-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconcrete-spngp.py
48 lines (40 loc) · 1.41 KB
/
concrete-spngp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import pandas as pd
from learnspngp import build, query, build_bins
from spngp import structure
import sys
np.random.seed(58)
data = pd.read_csv('datasets/concrete/Concrete_Data_Yeh.csv')
data = pd.DataFrame(data).dropna()
dmean, dstd = data.mean(), data.std()
data = (data-dmean)/dstd
# GPSPN on full data
train = data.sample(frac=0.8, random_state=58)
test = data.drop(train.index)
x, y = train.iloc[:, :-1].values, train.iloc[:, -1].values.reshape(-1,1)
opts = {
'min_samples': 0,
'X': x,
'qd': 3,
'max_depth': 2,
'max_samples': 10**10,
'log': True,
'min_samples': 0,
'jump': True,
'reduce_branching': True
}
root_region, gps_ = build_bins(**opts)
root, gps = structure(root_region, gp_types=['rbf'])
for i, gp in enumerate(gps):
idx = query(x, gp.mins, gp.maxs)
gp.x, gp.y = x[idx], y[idx]
print(f"Training GP {i+1}/{len(gps)} ({len(idx)})")
gp.init(cuda=True)
root.update()
for smudge in np.arange(0, 0.5, 0.05):
mu_s, cov_s = root.forward(test.iloc[:, 0:-1].values, smudge=smudge)
mu_s = (mu_s.ravel() * dstd.iloc[-1]) + dmean.iloc[-1]
mu_t = (test.iloc[:, -1]*dstd.iloc[-1]) + dmean.iloc[-1]
sqe = (mu_s - mu_t.values)**2
rmse = np.sqrt(sqe.sum()/len(test))
print(f"SPN-GP (smudge={round(smudge, 4)}) \t RMSE: {rmse}")