-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral_features.m
42 lines (30 loc) · 1.79 KB
/
spectral_features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [spectral_coeffs] = spectral_features(segment, Fs)
hop_length = 0.010; % hop length is set in s
window_length = 0.025; % window length is set in s
n_fft = 2048; % fft length is set
frame_len = floor(window_length*Fs); % frame length in samples
frame_shift = floor(hop_length*Fs); % frame shift in samples
n_frames = floor((length(segment)-frame_len) / frame_shift)+1; % number of frames
% frames is initialized
frames = zeros(frame_len, n_frames);
for i = 1:n_frames
frame = segment((i-1)*frame_shift+1:(i-1)*frame_shift+frame_len);
frames(:, i) = frame;
end
frames(:,all(frames == 0))=[]; % removes zero columns
n_frames = size(frames, 2); % number of frames updated
repeated_win = repmat(hamming(frame_len), [1, n_frames]); % window is repeated for each column
windowed = frames .* repeated_win;
W = fft(windowed, n_fft); % fft of windowed frames is taken
half_idx = n_fft/2; % last non-negative index
nngt_indices = (1:half_idx)'; % non-negative indices are defined
repeated_indices = repmat(nngt_indices, [1, n_frames]);
normalized_W = abs(W) ./ sum(abs(W(nngt_indices, :))); % W is normalized
C = sum(repeated_indices .* normalized_W(nngt_indices, :)); % spectral centroid is defined
% moments are calculated
second_moment = sum((repeated_indices-C).^2 .* normalized_W(nngt_indices, :));
third_moment = sum((repeated_indices-C).^3 .* normalized_W(nngt_indices, :)) ./ (second_moment.^(3/2));
fourth_moment = sum((repeated_indices-C).^4 .* normalized_W(nngt_indices, :)) ./ (second_moment.^2);
% coefficients are returned
spectral_coeffs = [mean(second_moment), var(second_moment), mean(third_moment), var(third_moment), mean(fourth_moment), var(fourth_moment)];
end