-
Notifications
You must be signed in to change notification settings - Fork 3
/
dsd_infer.py
181 lines (140 loc) · 6.61 KB
/
dsd_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
from torchvision.transforms.functional import to_pil_image
import numpy as np
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler
import glob
import os
from PIL import Image
from tqdm import tqdm
import argparse
import json
import random
from model import DSD_Model
from custom_datasets import get_dataset
from torch.utils.data import DataLoader
from eval_score import evaluate_scores
import csv
from accelerate import Accelerator
import cProfile
import re
import copy
import datetime
import logging
def next_available_dirpath(target_dir):
base_name = target_dir
index = 1
while os.path.exists(target_dir):
target_dir = f"{base_name}_{index}"
index += 1
index -= 2
target_dir = f"{base_name}_{index}"
return target_dir
def sanitize_text(text):
text = re.sub(r'[^\w\s]', '', text)
text = text.replace(' ', '_')
return text[:50]
def average_score(tensor_lists):
total_mean_sum = 0
total_tensors = sum(len(inner_list) for inner_list in tensor_lists)
for inner_list in tensor_lists:
for tensor_container in inner_list:
tensor = tensor_container[0]
total_mean_sum += torch.mean(tensor).item()
return total_mean_sum / total_tensors
def rename_image_based_on_score(score, img_name, img_idx, text_folder_path):
img_name = img_name[0].split('/')[-1]
if img_idx == 0:
img_path = os.path.join(text_folder_path, 'positive', os.path.basename(img_name))
folder = 'positive'
else:
img_path = os.path.join(text_folder_path, 'negative', os.path.basename(img_name))
folder = 'negative'
if os.path.exists(img_path):
new_img_name = f"{os.path.splitext(img_name)[0]}_score_{score}{os.path.splitext(img_name)[1]}"
new_img_path = os.path.join(text_folder_path, folder, new_img_name)
os.rename(img_path, new_img_path)
def compute_score(i, args, batch, model, save_path='./saved_images'):
imgs, texts = batch[0], batch[1]
imgs, imgs_resize = imgs[0], imgs[1]
imgs_resize = [img.cuda() for img in imgs_resize]
scores = []
for txt_idx, text in enumerate(texts):
sanitized_text = sanitize_text(text[0])
text_folder_path = os.path.join(save_path, sanitized_text)
# text_folder_path = next_available_dirpath(text_folder_base)
for img_idx, (img_name, resized_img) in enumerate(zip(imgs, imgs_resize)):
if len(resized_img.shape) == 3:
resized_img = resized_img.unsqueeze(0)
print(f'Batch size {args.batchsize}, Batch {i}, Text {txt_idx}, Image {img_idx}')
score = model(prompt=list(text), image=resized_img, guidance_scale=args.guidance_scale, sampling_steps=args.sampling_time_steps, use_bias = args.bias, layer_mask = None, sampled_timestep = None, level = None)
scores.append(score)
# rename_image_based_on_score(score, img_name[0], img_idx, text_folder_path)
scores = torch.stack(scores).permute(1, 0) if args.batchsize > 1 else torch.stack(scores).unsqueeze(0)
return scores
def main(args):
accelerator = Accelerator()
dataset = get_dataset(args.val_data, 'data', transform=None)
dataloader = DataLoader(dataset, batch_size=args.batchsize, shuffle=False, num_workers=0)
model = DSD_Model(accelerator, args)
model, dataloader = accelerator.prepare(model, dataloader)
r1s = []
r5s = []
metrics = []
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
scores = compute_score(i, args, batch, model)
scores = scores.contiguous()
accelerator.wait_for_everyone()
scores = accelerator.gather(scores)
batch[-1] = accelerator.gather(batch[-1])
if accelerator.is_main_process:
if args.val_data == 'Refcocog':
r1,r5 = evaluate_scores(args, scores, batch)
r1s += r1
r5s += r5
r1 = sum(r1s) / len(r1s)
r5 = sum(r5s) / len(r5s)
logging.info(f'Batch {i + 1}, R@1: {r1}, R@5: {r5}, Sequence length: {len(r1s)}')
elif args.val_data == 'winoground':
text_scores, img_scores, group_scores = evaluate_scores(args, scores, batch)
metrics += list(zip(text_scores, img_scores, group_scores))
text_score = sum([m[0] for m in metrics]) / len(metrics)
img_score = sum([m[1] for m in metrics]) / len(metrics)
group_score = sum([m[2] for m in metrics]) / len(metrics)
logging.info(f'Batch {i + 1}, Sequence length: {len(metrics)}, Text score: {text_score}, Image score: {img_score}, Group score: {group_score}')
elif args.val_data == 'vqa' or args.val_data == 'vqa_binary' or args.val_data == 'vqa_other':
r1,r5 = evaluate_scores(args, scores, batch)
r1s += r1
r5s += r5
r1 = sum(r1s) / len(r1s)
r5 = sum(r5s) / len(r5s)
logging.info(f'Batch {i + 1}, R@1: {r1}, R@5: {r5}, Sequence length: {len(r1s)}')
else:
acc = evaluate_scores(args, scores, batch)
metrics += acc
acc = sum(metrics) / len(metrics)
logging.info(f'Batch {i + 1}, Accuracy: {acc}, Sequence length: {len(metrics)}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--val_data', type=str)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--batchsize', type=int, default=1)
parser.add_argument('--model', type=str, default = None)
parser.add_argument('--bias', action='store_false', help='Set bias to False')
parser.add_argument('--sampling_time_steps', type=int, default=30)
parser.add_argument('--version', type=str, default='2.1')
parser.add_argument('--output_dir', type=str, default='')
parser.add_argument('--guidance_scale', type=float, default=0.0)
args = parser.parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs('./logs', exist_ok=True)
log_filename = f'./logs/inference_{args.val_data}_{now}.log'
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.FileHandler(log_filename), logging.StreamHandler()])
logging.info(args)
main(args)