-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathloader.py
501 lines (381 loc) · 14.5 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# loader.py
#
# Copyright 2014, espes
#
# Licensed under GPL Version 2 or later
#
import sys
import time
import struct
import inspect
import platform
import mmap
import ctypes
from macholib import MachO
from macholib.mach_o import *
from dyld_info import DyldInfo
def align(p, a):
a -= 1
return (p + a) & ~a;
def load_macho(filename):
file_data = open(filename).read()
macho = MachO.MachO(filename)
header = macho.headers[0]
cputype = CPU_TYPE_NAMES[header.header.cputype]
assert cputype == "ARM"
assert header.header.filetype == MH_EXECUTE
regions = []
text_base = None
entry_point = None
segments = [cmd for _, cmd, _ in header.commands if type(cmd) == segment_command]
for cmd in segments:
name = cmd.segname.replace("\x00", "")
if name == SEG_PAGEZERO: continue
if name == SEG_TEXT:
assert cmd.fileoff == 0
text_base = cmd.vmaddr
filesize = align(cmd.filesize, 4096)
vmsize = align(cmd.vmsize, 4096)
regions.append( ( cmd.vmaddr, filesize,
file_data[cmd.fileoff:cmd.fileoff+filesize] ) )
if vmsize != filesize:
regions.append( ( cmd.vmaddr + filesize,
vmsize - filesize,
None ) )
assert text_base is not None
dyld_info = None
symbols = {}
for lc, cmd, data in header.commands:
if type(cmd) == entry_point_command:
# the entry point is given as a file offset.
# assume it's in the text segment...
entry_point = cmd.entryoff + text_base
elif type(cmd) == dyld_info_command:
dyld_info = DyldInfo(filename, cmd, segments)
elif type(cmd) == symtab_command:
#TODO: populate symbols
pass
#assert entry_point is not None
# print [(hex(a), hex(b), c[:16] if c else c) for a, b, c in regions]
return (regions, entry_point, symbols, dyld_info)
def arc4random():
return 4
def umodsi3(a, b):
if b == 0:
return a
return a % b
def modsi3(a, b):
return a - (a // b) * b
def udivsi3(a, b):
return a // b
class IOSProcessNative(object):
def __init__(self, filename):
self.filename = filename
self.libc = ctypes.CDLL("libc.so.6")
# setup a simple heap
heap_size = 0x200000 # 2MB
self.heap_buffer = mmap.mmap(-1, heap_size,
prot = mmap.PROT_READ | mmap.PROT_WRITE)
self.heap_data = (ctypes.c_byte * heap_size).from_buffer(self.heap_buffer)
self.heap_addr = ctypes.addressof(self.heap_data)
self.heap_base = self.heap_addr
# load in the program
(regions, self.entry_point,
self.symbols, dyld_info) = load_macho(filename)
self.map_bottom = min(addr for addr, size, data in regions)
self.map_top = max(addr+size for addr, size, data in regions)
map_size = self.map_top-self.map_bottom
self.map_buffer = mmap.mmap(-1, map_size,
prot=mmap.PROT_READ | mmap.PROT_WRITE | mmap.PROT_EXEC)
assert self.map_buffer
for addr, size, data in regions:
if not data: data = "\x00"*size
self.map_buffer.seek(addr - self.map_bottom)
self.map_buffer.write(data)
self.map_buffer.seek(0)
self.map_data = (ctypes.c_ubyte * map_size).from_buffer(self.map_buffer)
self.map_addr = ctypes.addressof(self.map_data)
self.slide = self.map_addr - self.map_bottom
# apply relocations
for addr in dyld_info.rebases:
self.map_buffer.seek(addr - self.map_bottom)
ptr = struct.unpack("I", self.map_buffer.read(4))[0]
# print "reloc", hex(ptr)
assert self.map_bottom <= ptr <= self.map_top
self.map_buffer.seek(addr - self.map_bottom)
self.map_buffer.write(struct.pack("I", ptr + self.slide))
self.dummy_funcs = {}
self.hle_malloc_func = ctypes.CFUNCTYPE(
ctypes.c_int, ctypes.c_int)(self.malloc)
self.hle = {
'___stack_chk_guard': ctypes.pointer(self.hle_stack_chk_guard),
'_printf': self.libc.printf,
'_malloc': self.hle_malloc_func,
'_memcpy': self.libc.memcpy,
'_memset': self.libc.memset,
'_arc4random': self.hle_arc4random_func,
'___umodsi3': self.hle_umodsi3_func,
'___modsi3': self.hle_modsi3_func,
'___udivsi3': self.hle_udivsi3_func,
}
# apply bindings
for name, vmaddr, libord in dyld_info.binds+dyld_info.lazy_binds:
cobj = self.hle.get(name)
if not cobj:
cobj = self.dummy_func(name)
ptr = ctypes.cast(cobj, ctypes.c_void_p).value
self.map_buffer.seek(vmaddr - self.map_bottom)
