forked from princeton-nlp/SimCSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
205 lines (179 loc) · 8.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# import sys
# import io, os
# import numpy as np
# import logging
# import argparse
# from prettytable import PrettyTable
# import torch
# import transformers
# from transformers import AutoModel, AutoTokenizer
# # # Set up logger
# logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
# # # Set PATHs
# # PATH_TO_SENTEVAL = './SentEval'
# # PATH_TO_DATA = './SentEval/data'
# # # Import SentEval
# # sys.path.insert(0, PATH_TO_SENTEVAL)
# # import senteval
# def print_table(task_names, scores):
# tb = PrettyTable()
# tb.field_names = task_names
# tb.add_row(scores)
# print(tb)
# def main():
# parser = argparse.ArgumentParser()
# parser.add_argument("--model_name_or_path", type=str,
# help="Transformers' model name or path")
# parser.add_argument("--pooler", type=str,
# choices=['cls', 'cls_before_pooler', 'avg', 'avg_top2', 'avg_first_last'],
# default='cls',
# help="Which pooler to use")
# parser.add_argument("--mode", type=str,
# choices=['dev', 'test', 'fasttest'],
# default='test',
# help="What evaluation mode to use (dev: fast mode, dev results; test: full mode, test results); fasttest: fast mode, test results")
# parser.add_argument("--task_set", type=str,
# choices=['sts', 'transfer', 'full', 'na'],
# default='sts',
# help="What set of tasks to evaluate on. If not 'na', this will override '--tasks'")
# parser.add_argument("--tasks", type=str, nargs='+',
# default=['STS12', 'STS13', 'STS14', 'STS15', 'STS16',
# 'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC',
# 'SICKRelatedness', 'STSBenchmark'],
# help="Tasks to evaluate on. If '--task_set' is specified, this will be overridden")
# args = parser.parse_args()
# # Load transformers' model checkpoint
# model = AutoModel.from_pretrained(args.model_name_or_path)
# tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model = model.to(device)
# # Set up the tasks
# if args.task_set == 'sts':
# args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
# elif args.task_set == 'transfer':
# args.tasks = ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
# elif args.task_set == 'full':
# args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
# args.tasks += ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
# # Set params for SentEval
# if args.mode == 'dev' or args.mode == 'fasttest':
# # Fast mode
# params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
# params['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128,
# 'tenacity': 3, 'epoch_size': 2}
# elif args.mode == 'test':
# # Full mode
# params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10}
# params['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 64,
# 'tenacity': 5, 'epoch_size': 4}
# else:
# raise NotImplementedError
# # SentEval prepare and batcher
# def prepare(params, samples):
# return
# def batcher(params, batch, max_length=None):
# # Handle rare token encoding issues in the dataset
# if len(batch) >= 1 and len(batch[0]) >= 1 and isinstance(batch[0][0], bytes):
# batch = [[word.decode('utf-8') for word in s] for s in batch]
# sentences = [' '.join(s) for s in batch]
# # Tokenization
# if max_length is not None:
# batch = tokenizer.batch_encode_plus(
# sentences,
# return_tensors='pt',
# padding=True,
# max_length=max_length,
# truncation=True
# )
# else:
# batch = tokenizer.batch_encode_plus(
# sentences,
# return_tensors='pt',
# padding=True,
# )
# # Move to the correct device
# for k in batch:
# batch[k] = batch[k].to(device)
# # Get raw embeddings
# with torch.no_grad():
# outputs = model(**batch, output_hidden_states=True, return_dict=True)
# last_hidden = outputs.last_hidden_state
# pooler_output = outputs.pooler_output
# hidden_states = outputs.hidden_states
# # Apply different poolers
# if args.pooler == 'cls':
# # There is a linear+activation layer after CLS representation
# return pooler_output.cpu()
# elif args.pooler == 'cls_before_pooler':
# return last_hidden[:, 0].cpu()
# elif args.pooler == "avg":
# return ((last_hidden * batch['attention_mask'].unsqueeze(-1)).sum(1) / batch['attention_mask'].sum(-1).unsqueeze(-1)).cpu()
# elif args.pooler == "avg_first_last":
# first_hidden = hidden_states[1]
# last_hidden = hidden_states[-1]
# pooled_result = ((first_hidden + last_hidden) / 2.0 * batch['attention_mask'].unsqueeze(-1)).sum(1) / batch['attention_mask'].sum(-1).unsqueeze(-1)
# return pooled_result.cpu()
# elif args.pooler == "avg_top2":
# second_last_hidden = hidden_states[-2]
# last_hidden = hidden_states[-1]
# pooled_result = ((last_hidden + second_last_hidden) / 2.0 * batch['attention_mask'].unsqueeze(-1)).sum(1) / batch['attention_mask'].sum(-1).unsqueeze(-1)
# return pooled_result.cpu()
# else:
# raise NotImplementedError
# results = {}
# for task in args.tasks:
# se = senteval.engine.SE(params, batcher, prepare)
# result = se.eval(task)
# results[task] = result
# # Print evaluation results
# if args.mode == 'dev':
# print("------ %s ------" % (args.mode))
# task_names = []
# scores = []
# for task in ['STSBenchmark', 'SICKRelatedness']:
# task_names.append(task)
# if task in results:
# scores.append("%.2f" % (results[task]['dev']['spearman'][0] * 100))
# else:
# scores.append("0.00")
# print_table(task_names, scores)
# task_names = []
# scores = []
# for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
# task_names.append(task)
# if task in results:
# scores.append("%.2f" % (results[task]['devacc']))
# else:
# scores.append("0.00")
# task_names.append("Avg.")
# scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
# print_table(task_names, scores)
# elif args.mode == 'test' or args.mode == 'fasttest':
# print("------ %s ------" % (args.mode))
# task_names = []
# scores = []
# for task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']:
# task_names.append(task)
# if task in results:
# if task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']:
# scores.append("%.2f" % (results[task]['all']['spearman']['all'] * 100))
# else:
# scores.append("%.2f" % (results[task]['test']['spearman'].correlation * 100))
# else:
# scores.append("0.00")
# task_names.append("Avg.")
# scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
# print_table(task_names, scores)
# task_names = []
# scores = []
# for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
# task_names.append(task)
# if task in results:
# scores.append("%.2f" % (results[task]['acc']))
# else:
# scores.append("0.00")
# task_names.append("Avg.")
# scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
# print_table(task_names, scores)
# if __name__ == "__main__":
# main()