-
Notifications
You must be signed in to change notification settings - Fork 113
/
DustSensor_Shinyei_PPD42NS.ino
171 lines (148 loc) · 5.41 KB
/
DustSensor_Shinyei_PPD42NS.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/**
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2015 Sensnology AB
* Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*
* DESCRIPTION
* Arduino Dust Sensor for Shinyei PPD42NS
* connect the sensor as follows :
* Pin 1 of dust sensor -> Ground
* Pin 2 of dust sensor PM2.5 -> Digital 6 (PWM)
* Pin 3 of dust sensor -> +5V
* Pin 4 of dust sensor PM1 -> Digital 3 (PMW)
*
* Based on: http://www.howmuchsnow.com/arduino/airquality/grovedust/
* Authors: Chris Nafis Apris 2012
* Datasheet: http://www.sca-shinyei.com/pdf/PPD42NS.pdf
* Contribution: epierre
*
* The dust sensor used (see purchase guide for latest link):
*/
#include <MySensor.h>
#include <SPI.h>
#define CHILD_ID_DUST_PM10 0
#define CHILD_ID_DUST_PM25 1
#define DUST_SENSOR_DIGITAL_PIN_PM10 3
#define DUST_SENSOR_DIGITAL_PIN_PM25 6
unsigned long SLEEP_TIME = 30*1000; // Sleep time between reads (in milliseconds)
//VARIABLES
int val = 0; // variable to store the value coming from the sensor
float valDUSTPM25 =0.0;
float lastDUSTPM25 =0.0;
float valDUSTPM10 =0.0;
float lastDUSTPM10 =0.0;
unsigned long duration;
unsigned long starttime;
unsigned long endtime;
unsigned long sampletime_ms = 30000;
unsigned long lowpulseoccupancy = 0;
float ratio = 0;
long concentrationPM25 = 0;
long concentrationPM10 = 0;
int temp=20; //external temperature, if you can replace this with a DHT11 or better
long ppmv;
MySensor gw;
MyMessage dustMsgPM10(CHILD_ID_DUST_PM10, V_LEVEL);
MyMessage msgPM10(CHILD_ID_DUST_PM10, V_UNIT_PREFIX);
MyMessage dustMsgPM25(CHILD_ID_DUST_PM25, V_LEVEL);
MyMessage msgPM25(CHILD_ID_DUST_PM25, V_UNIT_PREFIX);
void setup()
{
gw.begin();
// Send the sketch version information to the gateway and Controller
gw.sendSketchInfo("Dust Sensor PPD42NS", "1.4");
// Register all sensors to gateway (they will be created as child devices)
gw.present(CHILD_ID_DUST_PM10, S_DUST);
gw.send(msgPM10.set("ppm"));
gw.present(CHILD_ID_DUST_PM25, S_DUST);
gw.send(msgPM25.set("ppm"));
pinMode(DUST_SENSOR_DIGITAL_PIN_PM10,INPUT);
pinMode(DUST_SENSOR_DIGITAL_PIN_PM25,INPUT);
Serial.begin(115200);
}
void loop()
{
//get PM 2.5 density of particles over 2.5 μm.
concentrationPM25=getPM(DUST_SENSOR_DIGITAL_PIN_PM25);
Serial.print("PM25: ");
Serial.println(concentrationPM25);
Serial.print("\n");
//ppmv=mg/m3 * (0.08205*Tmp)/Molecular_mass
//0.08205 = Universal gas constant in atm·m3/(kmol·K)
ppmv=(concentrationPM25*0.0283168/100/1000) * (0.08205*temp)/0.01;
if ((ceil(concentrationPM25) != lastDUSTPM25)&&((long)concentrationPM25>0)) {
gw.send(dustMsgPM25.set((long)ppmv));
lastDUSTPM25 = ceil(concentrationPM25);
}
//get PM 1.0 - density of particles over 1 μm.
concentrationPM10=getPM(DUST_SENSOR_DIGITAL_PIN_PM10);
Serial.print("PM10: ");
Serial.println(concentrationPM10);
Serial.print("\n");
//ppmv=mg/m3 * (0.08205*Tmp)/Molecular_mass
//0.08205 = Universal gas constant in atm·m3/(kmol·K)
ppmv=(concentrationPM10*0.0283168/100/1000) * (0.08205*temp)/0.01;
if ((ceil(concentrationPM10) != lastDUSTPM10)&&((long)concentrationPM10>0)) {
gw.send(dustMsgPM10.set((long)ppmv));
lastDUSTPM10 = ceil(concentrationPM10);
}
//sleep to save on radio
gw.sleep(SLEEP_TIME);
}
float conversion25(long concentrationPM25) {
double pi = 3.14159;
double density = 1.65 * pow (10, 12);
double r25 = 0.44 * pow (10, -6);
double vol25 = (4/3) * pi * pow (r25, 3);
double mass25 = density * vol25;
double K = 3531.5;
return (concentrationPM25) * K * mass25;
}
float conversion10(long concentrationPM10) {
double pi = 3.14159;
double density = 1.65 * pow (10, 12);
double r10 = 0.44 * pow (10, -6);
double vol10 = (4/3) * pi * pow (r10, 3);
double mass10 = density * vol10;
double K = 3531.5;
return (concentrationPM10) * K * mass10;
}
long getPM(int DUST_SENSOR_DIGITAL_PIN) {
starttime = millis();
while (1) {
duration = pulseIn(DUST_SENSOR_DIGITAL_PIN, LOW);
lowpulseoccupancy += duration;
endtime = millis();
if ((endtime-starttime) > sampletime_ms)
{
ratio = (lowpulseoccupancy-endtime+starttime)/(sampletime_ms*10.0); // Integer percentage 0=>100
long concentration = 1.1*pow(ratio,3)-3.8*pow(ratio,2)+520*ratio+0.62; // using spec sheet curve
//Serial.print("lowpulseoccupancy:");
//Serial.print(lowpulseoccupancy);
//Serial.print("\n");
//Serial.print("ratio:");
//Serial.print(ratio);
//Serial.print("\n");
//Serial.print("PPDNS42:");
//Serial.println(concentration);
//Serial.print("\n");
lowpulseoccupancy = 0;
return(concentration);
}
}
}