-
Notifications
You must be signed in to change notification settings - Fork 0
/
processpool.h
485 lines (445 loc) · 16.9 KB
/
processpool.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#ifndef PROCESSPOOL_H
#define PROCESSPOOL_H
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <vector>
#include "log.h"
#include "fdwrapper.h"
using std::vector;
class process
{
public:
process() : m_pid( -1 ){} //只有父进程的Pid是-1,子进程的pid非负
public:
int m_busy_ratio;
pid_t m_pid;
int m_pipefd[2]; //父子进程通信管道
};
template< typename C, typename H, typename M >
class processpool
{
private:
processpool( int listenfd, int process_number = 8 ); //私有,用create()来创建实例
public:
static processpool< C, H, M >* create( int listenfd, int process_number = 8 )
{
if( !m_instance ) //只允许一进程池实例存在
{
m_instance = new processpool< C, H, M >( listenfd, process_number );
}
return m_instance;
}
~processpool()
{
delete m_instance;
delete [] m_sub_process;
}
void run( const vector<H>& arg ); //进程池启动
private:
void notify_parent_busy_ratio( int pipefd, M* manager ); //通知父进程当前子进程的忙碌度
int get_most_free_srv(); //根据progress类的busy_ratio来遍历进程池选择最闲的进程,返回进程序号
void setup_sig_pipe(); //设置信号管道
void run_parent();
void run_child( const vector<H>& arg );
private:
static const int MAX_PROCESS_NUMBER = 16; //进程池最大子进程数量
static const int USER_PER_PROCESS = 65536;
static const int MAX_EVENT_NUMBER = 10000; //epoll事件数上限
int m_process_number; //进程池中的进程总数
int m_idx; //进程池序号
int m_epollfd; //epoll内核事件表的标识
int m_listenfd; //监听socket
int m_stop; //子进程通过m_stop决定是否停止运行
process* m_sub_process;
static processpool< C, H, M >* m_instance;
};
template< typename C, typename H, typename M >
processpool< C, H, M >* processpool< C, H, M >::m_instance = NULL;
static int EPOLL_WAIT_TIME = 5000;
static int sig_pipefd[2]; //用于统一处理信号的管道
static void sig_handler( int sig )
{
int save_errno = errno;
int msg = sig;
send( sig_pipefd[1], ( char* )&msg, 1, 0 );
errno = save_errno;
}
static void addsig( int sig, void( handler )(int), bool restart = true )
{
struct sigaction sa;
memset( &sa, '\0', sizeof( sa ) );
sa.sa_handler = handler;
if( restart )
{
sa.sa_flags |= SA_RESTART;
}
sigfillset( &sa.sa_mask );
assert( sigaction( sig, &sa, NULL ) != -1 );
}
template< typename C, typename H, typename M >
processpool< C, H, M >::processpool( int listenfd, int process_number ) //构造函数
: m_listenfd( listenfd ), m_process_number( process_number ), m_idx( -1 ), m_stop( false )
{
assert( ( process_number > 0 ) && ( process_number <= MAX_PROCESS_NUMBER ) );
printf("processpool is created\n");
m_sub_process = new process[ process_number ]; //创建n个进程子实例
assert( m_sub_process );
for( int i = 0; i < process_number; ++i ) //创建n个子进程,并建立与父进程的管道
{
int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd ); //创建的是全双工通道
assert( ret == 0 );
printf("sub_process_%d is created\n", i);
m_sub_process[i].m_pid = fork();
assert( m_sub_process[i].m_pid >= 0 );
if( m_sub_process[i].m_pid > 0 )
{
close( m_sub_process[i].m_pipefd[1] );
m_sub_process[i].m_busy_ratio = 0;
continue;
}
else
{
close( m_sub_process[i].m_pipefd[0] );
m_idx = i;
break;
}
}
}
template< typename C, typename H, typename M >
int processpool< C, H, M >::get_most_free_srv()
{
int ratio = m_sub_process[0].m_busy_ratio;
int idx = 0;
for( int i = 0; i < m_process_number; ++i )
{
if( m_sub_process[i].m_busy_ratio < ratio )
