-
Notifications
You must be signed in to change notification settings - Fork 0
/
presentation-beamer.tex
1438 lines (1240 loc) · 49.7 KB
/
presentation-beamer.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%!TEX program = xelatex
% Name : hsrm-beamer-minimal.sty
% Author : Benjamin Weiss (benjamin.weiss@kreatiefton.de)
% Version : 0.2
% Created on : 08.05.2013
% Last Edited on : 24.03.2014
% Copyright : Copyright (c) 2013 by Benjamin Weiss. All rights reserved.
% License : This file may be distributed and/or modified under the
% GNU Public License.
% Description : HSRM beamer theme minimal example.
\documentclass[usepdftitle=false]{beamer}
\usepackage[main=english,german]{babel}
\newcommand\Fontvi{\fontsize{6}{7.2}\selectfont}
\usetheme{hsrm}
\usepackage{graphicx}
\usepackage{subfigure}
\usepackage{amsbsy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{tabularx}
\usepackage{booktabs}
%\usepackage{floatrow}
%\usepackage{multirow}
%\usepackage{multicol}
\usepackage{enumerate}
\setbeamerfont{caption}{size=\scriptsize
}%\floatsetup[table]{capposition=top}
\newcommand{\matr}[1]{\mathbf{#1}}
\newenvironment{bsmallmatrix}
{\left[\begin{smallmatrix}}
{\end{smallmatrix}\right]}
\newenvironment{psmallmatrix}
{\left\{\begin{smallmatrix}}
{\end{smallmatrix}\right\}}
\newenvironment{psmatrix}
{\left\{\begin{matrix}}
{\end{matrix}\right\}}
\newcommand{\code}[1]{\texttt{#1}}
\newcolumntype{b}{X}
\newcolumntype{s}{>{\hsize=.5\hsize}X}
%\includeonlyframes{current}
\title{비선형 감쇠장치가 설치된 건축구조물의 내진 및 내풍 성능 평가를 위한 하이브리드 실험기법 및 가진시스템 설계}
\subtitle{Hybrid Testing Method and Excitation System Design for Seismic and Wind-resistance Performance Evaluation of Building Structures with Nonlinear Dampers}
\author{박은천}
\institute{단국대학교 건축대학 {\Medium 지도교수 : 민경원}}
\date{\today}
\begin{document}
\maketitle
\section*{Contents}
\begin{frame}
\frametitle{Contents}
\tableofcontents[hideallsubsections]
\end{frame}
\section{Introduction}
\begin{frame}{Introduction}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/beamer-1.eps}
\end{figure}
\end{frame}
\begin{frame}{Introduction}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/beamer-2.eps}
\end{figure}
\end{frame}
\begin{frame}{Introduction}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/beamer-3.eps}
\end{figure}
\end{frame}
\begin{frame}{Introduction}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/beamer-4.eps}
\end{figure}
\end{frame}
\begin{frame}{Introduction}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/subject.eps}
\label{fig:subject}
\end{figure}
\end{frame}
\section{Publications}
\begin{frame}{International Journal (국제저널 SCI급)}
\Fontvi
\begin{itemize}
\item \textbf{Eunchurn Park}, Kyung-Won Min, Sung-Kyung Lee, Sang-Hyun Lee, Heon-Jae Lee, Seok-Jun Moon, Hyung-Jo Jung, “\textbf{Real-time Hybrid Test on a Semi-actively Controlled Building Structure Equipped with Full-scale MR Dampers}”, Journal of Intelligent Material Systems and Structures; 21(18):1831-1850. DOI:10.1177/1045389X10390253 · 2.17 Impact Factor
\item Heon-Jae Lee, Hyung-Jo Jung, Seok-Jun Moon, Sung-Kyung Lee, \textbf{Eun-Churn Park}, Kyung-Won Min, “\textbf{Experimental Investigation of MR Damper-based Semiactive Control Algorithms for Full-scale Five-story Steel Frame Building}”, Journal of Intelligent Material Systems and Structures; 21(10):1025-1037. DOI:10.1177/1045389X10374162 · 2.17 Impact Factor
\item Jae-Sung Heo, Sung-Kyung Lee, \textbf{Eunchurn Park}, Sang-Hyun Lee, Kyung-Won Min, Hongjin Kim, Jiseong Jo, Bong-Ho Cho, “\textbf{Performance test of a tuned liquid mass damper for reducing bidirectional responses of building structures}”, The Structural Design of Tall and Special Buildings; 18(7):789 - 805. DOI:10.1002/tal.486 · 0.83 Impact Factor
