-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiscriminator.py
50 lines (27 loc) · 1.38 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
from generator import Encoder_Block
class Discriminator(tf.keras.Model):
def __init__(self):
super(Discriminator, self).__init__()
self.encoders = [
Encoder_Block(64, 4, batchnorm=False, input_shape=(256,256,3)), # 128x128
Encoder_Block(128, 4), #64x64
Encoder_Block(256, 4), #32x32
Encoder_Block(512, 4, strides=1), #32x32
]
# 33x33 -> 30x30 after 1 zero padding
self.final_conv = tf.keras.layers.Conv2D(1, 4, strides=1, padding='valid', kernel_initializer=tf.random_normal_initializer(0., 0.02))
# the initializer hyperparameters and learning rate are from https://www.tensorflow.org/tutorials/generative/pix2pix
self.optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
def call(self, input, target):
encoded = tf.concat([input, target], axis=-1)
for layer in self.encoders:
encoded = layer(encoded)
padded = tf.keras.layers.ZeroPadding2D()(encoded)
final = self.final_conv(padded)
return final
def loss_function(self, d_real, d_fake):
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
real_loss = loss_fn(tf.ones_like(d_real), d_real)
fake_loss = loss_fn(tf.zeros_like(d_fake), d_fake)
return tf.reduce_mean(real_loss + fake_loss)