self.map_buffer.write(struct.pack("I", ptr))
def dummy_func(self, name):
if name in self.dummy_funcs: return self.dummy_funcs[name]
def func():
print "no hle for %s!" % name
sys.exit(1)
self.dummy_funcs[name] = ctypes.CFUNCTYPE(ctypes.c_int)(func)
return self.dummy_funcs[name]
def malloc(self, size):
r = self.heap_base
self.heap_base += size
return r
def ld_word(self, addr):
return ctypes.c_int.from_address(addr).value
def st_word(self, addr, v):
ctypes.c_int.from_address(addr).value = v
def copyin(self, addr, data):
carr = (ctypes.c_ubyte * len(data)).from_address(addr)
carr[:] = map(ord, data)
def copyout(self, addr, length):
carr = (ctypes.c_ubyte * length).from_address(addr)
return ''.join(map(chr, carr[:]))
hle_stack_chk_guard = ctypes.c_int(0)
hle_arc4random_func = ctypes.CFUNCTYPE(ctypes.c_int)(arc4random)
hle_umodsi3_func = ctypes.CFUNCTYPE(
ctypes.c_uint, ctypes.c_uint, ctypes.c_uint)(umodsi3)
hle_modsi3_func = ctypes.CFUNCTYPE(
ctypes.c_uint, ctypes.c_int, ctypes.c_int)(modsi3)
hle_udivsi3_func = ctypes.CFUNCTYPE(
ctypes.c_uint, ctypes.c_uint, ctypes.c_uint)(udivsi3)
def call(self, func, args):
cfunc = ctypes.CFUNCTYPE(ctypes.c_int,
*([ctypes.c_int] * len(args)))(func + self.slide)
return cfunc(*args)
def exec_(self, arg=[], env=[]):
# cargs = (c_char_p * len(arg))(arg)
# cenv = (c_char_p * len(arg))(arg)
start = ctypes.CFUNCTYPE(ctypes.c_int)(
self.entry_point + self.slide)
start()
class IOSProcessEmu(object):
def __init__(self, filename):
self.filename = filename
self.hle = {
'_printf': self.hle_printf,
'_malloc': self.hle_malloc,
'_memcpy': self.hle_memcpy,
'_memset': self.hle_memset,
'_arc4random': self.hle_arc4random,
'___umodsi3': self.hle_umodsi3,
'___modsi3': self.hle_modsi3,
'___udivsi3': self.hle_udivsi3,
}
self.breakpoint_instruction = 0xFEDEFFE7
self.running = False
(regions, self.entry_point,
self.symbols, dyld_info) = load_macho(filename)
# tmp hack of a stack
self.stack_bottom = 0x70000000 # ?
stack_size = 0x20000 # 128k ?
regions.append((self.stack_bottom-stack_size, stack_size, None))
# tmp hack of a heap
heap_addr = 0x40000000
heap_size = 0x200000 # 2MB
regions.append((heap_addr, heap_size, None))
self.heap_base = heap_addr
# setup scratch space for putting down hooks for linking
scratch_addr = 0x80000000
scratch_size = 0x20000 # 128k
regions.append((scratch_addr, scratch_size, None))
# setup memory
self.mem = arm.memory.VirtualMemory()
for addr, size, data in regions:
if not data: data = "\x00"*size
region = arm.memory.VMRegion(data, None, None)
self.mem.map(addr, size, region)
self.memctlr = arm.memory.VirtualMemoryController(self.mem)
# 'link' to breakpoints for hle
self.hle_breakpoints = {}
if dyld_info:
#print "binds", dyld_info.binds
#print "lazys", dyld_info.lazy_binds
for i, (name, vmaddr, libord) in enumerate(dyld_info.binds+dyld_info.lazy_binds):
saddr = scratch_addr + i * 4
if name == "___stack_chk_guard":
self.memctlr.st_word(saddr, 0)
else:
self.memctlr.st_word(saddr, self.breakpoint_instruction)
self.hle_breakpoints[saddr] = name
self.memctlr.st_word(vmaddr, saddr)
self.options = arm.options.Options()
mmu = arm.memory.ARMv7VirtualMMU(self.mem)
self.cpu = arm.cpu.ARMv7CPU(self.options, self.memctlr, mmu)
def log(self, on=True):
self.options.enable_tracer = on
self.options.enable_logger = on
def copyin(self, addr, data):
for i, c in enumerate(data):
self.cpu.st_byte(addr+i, ord(c))
def copyout(self, addr, length):
r = ""
for i in xrange(length):
r += chr(self.cpu.ld_byte(addr+i))
return r
def malloc(self, size):
r = self.heap_base
self.heap_base += size
return r
def ld_word(self, addr):
return self.cpu.ld_word(addr)
def st_word(self, addr, v):
return self.cpu.st_word(addr, v)
def make_hle(f):
nargs = len(inspect.getargspec(f).args)-1
def f2(self, cpu):
args = cpu.regs[:min(4, nargs)]
for i in xrange(nargs-4):
args.append(cpu.ld_word(cpu.regs[13]+i*4))
r = f(self, *args)
if r is None:
cpu.regs[0] = 0
else:
cpu.regs[0] = arm.bitops.uint32(r)
cpu.regs[15] = cpu.regs[14] # ret
return f2
hle_malloc = make_hle(malloc)
def hle_printf(self, cpu):
#print "printf!"