\item \textbf{Eun-Churn Park}, Sang-Hyun Lee, Kyung-Won Min, Lan Chung, Sung-Kyung Lee, Seung-Ho Cho, Eunjong Yu, Kyung-Soo Kang, “\textbf{Design of an actuator for simulating wind-induced response of a building structure}”, SMART STRUCTURES AND SYSTEMS; 4(1). DOI:10.12989/sss.2008.4.1.085 · 1.16 Impact Factor
\item Sung-Kyung Lee, \textbf{Eun Churn Park}, Kyung-Won Min, Ji-Hun Park, “\textbf{Real-time substructuring technique for the shaking table test of upper substructures}”, Engineering Structures; 29(9):2219-2232. DOI:10.1016/j.engstruct.2006.11.013 · 1.77 Impact Factor
\item Sung-Kyung Lee, \textbf{Eun Churn Park}, Kyung-Won Min, Sang-Hyun Lee, Ji-Hun Park, “\textbf{Experimental implementation of a building structure with a tuned liquid column damper based on the real-time hybrid testing method}”, Journal of Mechanical Science and Technology; 21(6):885-890. DOI:10.1007/BF03027063 · 0.70 Impact Factor
\item Sung-Kyung Lee, \textbf{Eun Churn Park}, Kyung-Won Min, Sang-Hyun Lee, Lan Chung, Ji-Hun Park, “ \textbf{Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures}”, Journal of Sound and Vibration; DOI:10.1016/j.jsv.2006.12.006 · 1.86 Impact Factor
\end{itemize}
\end{frame}
\begin{frame}{Domestic Journal (국내저널 KCI등재)}
\Fontvi
\begin{itemize}
\item 민경원, 이성경, 박은천, “진동대실험에 의한 동조액체기둥감쇠기의 동적특성”, 한국소음진동공학회논문집 (Transactions of the Korean society for noise and vibration engineering) v.19 no.6 = no.147, pp.620 - 627, 2009, 1598-2785
\item 박은천, 이성경, 이헌재, 문석준, 정형조, 민경원, “대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용”, 한국전산구조공학회논문집 (Journal of the computational structural engineering institute of Korea) v.21 no.5, pp.465 - 474, 2008, 1229-3059
\item 이성경, 민경원, 박은천, “TMD와 TLCD를 이용한 2방향 감쇠기의 동적특성”, 한국전산구조공학회논문집 (Journal of the computational structural engineering institute of Korea) v.21 no.6, pp.589 - 596, 2008, 1229-3059
\item 허재성, 이성경, 박은천, 이상현, 김홍진, 조지성, 조봉호, “실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가”, 한국소음진동공학회논문집 (Transactions of the Korean society for noise and vibration engineering) v.18 no.5 = no.134, pp.485 - 495, 2008, 1598-2785
\item 허재성, 박은천, 이상현, 이성경, 김홍진, 조봉호, 조지성, 김동영, 민경원, “건축구조물의 2방향 진동제어를 위한 동조액체질량감쇠기”, 한국소음진동공학회논문집 (Transactions of the Korean society for noise and vibration engineering) v.18 no.3 = no.132, pp.345 - 355, 2008, 1598-2785
\item 허재성, 박은천, 이성경, 이상현, 김홍진, 조지성, 조봉호, 주석준, 민경원, “실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험”, 한국전산구조공학회논문집 (Journal of the computational structural engineering institute of Korea) v.21 no.2, pp.161 - 168, 2008, 1229-3059
\item 윤경조, 박은천, 이헌재, 문석준, 민경원, 정형조, 이상현, “준능동 MR감쇠기가 설치된 실물크기 구조물의 분산제어 알고리즘 성능평가”, 한국소음진동공학회논문집 (Transactions of the Korean society for noise and vibration engineering) v.18 no.2 = no.131, pp.255 - 262, 2008, 1598-2785
\end{itemize}
\end{frame}
\begin{frame}{Domestic Journal (국내저널 KCI등재)}
\Fontvi
\begin{itemize}
\item 박은천, 이성경, 윤경조, 정희산, 이헌재, 최강민, 문석준, 정형조, 민경원, “실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가”, 한국소음진동공학회논문집 (Transactions of the Korean society for noise and vibration engineering) v.18 no.1 = no.130, pp.131 - 138, 2008, 1598-2785
\item 박은천, 민경원, 정란, 강경수, 이상현, “건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계”, 한국전산구조공학회논문집 (Journal of the computational structural engineering institute of Korea) v.20 no.6, pp.769 - 778, 2007, 1229-3059
\item 이성경, 민경원, 박은천, “진동대를 이용한 구조물의 하이브리드 실험”, 대한건축학회논문집 (Journal of the architectural institute of Korea : Structure \& construction) / 구조계 v.22 no.5 = no.211, pp.57 - 63, 2006, 1226-9107
