forked from denisyarats/pytorch_sac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·159 lines (128 loc) · 5.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import math
import os
import sys
import time
import pickle as pkl
from video import VideoRecorder
from logger import Logger
from replay_buffer import ReplayBuffer
import utils
import dmc2gym
import hydra
def make_env(cfg):
"""Helper function to create dm_control environment"""
if cfg.env == 'ball_in_cup_catch':
domain_name = 'ball_in_cup'
task_name = 'catch'
else:
domain_name = cfg.env.split('_')[0]
task_name = '_'.join(cfg.env.split('_')[1:])
env = dmc2gym.make(domain_name=domain_name,
task_name=task_name,
seed=cfg.seed,
visualize_reward=True)
env.seed(cfg.seed)
assert env.action_space.low.min() >= -1
assert env.action_space.high.max() <= 1
return env
class Workspace(object):
def __init__(self, cfg):
self.work_dir = os.getcwd()
print(f'workspace: {self.work_dir}')
self.cfg = cfg
self.logger = Logger(self.work_dir,
save_tb=cfg.log_save_tb,
log_frequency=cfg.log_frequency,
agent=cfg.agent.name)
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.env = utils.make_env(cfg)
cfg.agent.params.obs_dim = self.env.observation_space.shape[0]
cfg.agent.params.action_dim = self.env.action_space.shape[0]
cfg.agent.params.action_range = [
float(self.env.action_space.low.min()),
float(self.env.action_space.high.max())
]
self.agent = hydra.utils.instantiate(cfg.agent)
self.replay_buffer = ReplayBuffer(self.env.observation_space.shape,
self.env.action_space.shape,
int(cfg.replay_buffer_capacity),
self.device)
self.video_recorder = VideoRecorder(
self.work_dir if cfg.save_video else None)
self.step = 0
def evaluate(self):
average_episode_reward = 0
for episode in range(self.cfg.num_eval_episodes):
obs = self.env.reset()
self.agent.reset()
self.video_recorder.init(enabled=(episode == 0))
done = False
episode_reward = 0
while not done:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=False)
obs, reward, done, _ = self.env.step(action)
self.video_recorder.record(self.env)
episode_reward += reward
average_episode_reward += episode_reward
self.video_recorder.save(f'{self.step}.mp4')
average_episode_reward /= self.cfg.num_eval_episodes
self.logger.log('eval/episode_reward', average_episode_reward,
self.step)
self.logger.dump(self.step)
def run(self):
episode, episode_reward, done = 0, 0, True
start_time = time.time()
while self.step < self.cfg.num_train_steps:
if done:
if self.step > 0:
self.logger.log('train/duration',
time.time() - start_time, self.step)
start_time = time.time()
self.logger.dump(
self.step, save=(self.step > self.cfg.num_seed_steps))
# evaluate agent periodically
if self.step > 0 and self.step % self.cfg.eval_frequency == 0:
self.logger.log('eval/episode', episode, self.step)
self.evaluate()
self.logger.log('train/episode_reward', episode_reward,
self.step)
obs = self.env.reset()
self.agent.reset()
done = False
episode_reward = 0
episode_step = 0
episode += 1
self.logger.log('train/episode', episode, self.step)
# sample action for data collection
if self.step < self.cfg.num_seed_steps:
action = self.env.action_space.sample()
else:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=True)
# run training update
if self.step >= self.cfg.num_seed_steps:
self.agent.update(self.replay_buffer, self.logger, self.step)
next_obs, reward, done, _ = self.env.step(action)
# allow infinite bootstrap
done = float(done)
done_no_max = 0 if episode_step + 1 == self.env._max_episode_steps else done
episode_reward += reward
self.replay_buffer.add(obs, action, reward, next_obs, done,
done_no_max)
obs = next_obs
episode_step += 1
self.step += 1
@hydra.main(config_path='config/train.yaml', strict=True)
def main(cfg):
workspace = Workspace(cfg)
workspace.run()
if __name__ == '__main__':
main()