#cpu.dump()
# complete hack...
format = cpu.ld_string(cpu.regs[0])
num_params = format.count("%")
if num_params > 3:
# have to do stack shit.,,
raise NotImplementedError
else:
f = format % tuple(cpu.regs[1:num_params+1])
sys.stdout.write(f)
cpu.regs[0] = len(f)
cpu.regs[15] = cpu.regs[14] # ret
@make_hle
def hle_memcpy(self, dst, src, size):
for i in xrange(size):
self.cpu.st_byte(dst+i, self.cpu.ld_byte(src+i))
@make_hle
def hle_memset(self, dst, c, length):
for i in xrange(length):
self.cpu.st_byte(dst+i, c)
@make_hle
def hle_arc4random(self):
return arc4random()
@make_hle
def hle_umodsi3(self, a, b):
return umodsi3(a, b)
@make_hle
def hle_modsi3(self, a, b):
a = arm.bitops.sint32(a)
b = arm.bitops.sint32(b)
return modsi3(a, b)
@make_hle
def hle_udivsi3(self, a, b):
return udivsi3(a, b)
def exec_(self, arg=[], env=[]):
#todo: setup the stack...
# note usually the entry point is only ever reached via dyld...
# we try to do dyld's job first and jump straight into it
# magic value for catching when we return...
exit_addr = 0xF4F4F4F4
self.cpu.regs[0] = 0
self.cpu.regs[1] = 0
self.cpu.regs[2] = 0
self.cpu.regs[3] = 0
self.cpu.regs[13] = self.stack_bottom
self.cpu.regs[14] = exit_addr
self.cpu.regs[15] = self.entry_point
self.cpu.cpsr.m = 0b10000 # user mode
self.run(exit_addr)
# print "we're done!", self.cpu.regs[0]
def call(self, func, args):
if func in self.symbols:
addr = self.symbols[func]
else:
addr = int(func)
assert addr & 1 == 0
# magic value for catching when we return...
exit_addr = 0xF4F4F4F4
sp = self.stack_bottom
# extra arguments on the stack
for i, v in enumerate(args[4:][::-1]):
sp -= 4
self.cpu.st_word(sp, v)
self.cpu.regs[0] = args[0] if len(args) > 0 else 0
self.cpu.regs[1] = args[1] if len(args) > 1 else 0
self.cpu.regs[2] = args[2] if len(args) > 2 else 0
self.cpu.regs[3] = args[3] if len(args) > 3 else 0
self.cpu.regs[13] = sp
self.cpu.regs[14] = exit_addr
self.cpu.regs[15] = addr
self.cpu.cpsr.m = 0b10000 # user mode
# print self.cpu.regs
self.run(exit_addr)
# print "we're done!", self.cpu.regs[0]
return self.cpu.regs[0]
def run(self, exit_addr=None):
self.running = True
cnt = 0
tt = time.time()
while self.running:
cnt += 1
# if cnt % 100000 == 0: print cnt, cnt/(time.time()-tt)
self.cpu.branch_to = None
pc = self.cpu.regs[15]
if pc == exit_addr:
break
inst = self.cpu.fetch_instruction(pc)
if inst == self.breakpoint_instruction:
if pc in self.hle_breakpoints:
name = self.hle_breakpoints[pc]
if name in self.hle:
self.hle[name](self.cpu)
continue
else:
raise Exception("no hle for %s!" % name)
# print hex(inst)
if self.cpu.is_valid(inst):
inst_name = self.cpu.decode(inst, pc);
if self.cpu.cond(inst):
self.cpu.exec_(inst_name, inst, pc)
else:
pass
# print hex(inst), inst_name
else:
raise Exception("invalid ... 0x%08x", inst)
if self.cpu.branch_to is not None:
if self.cpu.branch_to & 1:
raise Exception("branch to thumb mode...")
self.cpu.regs[15] = self.cpu.branch_to
self.cpu.print_pc(self.cpu.regs[15], pc);
# print "branch", hex(self.cpu.branch_to)
else:
self.cpu.regs[15] = pc + 4
# print
# print map(hex, self.cpu.regs)
# raw_input()
# print "did %d instructions" % cnt
if platform.machine() == "armv7l" and platform.system() in ("Linux", "Darwin"):
IOSProcess = IOSProcessNative
else:
import arm
IOSProcess = IOSProcessEmu
if __name__ == "__main__":
from sys import argv
p = IOSProcess(argv[1])
p.exec_()