\item 이상현, 박은천, 윤경조, 이성경, 유은종, 민경원, 정란, 민정기, 김영찬, “실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계”, 한국지진공학회논문집 (Journal of the earthquake engineering society of Korea) v.10 no.6 = no.52, pp.103 - 114, 2006, 1226-525x
\item 이성경, 박은천, 이상현, 정란, 우성식, 민경원, “실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증”, 한국전산구조공학회논문집 (Journal of the computational structural engineering institute of Korea) v.19 no.4 = no.74, pp.419 - 427, 2006, 1229-3059
\end{itemize}
\end{frame}
\section{Hybrid Testing Method}
\begin{frame}{Hybrid Testing Method (Substructuring Technique)}
\begin{figure}[ht]
\centering
\subfigure{
\includegraphics[width=0.5\textwidth] {figure/2_1a.eps}
}\hfill
\subfigure{
\includegraphics[width=0.5\textwidth] {figure/2_1b.eps}
}
\end{figure}
\end{frame}
\begin{frame}{Dynamic equilibrium in experimental structure}
\begin{figure}[ht]
\setcounter{subfigure}{0}
\centering\subfigure[Whole structure]{
\includegraphics[width=0.2\textwidth] {figure/2-3a.eps}
\label{fig:2-3a}
}\hfill
\subfigure[Separation of whole structure]{
\includegraphics[width=0.3\textwidth] {figure/2-3b.eps}
\label{fig:2-3b}
}\hfill
\subfigure[Experimental and numerical substructure]{
\includegraphics[width=0.4\textwidth] {figure/2-3c.eps}
\label{fig:2-3c}
}
\end{figure}
\end{frame}
\begin{frame}{Overall view of experimental system}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/2-5.eps}
\end{figure}
\end{frame}
\begin{frame}{Schematic diagram of experimental system}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/2-6.eps}
\end{figure}
\end{frame}
\begin{frame}{Flow chart of the experimental system controller}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/2-8.eps}
\end{figure}
\end{frame}
\begin{frame}{Interfacing Force}
\begin{align}
i(t)=&-m_{E(1)}\ddot{Y}_{E(1)}(t)-m_{E(2)}\ddot{Y}_{E(2)}(t) \label{eq:2-19} \\
\ddot{Y}_{N(3)}(t)=&-c_{N(3)}\left(\dot{Y}_{N(3)}-\dot{Y}_{N(2)}\right) -k_{N(3)}\left(Y_{N(3)}-Y_{N(2)}\right)+i(t) \label{eq:2-20}
\end{align}
\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth] {figure/2-11.eps}
\end{figure}
\end{frame}
\begin{frame}{Comparisons of results}
\begin{figure}[ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Time domain]{
\includegraphics[width=0.4\textwidth] {figure/2-12a.eps}
\label{fig:2-12a}
}
\subfigure[Frequency domain]{
\includegraphics[width=0.4\textwidth] {figure/2-12b.eps}
\label{fig:2-12b}
}
%\caption{Comparisons of results measured from the experiment without feedback and those calculated from numerical analysis.}
\label{fig:2-12}
\end{figure}
\end{frame}
\begin{frame}{Spectrogram comparison of results}
\begin{figure}[ht]
\centering
\setcounter{subfigure}{0}
\subfigure[experiment without feedback]{
\includegraphics[width=0.35\textwidth] {figure/2-13a.eps}
\label{fig:2-13a}
}\hfill
\subfigure[numerical analysis measured]{
\includegraphics[width=0.35\textwidth] {figure/2-13b.eps}
\label{fig:2-13b}
}\\
\subfigure[experiment without feedback]{
\includegraphics[width=0.35\textwidth] {figure/2-13c.eps}
\label{fig:2-13c}
}\hfill
\subfigure[numerical analysis measured]{
\includegraphics[width=0.35\textwidth] {figure/2-13d.eps}
\label{fig:2-13d}
}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for a TLD with Building Structure}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/3-1.eps}
%\caption{Conceptual view of the real-time hybrid shaking table test}
%\label{fig:3-1}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLD}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/3-3.eps}
%\caption{Block diagram of the integrated controller for the real-time hybrid experimental system.}
\label{fig:3-3}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLD}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Conventional shaking table test]{
