);
dots.get(secondWordEntry.getKey())[labelA] += temp;
interCluster[labelA] += (labels.get(secondWordEntry.getKey()) == labelA ? temp : 0.0);
}
}
for (int iCluster = 0; iCluster < nClusters; iCluster++)
interCluster[iCluster] /= (clusterHist[iCluster] * clusterHist[iCluster]);
for (Map.Entry<String, double[]> wordEntry : data.entrySet()) {
String word = wordEntry.getKey();
double[] val = wordEntry.getValue();
double selfProd = dot(val, val, c);
for (int iCluster = 0; iCluster < nClusters; iCluster++)
distances.get(word)[iCluster] = selfProd + interCluster[iCluster]
- (2.0 * dots.get(word)[iCluster] / clusterHist[iCluster]);
}
return distances;
}
public static void main(String []args) throws IOException
{
if(args[0] == "-h" || args.length % 2 != 0)
{
System.out.println("Usage: KernelKMeans <-i input> <-n num of clusters> <-o output> <-c kernel parameter>");
return;
}
HashMap<String, String> flags = parseFlags(args);
int nClusters = Integer.parseInt(flags.get("-n"));
double c = Double.parseDouble(flags.get("-c"));
BufferedReader reader = new BufferedReader(flags.containsKey("-i") ? new FileReader(flags.get("-i")) : new InputStreamReader(System.in));
HashMap<String, double[]> data = parseData(reader);
HashMap<String, Integer> labels = initLabels(data.keySet(), nClusters);
boolean stop = false;
for(int iEpoch = 0 ; (!stop) ; iEpoch++) {
System.out.println("Epoch " + iEpoch);
HashMap<String, double[]> distances = calculateDistances(data, labels, c, nClusters);
stop = improveLabels(labels, distances, nClusters);
}
PrintStream ps = flags.containsKey("-o") ? new PrintStream(new FileOutputStream(flags.get("-o"))) : System.out;
for(Map.Entry<String, Integer> wordEntry : labels.entrySet())
ps.println(wordEntry.getKey() + " " + wordEntry.getValue());
ps.close();
}
}