-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet.py
123 lines (89 loc) · 5.19 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import numpy as np
import os
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
import keras
from keras.models import Sequential, Model,load_model
from tensorflow.keras.optimizers import SGD
#from keras.optimizers import SGD
from keras.callbacks import EarlyStopping,ModelCheckpoint
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D,MaxPool2D
from tensorflow.keras.layers import BatchNormalization
from keras.preprocessing import image
from tensorflow.keras.initializers import glorot_uniform
def identity_block(X, f, filters, stage, block):
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
F1, F2, F3 = filters
X_shortcut = X
X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2a',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = Activation('relu')(X)
X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = Activation('relu')(X)
X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
X = Add()([X, X_shortcut]) # SKIP Connection
X = Activation('relu')(X)
return X
def convolutional_block(X, f, filters, stage, block, s=2):
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
F1, F2, F3 = filters
X_shortcut = X
X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = Activation('relu')(X)
X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = Activation('relu')(X)
X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c',
kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
X_shortcut = Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1',
kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
X = Add()([X, X_shortcut])
X = Activation('relu')(X)
return X
def ResNet50(input_shape=(224, 224, 3)):
X_input = Input(input_shape)
X = ZeroPadding2D((3, 3))(X_input)
X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', kernel_initializer=glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name='bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides=(2, 2))(X)
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block='a', s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
X = X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
X = AveragePooling2D(pool_size=(2, 2), padding='same')(X)
model = Model(inputs=X_input, outputs=X, name='ResNet50')
return model
base_model = ResNet50(input_shape=(224, 224, 3))
headModel = base_model.output
headModel = Flatten()(headModel)
headModel=Dense(256, activation='relu', name='fc1',kernel_initializer=glorot_uniform(seed=0))(headModel)
headModel=Dense(128, activation='relu', name='fc2',kernel_initializer=glorot_uniform(seed=0))(headModel)
headModel = Dense( 1,activation='sigmoid', name='fc3',kernel_initializer=glorot_uniform(seed=0))(headModel)
model = Model(inputs=base_model.input, outputs=headModel)
model.summary()