{
idx = i;
ratio = m_sub_process[i].m_busy_ratio;
}
}
return idx;
}
template< typename C, typename H, typename M >
void processpool< C, H, M >::setup_sig_pipe()
{
//创建epoll事件监听表和信号管道
m_epollfd = epoll_create( 5 ); //注意:该处即是epoll创建的地方
assert( m_epollfd != -1 );
int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, sig_pipefd );
assert( ret != -1 );
setnonblocking( sig_pipefd[1] );
add_read_fd( m_epollfd, sig_pipefd[0] );
addsig( SIGCHLD, sig_handler );
addsig( SIGTERM, sig_handler );
addsig( SIGINT, sig_handler );
addsig( SIGPIPE, SIG_IGN );
}
template< typename C, typename H, typename M >
void processpool< C, H, M >::run( const vector<H>& arg ) //由idx决定运行父还是子
{
printf("process idx: %d is running\n", m_idx);
if( m_idx != -1 )
{
run_child( arg );
return;
}
run_parent();
}
template< typename C, typename H, typename M >
void processpool< C, H, M >::notify_parent_busy_ratio( int pipefd, M* manager )
{
int msg = manager->get_used_conn_cnt(); //这里是由mgr.h类来定义该函数,由具体实现决定
send( pipefd, ( char* )&msg, 1, 0 );
}
template< typename C, typename H, typename M >
void processpool< C, H, M >::run_child( const vector<H>& arg )
{
setup_sig_pipe();
int pipefd_read = m_sub_process[m_idx].m_pipefd[ 1 ];
add_read_fd( m_epollfd, pipefd_read );
epoll_event events[ MAX_EVENT_NUMBER ];
printf("run_child m_idx: %d ; host name: %s \n",m_idx, arg[m_idx].m_hostname);
M* manager = new M( m_epollfd, arg[m_idx] );
assert( manager );
int number = 0;
int ret = -1;
while( ! m_stop )
{
number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, EPOLL_WAIT_TIME );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
log( LOG_ERR, __FILE__, __LINE__, "%s", "epoll failure" );
break;
}
if( number == 0 )
{
manager->recycle_conns();
continue;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( ( sockfd == pipefd_read ) && ( events[i].events & EPOLLIN ) )
{
//从父子进程间管道读取数据并将结果存在变量Client中,若读取成功ret>0则说明有新连接到来
int client = 0;
ret = recv( sockfd, ( char* )&client, sizeof( client ), 0 );
if( ( ( ret < 0 ) && ( errno != EAGAIN ) ) || ret == 0 )
{
continue;
}
else
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( m_listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
if ( connfd < 0 )
{
log( LOG_ERR, __FILE__, __LINE__, "errno: %s", strerror( errno ) );
continue;
}
printf("new client fd %d! IP: %s PortL %d\n", connfd,
inet_ntoa(client_address.sin_addr), ntohs(client_address.sin_port));
add_read_fd( m_epollfd, connfd );
C* conn = manager->pick_conn( connfd );
if( !conn )
{
closefd( m_epollfd, connfd );//当前没有空闲可用连接,从epoll中移除connfd
continue;
}
conn->init_clt( connfd, client_address );
notify_parent_busy_ratio( pipefd_read, manager );
}
}
else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
{ //子进程的信号管道上有新消息到来
int sig;
char signals[1024];
ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
if( ret <= 0 )
{
continue;
}
else
{
for( int i = 0; i < ret; ++i )
{
switch( signals[i] )
{
case SIGCHLD:
{
pid_t pid;
int stat;
while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
{
continue;
}
break;
}
case SIGTERM:
case SIGINT:
{
m_stop = true;
break;
}
default:
{
break;
}
}
}
}
}
else if( events[i].events & EPOLLIN )
{ //其他可读数据,那就是客户请求到来,调用逻辑处理对象的process方法处理
RET_CODE result = manager->process( sockfd, READ ); //这里由mgr::process()实现
switch( result )
{
case CLOSED:
{