\includegraphics[width=0.45\textwidth] {figure/3-4a.eps}
\label{fig:3-4a}
}
\subfigure[Real-time hybrid shaking table test]{
\includegraphics[width=0.45\textwidth] {figure/3-4b.eps}
\label{fig:3-4b}
}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLD}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[El Centro]{
\includegraphics[width=0.4\textwidth] {figure/3-6a.eps}
\label{fig:3-6a}
}
\subfigure[Hachinohe]{
\includegraphics[width=0.4\textwidth] {figure/3-6b.eps}
\label{fig:3-6b}
}
\subfigure[Mexico city]{
\includegraphics[width=0.4\textwidth] {figure/3-6c.eps}
\label{fig:3-6c}
}
\subfigure[Northridge]{
\includegraphics[width=0.4\textwidth] {figure/3-6d.eps}
\label{fig:3-6d}
}
%\caption{Structural acceleration in the time domain measured from the conventional shaking table test of TLD-structure interaction system (dotted line : without control, solid line : with control)}
\label{fig:3-6}
\end{figure}
dotted line : without control, solid line : with control
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLD}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[El Centro]{
\includegraphics[width=0.25\textwidth] {figure/3-7a.eps}
\label{fig:3-7a}
}
\subfigure[Hachinohe]{
\includegraphics[width=0.25\textwidth] {figure/3-7b.eps}
\label{fig:3-7b}
}\\
\subfigure[Mexico city]{
\includegraphics[width=0.25\textwidth] {figure/3-7c.eps}
\label{fig:3-7c}
}
\subfigure[Northridge]{
\includegraphics[width=0.25\textwidth] {figure/3-7d.eps}
\label{fig:3-7d}
}
%\caption{Structural acceleration in the time domain measured from the conventional shaking table test of TLD-structure interaction system (dotted line : without control, solid line : with control)}
\label{fig:3-6}
\end{figure}
dotted line : without control, solid line : with control
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLD}
\begin{figure}[!ht]
\centering
\subfigure[El Centro]{
\includegraphics[width=0.25\textwidth] {figure/3-9a.eps}
\label{fig:3-9a}
}
\subfigure[Hachinohe]{
\includegraphics[width=0.25\textwidth] {figure/3-9b.eps}
\label{fig:3-9b}
}\\
\subfigure[Mexico city]{
\includegraphics[width=0.25\textwidth] {figure/3-9c.eps}
\label{fig:3-9c}
}
\subfigure[Northridge]{
\includegraphics[width=0.25\textwidth] {figure/3-9d.eps}
\label{fig:3-9d}
}
\label{fig:3-9}
\end{figure}
dotted line : conventional shaking table test, solid line : real-time hybrid test
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLCD}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/4-1.eps}
%\caption{Concept of the real-time hybrid testing method (TLCD)}
\label{fig:4-1}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLCD}
\begin{figure}[ht]
\centering
\setcounter{subfigure}{0}
\includegraphics[width=1\textwidth] {figure/4-3.eps}
%\caption{Controller for implementing the real-time hybrid testing method}
\label{fig:4-3}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLCD}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[conventional testing method]{
\includegraphics[width=0.4\textwidth] {figure/4-4a.eps}
\label{fig:4-4a}
}
\subfigure[hybrid testing method]{
\includegraphics[width=0.4\textwidth] {figure/4-4b.eps}
\label{fig:4-4b}
}
%\caption{Experimental view of a building with a TLCD}
\label{fig:4-4}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLCD}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[El Centro Earthquake(time domain)]{
\includegraphics[width=0.3\textwidth] {figure/4-5a.eps}
\label{fig:4-5a}
}
\subfigure[El Centro Earthquake(frequency domain)]{
\includegraphics[width=0.3\textwidth] {figure/4-5b.eps}
\label{fig:4-5b}
}\\
\subfigure[Kobe Earthquake(time domain)]{
\includegraphics[width=0.3\textwidth] {figure/4-5c.eps}
\label{fig:4-5c}
}
