-
Notifications
You must be signed in to change notification settings - Fork 0
/
architectures.py
53 lines (49 loc) · 2.61 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
'''
- this file is necessary to get the right architectures for the models
- it is based on the publicly available code https://github.com/locuslab/smoothing/blob/master/code/architectures.py written by Jeremy Cohen
'''
import torch
from torchvision.models.resnet import resnet50
import torch.backends.cudnn as cudnn
from archs.cifar_resnet import resnet as resnet_cifar
from datasets import get_normalize_layer
from datasets import get_input_center_layer # added for certain SmoothAdv models
from torch.nn.functional import interpolate
# resnet50 - the classic ResNet-50, sized for ImageNet
# cifar_resnet20 - a 20-layer residual network sized for CIFAR
# cifar_resnet110 - a 110-layer residual network sized for CIFAR
ARCHITECTURES = ["resnet50", "cifar_resnet20", "cifar_resnet110", "cifar_resnet110_selection", "cifar_resnet110_binary"]
def get_architecture(arch: str, dataset: str) -> torch.nn.Module:
""" Return a neural network (with random weights)
:param arch: the architecture - should be in the ARCHITECTURES list above
:param dataset: the dataset - should be in the datasets.DATASETS list
:return: a Pytorch module
"""
if arch == "resnet50" and dataset == "imagenet":
model = torch.nn.DataParallel(resnet50(pretrained=False)).cuda()
cudnn.benchmark = True
elif arch == "cifar_resnet20":
model = resnet_cifar(depth=20, num_classes=10).cuda()
elif arch == "cifar_resnet110":
model = resnet_cifar(depth=110, num_classes=10).cuda()
elif arch == "cifar_resnet110_binary":
model = resnet_cifar(depth=110, num_classes=2).cuda()
elif arch == "cifar_resnet110_selection":
model = resnet_cifar(depth=110, num_classes=1).cuda()
normalize_layer = get_normalize_layer(dataset) # this is the default (!)
return torch.nn.Sequential(normalize_layer, model)
def get_architecture_center_layer(arch: str, dataset: str) -> torch.nn.Module:
""" Return a neural network (with random weights)
:param arch: the architecture - should be in the ARCHITECTURES list above
:param dataset: the dataset - should be in the datasets.DATASETS list
:return: a Pytorch module
"""
if arch == "resnet50" and dataset == "imagenet":
model = torch.nn.DataParallel(resnet50(pretrained=False)).cuda()
cudnn.benchmark = True
elif arch == "cifar_resnet20":
model = resnet_cifar(depth=20, num_classes=10).cuda()
elif arch == "cifar_resnet110":
model = resnet_cifar(depth=110, num_classes=10).cuda()
normalize_layer = get_input_center_layer(dataset) # added for certain SmoothAdv models
return torch.nn.Sequential(normalize_layer, model)