
Generating Stack Machine
Code Using LLVM

Alan Li

See also: Technical Report

https://github.com/etclabscore/evm_llvm/wiki/files/Generating_stack_machine_code_using_LLVM.pdf

Introduction
● Software stack machines re-emerge as blockchain and web streaming

become popular
○ Stack machines boast better code density than register machines
○ Stack machine is much simpler than register machines
○ Examples: WebAssembly, TelegramVM, EthereumVM …

● Traditional stack machine codegens are AST-based
○ Missing aggressive optimizations

● LLVM is designed for register machine code generation
○ LLVM is missing some key infrastructures for stack machine codegen
○ Repurposing LLVM to emit stack code is intuitively challenging (but doable)
○ Public WASM backend is an attempt but its methodology is rudimentary and not canonical
○ LLVM is not traditionally good with code size optimization -- need a lot of tunings.

● Open question: can we come up with a general-purpose LLVM codegen plan
for stack machines?

Experiment Platform: EthereumVM (EVM)
● Most widely used smart contract platform in the blockchain world
● Simplistic/archaic stack machine with 256-bit word length

○ Deterministic: no heap, gc, multithreading, floating point, external variables, dynamic jumps
○ Has blockchain-specific instructions
○ Executing each bytecode instruction costs “gas”

● Over 1 billion worth of DeFi assets are running on EVM
● Solidity and Vyper are the only two smart contract languages:

○ Solidity is criticized for its bad and unsafe design, and its compiler is not-standardized
○ Vyper is simplistic and Python-based
○ After 5 years we are still not seeing other DSLs emerging -- mostly because the platform

needs something like LLVM

Optimization Goal for stack machine:
● Reduce non-computing instructions

○ SWAP, DUPLICATE, POP …
■ Stack manipulation instructions are not contributing to actual computing
■ Affected by variables’ location and order on stack or memory

○ Memory spilling instructions (putlocal/getlocal)

● Reduce overall code size
○ Most stack machines are designed for size-sensitive scenarios: (eg. blockchain)

● (blockchain-specific) Reduce overall gas consumption
○ Compromises with code size

● (potentially) software-hardware (software-VM arch) co-design

A Stack Machine
Codegen Pipeline

● Define two sets of instructions:
○ Register-based Instr
○ Stack-based Instr
○ Mapping (reg -> stack)
○ Borrowed from WASM backend

● Codegen is split into two parts
● Register allocation pass is replaced by Stackification

pass
○ Stack-based codegen are non-canonical so a

lot of infrastructure tools are unavailable

Stack allocation Pass -- From VReg to Stack format
● Assumption: Non-SSA, legal (def dominates all uses)
● Replaces register allocation pass
● Allocate virtual registers to either:

○ Memory slot (spilling) -- All unanalyzable cases
○ intra-MachineBasicBlock stack slot (L-stack) -- All

MBB-local regs
○ inter-MachineBasicBlock stack slot (X-stack) -- Some

cross-MBB regs
● Pre-RA instruction scheduling helps to reduce manipulation

overhead for MBB-local registers
● Properties:

○ L-stacks are empty at entry and exit of MBB
○ X-stacks are empty at entry and exit of MF
○ All successors of a MBB have exactly same incoming

X-stack (shape, order)

Shannon, Mark, and Chris Bailey. "Global Stack Allocation–." In 22nd EuroForth Conference, p. 13. 2006.

Optimizations to improve
stack allocation performance
● Goal: Try to avoid spilling regs to

memory
○ Instead move regs to inter-MBB stack slots

● Still need to make sure each dominated
MBB has at least one use

○ Or a POP must be inserted to keep stack
balanced

● Optimization observations:
○ Heuristic: Less active vregs on stack → less

stack manipulation overhead
○ Solution: Should avoid register coalescing,

value numbering

Pre-RA Instruction Scheduling
● Goal: reduce stack manipulation overhead

○ Local, depth-first scheduling algorithms show good
empirical performance

● Pushing it further:
○ a global instruction scheduler might benefit by

reducing cross-basicblock vreg pressure

Shannon, Mark, and Chris Bailey. "Global Stack
Allocation–." In 22nd EuroForth Conference, p.
13. 2006.

Park, J., Park, J., Song, W., Yoon, S., Burgstaller,
B., & Scholz, B. (2011). Treegraph-based
instruction scheduling for stack-based virtual
machines. Electronic Notes in Theoretical
Computer Science, 279(1), 33-45.

Other Optimization ideas for stack machines
● Function Outlining

○ To reduce overall code size

● Profile-guided/trace-oriented inlining
○ For blockchain use cases: inline most accessed execution paths.

● TreeGraph scheduling -- another stack allocation scheme *
● Rematerialization

○ To reduce virtual register pressure

● Park, J., Park, J., Song, W., Yoon, S., Burgstaller, B., & Scholz, B. (2011). Treegraph-based instruction scheduling for stack-based virtual machines.
Electronic Notes in Theoretical Computer Science, 279(1), 33-45.

The End