\subfigure[Kobe Earthquake(frequency domain)]{
\includegraphics[width=0.3\textwidth] {figure/4-5d.eps}
\label{fig:4-5d}
}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLMD}
\begin{figure}[ht]
\centering
\includegraphics[width=0.6\textwidth] {figure/5-1.eps}
%\caption{Concept of a TLMD}
\label{fig:5-1}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for the Performance Evaluation of a TLMD}
\begin{figure}[ht]
\centering
\includegraphics[width=0.6\textwidth] {figure/5-2.eps}
%\caption{Photograph of the manufactured TLMD}
\label{fig:5-2}
\end{figure}
\Fontvi
\begin{table}[ht]
\centering
\begin{tabularx}{\textwidth}{@{}X|X|X@{}}
\toprule[1pt]\midrule[0.3pt]
Design parameter & TLCD control direction & TMD control direction\\ \hline
Siffness or liquid length & $0.98m$ (liquid length) & $1990N/m$ (stiffness)\\
Frequency (Hz) & $0.73$ & $0.82$\\
Mass (kg) & $35$ & $75$\\
\bottomrule
\end{tabularx}
\caption{Design parameters of a TLMD model}
\label{tab:5-3}
\end{table}
\end{frame}
\begin{frame}{Hybrid Testing for a TLMD with a Building Structure}
\begin{figure}[ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Design of the controller]{
\includegraphics[width=0.7\textwidth] {figure/5-16.eps}
}
\subfigure[MATLAB Simulink window Target]{
\includegraphics[width=0.7\textwidth] {figure/5-18.eps}
}
\end{figure}
\end{frame}
\begin{frame}{Hybrid Testing for a TLMD with a Building Structure}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Disp. TMD dir.]{
\includegraphics[width=0.3\textwidth] {figure/5-19.eps}
}
\subfigure[Acc. TMD dir.]{
\includegraphics[width=0.3\textwidth] {figure/5-20.eps}
}
\subfigure[Disp. TMD dir.]{
\includegraphics[width=0.3\textwidth] {figure/5-21.eps}
}
\subfigure[Disp. TLCD dir.]{
\includegraphics[width=0.3\textwidth] {figure/5-22.eps}
}
\subfigure[Acc. TLCD dir.]{
\includegraphics[width=0.3\textwidth] {figure/5-23.eps}
}
\subfigure[Disp. TLCD dir.t]{
\includegraphics[width=0.3\textwidth] {figure/5-24.eps}
}
\end{figure}
\end{frame}
\section{Design of Controller}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\includegraphics[width=0.8\textwidth] {figure/si.eps}
\end{figure}
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth] {figure/6-1.eps}
%\caption{Scheme of simulation of wind induced responses using LMS and ATMD}
\label{fig:6-1}
\end{figure}
Scheme of simulation of wind induced responses using LMS and ATMD
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
Force of actuator
\begin{equation}
\begin{aligned}
\dot{\matr{z}} &=\matr{A}\matr{z}+\matr{B}_{f}f + \matr{B}_{u}u \\
y &= \matr{C}\matr{z}+\matr{D}_{f}f+\matr{D}_{u}u
\end{aligned}
\label{eq:6-1}
\end{equation}
\begin{equation}
\begin{aligned}
\matr{T}_{yf} &= \matr{Y}_{f}(s)\matr{F}(s)^{-1} = \matr{C}\left(s\matr{I}-\matr{A}\right)^{-1}\matr{B}_{f} \\
\matr{T}_{yu} &= \matr{Y}_{u}(s)\matr{U}(s)^{-1} = \matr{C}\left(s\matr{I}-\matr{A}\right)^{-1}\matr{B}_{u} \\
\end{aligned}
\label{eq:6-2}
\end{equation}
\begin{equation}
\begin{aligned}
\hat{\matr{U}}(s)&=\hat{\matr{T}}_{yu}^{-1}\hat{\matr{Y}}_{u}(s)\\
&=\hat{\matr{T}}_{yu}^{-1}\hat{\matr{Y}}_{f}(s)\\
&=\hat{\matr{T}}_{yu}^{-1}\hat{\matr{T}}_{yf}F(s)
\end{aligned}
\label{eq:6-4}
\end{equation}
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
Filter and evelop function
\begin{equation}\label{eq:6-5}
\hat{\matr{U}}_{p}(\omega) = G(\omega)\hat{\matr{U}}(s)
\end{equation}
where,
\begin{align}
G(\omega) &= \frac{1-a_{co}}{2}cos \left( \frac{2\pi}{\omega_{2}-\omega_{1}}\omega \right) + \frac{1+a_{co}}{2}\label{eq:6-6}\\
a_{co} &=\left\{\begin{array}{lr} \omega < \omega_{1} &: 1 \\ \omega_{1} \leq \omega \leq \omega_{2} &: 0 \\ \omega > \omega_{2} &: 1\end{array} \right.
