-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
33 lines (22 loc) · 1.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
from dimensionKnockOutExperiments import nullingDimensions
from omiShapExplainer import omiShapExplainer
import numpy as np
import torch
if __name__ == "__main__":
expr_path = 'data/GDC-PANCAN_htseq_fpkm_'
input_path = 'DataSources/GDC-PANCAN_'
print('Loading data...')
expr_df = pd.read_pickle("expr_df.pkl")
sample_id = np.loadtxt(input_path + 'both_samples.tsv', delimiter='\t', dtype='str')
label = pd.read_csv(input_path + 'both_samples_tumour_type_digit.tsv', sep='\t', header=0, index_col=0)
label_array = label['tumour_type'].to_numpy()
#explain interim layer. Need to pass in tumour name.
#omiShapExplainer(sample_id, label_array, expr_df, tumourName="TCGA-BRCA", NormalvsTumourInterimExplain=True)
#Example of knocking out dimension. Pass in chosen tumour tissue and ID to evaluate. Fill in dimensions within the TestingNullingDimensions code.
#e.g. BRCA tumour ID=3, lUAD=17
omiShapExplainer(sample_id, label_array, expr_df, tumourID=3, tumourName="TCGA-BRCA", TestingNullingDimensions=True)
# example of explaining the most important genes for a tissue
#omiShapExplainer(sample_id, label_array, expr_df, NormalvsTumourExplain=True, tumourName="TCGA-LUAD")
# explain the most important dimension in the supervised part of the model. Pass in dimension number and tumour name.
#omiShapExplainer(sample_id, label_array, expr_df, tumourName="TCGA-HNSC", dimension=42,NormalvsTumourDimensionExplain=True)