notify_parent_busy_ratio( pipefd_read, manager ); //使用全双工通道通知父进程当前进程负载
break;
}
default:
break;
}
}
else if( events[i].events & EPOLLOUT )
{ //可写事件
RET_CODE result = manager->process( sockfd, WRITE );
switch( result )
{
case CLOSED:
{
notify_parent_busy_ratio( pipefd_read, manager );
break;
}
default:
break;
}
}
else
{
continue;
}
}
}
delete manager;
close( pipefd_read );
close( m_epollfd );
}
template< typename C, typename H, typename M >
void processpool< C, H, M >::run_parent()
{
setup_sig_pipe();
for( int i = 0; i < m_process_number; ++i ) //将来自子进程的管道信息加入epoll
{
add_read_fd( m_epollfd, m_sub_process[i].m_pipefd[ 0 ] );
}
add_read_fd( m_epollfd, m_listenfd ); //监听socket加入epoll
epoll_event events[ MAX_EVENT_NUMBER ];
int sub_process_counter = 0;
int new_conn = 1;
int number = 0;
int ret = -1;
while( ! m_stop )
{
number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, EPOLL_WAIT_TIME );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
log( LOG_ERR, __FILE__, __LINE__, "%s", "epoll failure" );
break;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( sockfd == m_listenfd ) //有新连接到来
{
/* 原有的round robin方式的子进程分配方案(现已改成最低负载进程选择算法)
int i = sub_process_counter;
do
{
if( m_sub_process[i].m_pid != -1 )
{
break;
}
i = (i+1)%m_process_number;
}
while( i != sub_process_counter );
if( m_sub_process[i].m_pid == -1 )
{
m_stop = true;
break;
}
sub_process_counter = (i+1)%m_process_number;
*/
int idx = get_most_free_srv();
//通知idx进程有新连接到来。
send( m_sub_process[idx].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 );
log( LOG_INFO, __FILE__, __LINE__, "send request to child %d", idx );
}
else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
{ //信号通道上有子进程的信号到来,处理子进程信号,存储在signals中
int sig;
char signals[1024];
ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
if( ret <= 0 )
{
continue;
}
else
{
for( int i = 0; i < ret; ++i )
{
switch( signals[i] )
{
case SIGCHLD: //子进程结束时,向父进程发送SIGCHLD信号,捕获之,并使用waitpid“彻底结束”子进程
{
pid_t pid;
int stat;
while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
{
for( int i = 0; i < m_process_number; ++i )
{
if( m_sub_process[i].m_pid == pid )
{
log( LOG_INFO, __FILE__, __LINE__, "child %d join", i );
close( m_sub_process[i].m_pipefd[0] ); //关闭相应通信管道
m_sub_process[i].m_pid = -1; //标记-1表示已退出
}
}
}
m_stop = true;//若所有子进程都退出了,则父进程也退出
for( int i = 0; i < m_process_number; ++i )
{
if( m_sub_process[i].m_pid != -1 ) //只有还有一个子进程还没有退出,则继续
{
m_stop = false;
}
}
break;
}
case SIGTERM:
case SIGINT:
{ //父进程收到终止信号,杀死所有子进程并等待他们结束
log( LOG_INFO, __FILE__, __LINE__, "%s", "kill all the clild now" );
for( int i = 0; i < m_process_number; ++i )
{
int pid = m_sub_process[i].m_pid;
if( pid != -1 )
{
kill( pid, SIGTERM );
}
}
break;
}
default:
{
break;
}
}
}
}
}
else if( events[i].events & EPOLLIN )
{ //除以上之外的可读事件,即是子进程通知父进程关于子进程当前的负载情况。(从父子通信管道来的信息)
int busy_ratio = 0;
ret = recv( sockfd, ( char* )&busy_ratio, sizeof( busy_ratio ), 0 );
if( ( ( ret < 0 ) && ( errno != EAGAIN ) ) || ret == 0 )
{
continue;
}
for( int i = 0; i < m_process_number; ++i )
{
if( sockfd == m_sub_process[i].m_pipefd[0] )
{
m_sub_process[i].m_busy_ratio = busy_ratio;
break;
}
}
continue;
}
}
}
//父进程退出,关闭父进程对各个子进程的通信通道,并关闭epoll标识符
for( int i = 0; i < m_process_number; ++i )
{
closefd( m_epollfd, m_sub_process[i].m_pipefd[ 0 ] );
}
close( m_epollfd );
}
#endif