\label{eq:6-7}
\end{align}
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[The shape of the band-stop filter]{
\includegraphics[width=0.45\textwidth] {figure/6-2a.eps}
\label{fig:6-2a}
}
\subfigure[The shape of the envelop function]{
\includegraphics[width=0.45\textwidth] {figure/6-2b.eps}
\label{fig:6-2b}
}
%\caption{Exciter gain shape of the band-stop filter and the envelop function.}
\label{fig:6-2}
Exciter gain shape of the band-stop filter and the envelop function.
\end{figure}
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\subfigure[Plan View of the 76-Story Building]{
\includegraphics[width=0.3\textwidth] {figure/6-3a.eps}
\label{fig:6-3a}\hfill
}
\subfigure[Elevation View of the Building.]{
\includegraphics[width=0.3\textwidth] {figure/6-3b.eps}
\label{fig:6-3b}
}
\subfigure[Mode shapes of the Building.]{
\includegraphics[width=0.3\textwidth] {figure/6-3c.eps}
\label{fig:6-3c}\hfill
}
%\caption{76th story benchmark model.}
\label{fig:6-3}
\end{figure}
76th story benchmark model.
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[76th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-8a.eps}
\label{fig:6-8a}\hfill
}
\subfigure[76th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-8b.eps}
\label{fig:6-8b}
}
%\caption{Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-8}
\end{figure}
Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[50th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-8c.eps}
\label{fig:6-8c}\hfill
}
\subfigure[50th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-8d.eps}
\label{fig:6-8d}
}
%\caption{Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-8}
\end{figure}
Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[30th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-8e.eps}
\label{fig:6-8e}\hfill
}
\subfigure[30th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-8f.eps}
\label{fig:6-8f}
}
%\caption{Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-8}
\end{figure}
Wind and LMS induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
ATMD Excitation
\begin{equation}\label{eq:6-10}
\matr{M}\matr{\ddot{x}}+\matr{C}\matr{\dot{x}}+\matr{K}\matr{x}+\matr{H}u = \eta\matr{W}
\end{equation}
Equation of motion of the building
\begin{equation}\label{eq:6-11}
\begin{aligned}
\begin{bmatrix}\matr{M}_{s} & 0 \\ \matr{0} & m_{t}\end{bmatrix}
\begin{psmatrix}\matr{\ddot{x}}_{s} \\ \ddot{x}_{t}\end{psmatrix}+&
\begin{bmatrix}\matr{C}_{s}+c_{t}\matr{B}_{t}\matr{B}_{t}^{\top} & -c_{t}\matr{B}_{t} \\ -c_{t}\matr{B}_{t}^{\top} & c_{t}\end{bmatrix}
\begin{psmatrix}\matr{\dot{x}}_{s} \\ \dot{x}_{t}\end{psmatrix}+\\
&\begin{bmatrix}\matr{K}_{s}+k_{t}\matr{B}_{t}\matr{B}_{t}^{\top} & -k_{t}\matr{B}_{t} \\ -k_{t}\matr{B}_{t}^{\top} & k_{t}\end{bmatrix}
\begin{psmatrix}\matr{x}_{s} \\ x_{t}\end{psmatrix} =
\begin{bmatrix}-\matr{B}_{t}\\1 \end{bmatrix}u
\end{aligned}
\end{equation}
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Transfer function of ATMD induced structure]{
\includegraphics[width=0.45\textwidth] {figure/6-10a.eps}
\label{fig:6-10a}\hfill
}
\subfigure[Frequency response of ATMD acceleration]{
\includegraphics[width=0.45\textwidth] {figure/6-10b.eps}
\label{fig:6-10b}
}
\subfigure[Frequency response of ATMD actuator force]{
\includegraphics[width=0.45\textwidth] {figure/6-10c.eps}
\label{fig:6-10c}\hfill
}
\subfigure[Time history of ATMD actuator force]{
\includegraphics[width=0.45\textwidth] {figure/6-10d.eps}
\label{fig:6-10d}
}
%\caption{ATMD Excitation.}
\label{fig:6-10}
\end{figure}
\centering ATMD Excitation.
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[76th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-11a.eps}
\label{fig:6-11a}\hfill
}
\subfigure[76th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-11b.eps}
\label{fig:6-11b}
}
%\caption{Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-11}
\end{figure}
Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[50th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-11c.eps}
\label{fig:6-11c}\hfill
}
\subfigure[50th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-11d.eps}
\label{fig:6-11d}
}
%\caption{Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-11}
\end{figure}
Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Design of an Actuator for Simulating Wind Response}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[30th story acceleration response]{
\includegraphics[width=0.8\textwidth] {figure/6-11e.eps}
\label{fig:6-11e}\hfill
}
\subfigure[30th story displacement response]{
\includegraphics[width=0.8\textwidth] {figure/6-11f.eps}
\label{fig:6-11f}
}
%\caption{Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).}
\label{fig:6-11}
\end{figure}
Wind and ATMD induced acceleration responses (when the target is 75th floor acceleration).
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[minor axis]{
\includegraphics[width=0.18\textwidth] {figure/7-1a.eps}
\label{fig:7-1a}\hfill
}
\subfigure[major axis]{
\includegraphics[width=0.18\textwidth] {figure/7-1b.eps}
\label{fig:7-1b}
}
%\caption{Elevation view of the target structure.}
\label{fig:7-1}
\end{figure}
Elevation view of the target structure.
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth] {figure/7-3.eps}
%\caption{Schematic diagram of the field measurement, data acquisition and exciting system.}
\label{fig:7-3}
\end{figure}
Schematic diagram of the field measurement, data acquisition and exciting system.
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[The measurement and data acquisition system]{
\includegraphics[width=0.45\textwidth] {figure/7-4a.eps}
\label{fig:7-4a}\hfill
}
\subfigure[The accelerometer installation]{
\includegraphics[width=0.45\textwidth] {figure/7-4b.eps}
\label{fig:7-4b}
}
%\caption{Installation pictures of the measurement, data acquisition and exciting system.}
\label{fig:7-4}
\end{figure}
Installation pictures of the measurement, data acquisition and exciting system.
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth] {figure/7-5.eps}
%\caption{The transfer function from the absolute acceleration of the HMD to those of the structure.}
\label{fig:7-5}
\end{figure}
The transfer function from the absolute acceleration of the HMD to those of the structure.
\Fontvi
\begin{table}[ht]
\centering
\begin{tabularx}{\textwidth}{s|b|b}
\toprule[1pt]\midrule[0.3pt]
Modes & Frequency (Hz) \& COV (\%) & Damping ratio (\%) \& COV (\%)\\ \midrule[0.3pt]
1&0.52(1.82) & 1.46(14.42)\\
2&1.73(0.13) & 2.71(9.40)\\
3&2.94(0.10) & 3.54(1.93)\\
4&4.14(0.08) & 1.72(1.70)\\
5&5.36(0.23) & 3.84(3.56)\\
\bottomrule
\end{tabularx}
%\caption{Identified natural frequencies and damping ratios}
\label{tab:7-2}
\end{table}
Identified natural frequencies and damping ratios
\end{frame}
\begin{frame}{Forced Vibration Test of Real-scaled Building}
\begin{equation}\label{eq:7-4}
\matr{K}\Phi = \matr{M}_{a}\Phi\Lambda, \Phi^{\top}\matr{M}_{a}\Phi = \matr{I}
\end{equation}
\begin{equation}\label{eq:7-5}
\matr{K}^{\top} = \matr{K}
\end{equation}
\begin{equation}\label{eq:7-6}
J=\frac{1}{2}\left\| \matr{N}^{-1}\left(\matr{K}-\matr{K}_{a}\right)^{-1}\right\|
\end{equation}
\begin{equation}\label{eq:7-7}
\Phi = \Phi_{m} \left[ \Phi_{m}^{\top}\matr{M}_{a}\Phi_{m}\right]^{-1/2}
\end{equation}
\begin{equation}\label{eq:7-8}
\begin{aligned}
\matr{K}&=\matr{K}_{a} - \matr{K}_{a}\Phi\Phi^{\top}\matr{M}_{a}-\matr{M}_{a}\Phi\Phi^{\top}\matr{K}_{a}\\
&+\matr{M}_{a}\Phi\Phi^{\top}\matr{K}_{a}\Phi\Phi^{\top}\matr{M}_{a} + \matr{M}_{a}\Phi\Lambda\Phi^{\top}\matr{M}_{a}
\end{aligned}
\end{equation}
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[1st mode shape]{
\includegraphics[width=0.40\textwidth] {figure/7-6a.eps}
\label{fig:7-6a}\hfill
}
\subfigure[2nd mode shape]{
\includegraphics[width=0.40\textwidth] {figure/7-6b.eps}
\label{fig:7-6b}
}
%\caption{The mode shape comparison of initial, the measured and the updated FE models.}
\label{fig:7-6}
\end{figure}
The mode shape comparison of initial, the measured and the updated FE models.
\begin{table}[ht]
\centering
\begin{tabularx}{\textwidth}{@{}X|X|X|X|X|X@{}}
\toprule[1pt]\midrule[0.3pt]
& 1st mode & 2nd mode & 3rd mode & 4th mode & 5th mode\\ \midrule[0.3pt]
initial & 0.5022 & 1.5623 & 2.74 & 3.91 & 4.83\\
measured& 0.5249 & 1.7578 & 2.94 & 3.67 & 5.38\\
updated & 0.5249 & 1.7578 & 2.95 & 3.67 & 5.38\\
\bottomrule
\end{tabularx}
%\caption{Natural frequencies (Hz) for the modal testing tower}
\label{tab:7-3}
\end{table}
Natural frequencies (Hz) for the modal testing tower
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{equation}\label{eq:7-11}
\begin{aligned}
\matr{\dot{z}}&= \matr{A}\matr{z} + \matr{B}_{b}\ddot{u}_{b}+\matr{B}_{h}\ddot{u}_{h}\\
\matr{y}&=\matr{C}\matr{z}+\matr{D}_{b}\ddot{u}_{b}+\matr{D}_{h}\ddot{u}_{h}
\end{aligned}
\end{equation}
\begin{equation}\label{eq:7-12}
\begin{aligned}
\matr{T}_{h}&=\matr{Y}_{h}(s)\matr{U}_{h}(s)^{-1} = \matr{C}\left(s\matr{I}-\matr{A}\right)^{-1}\matr{B}_{h} + \matr{D}_{h}\\
\matr{T}_{b}&=\matr{Y}_{b}(s)\matr{U}_{b}(s)^{-1} = \matr{C}\left(s\matr{I}-\matr{A}\right)^{-1}\matr{B}_{b}
\end{aligned}
\end{equation}
\begin{equation}\label{eq:7-13}
\matr{U}_{h}(s) = \matr{T}_{h}^{-1}\matr{Y}_{h}(s) = \matr{T}_{h}^{-1}\matr{Y}_{b}(s) = \matr{T}_{h}^{-1}\matr{T}_{b}\matr{U}_{b}(s)
\end{equation}
\begin{equation}\label{eq:7-14}
\hat{U}_{h}(s) = \hat{T}_{h}^{-1}\hat{Y}_{h}(s) = \hat{T}_{h}^{-1}\hat{Y}_{b}(s) = \hat{T}_{h}^{-1}\hat{T}_{b}\hat{U}_{b}(s)
\end{equation}
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[Definition of the transfer function of the HMD]{
\includegraphics[width=0.8\textwidth] {figure/7-9a.eps}
\label{fig:7-9a}\hfill
}
\subfigure[Compensation the dynamics of HMD using the inverse transfer function]{
\includegraphics[width=0.8\textwidth] {figure/7-9b.eps}
\label{fig:7-9b}
}
%\caption{Schematic diagram of the HMD controller.}
\label{fig:7-9}
\end{figure}
Schematic diagram of the HMD controller.
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
\setcounter{subfigure}{0}
\subfigure[1st floor acceleration]{
\includegraphics[width=0.7\textwidth] {figure/7-12a.eps}
\label{fig:7-12a}\hfill
}
\subfigure[2nd floor acceleration]{
\includegraphics[width=0.7\textwidth] {figure/7-12b.eps}
\label{fig:7-12b}
}
\subfigure[3rd floor acceleration]{
\includegraphics[width=0.7\textwidth] {figure/7-12c.eps}
\label{fig:7-12c}\hfill
}
%\caption{Time history comparison of El Centro earthquake response in the analysis and experimental models. (when the target response is the 5th floor acceleration).}
\end{figure}
Time history comparison of El Centro earthquake response in the analysis and experimental models. (when the target response is the 5th floor acceleration).
\end{frame}
\begin{frame}{Pseudo-earthquake Testing of Real-scaled Building}
\begin{figure}[!ht]
\centering
%\setcounter{subfigure}{0}
\subfigure[4th floor acceleration]{
\includegraphics[width=0.7\textwidth] {figure/7-12d.eps}
\label{fig:7-12d}
}
\subfigure[5th floor acceleration]{
\includegraphics[width=0.7\textwidth] {figure/7-12e.eps}
\label{fig:7-12e}\hfill
}
\subfigure[1st floor displacement]{
\includegraphics[width=0.7\textwidth] {figure/7-12f.eps}
\label{fig:7-12f}
}
%\caption{Time history comparison of El Centro earthquake response in the analysis and experimental models. (when the target response is the 5th floor acceleration).}
\end{figure}
Time history comparison of El Centro earthquake response in the analysis and experimental models. (when the target response is the 5th floor acceleration).