generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jetclass.yaml
90 lines (77 loc) · 2.21 KB
/
jetclass.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# @package _global_
# to execute this experiment run:
# python train.py experiment=jetclass
defaults:
- override /data: jetclass.yaml
- override /model: flow_matching.yaml
- override /callbacks: jetclass.yaml
- override /trainer: gpu.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
# add here checkpoint to continue training
# ckpt_path: XXX/checkpoints/last-EMA.ckpt
tags: ["flow_matching", "JetClass", "uncond"]
run_note: ""
seed: 12345
trainer:
min_epochs: 1
max_epochs: 5000
gradient_clip_val: 0.5
model:
num_particles: 128
global_cond_dim: 0 # needs to be calculated when using conditioning (= number of jet types + additional conditioning variables)
local_cond_dim: 0
features: 8 # = 3 + number of `additional_part_features` (see below)
scheduler:
warmup: 500
max_iters: 5000
data:
# preprocessing
# list of the following: QCD, Hbb, Hcc, Hgg, H4q, Hqql, Zqq, Wqq, Tbqq, Tbl
used_jet_types: [Tbqq] # null means all jet types
number_of_used_jets: 3_000_000
normalize: True
normalize_sigma: 5
# conditioning
conditioning_pt: False
conditioning_eta: False
conditioning_mass: False
conditioning_num_particles: False
conditioning_jet_type: False
additional_part_features:
- part_d0val
- part_d0err
- part_dzval
- part_dzerr
- part_charge
# - part_isChargedHadron
# - part_isNeutralHadron
# - part_isPhoton
# - part_isElectron
# - part_isMuon
callbacks:
ema:
decay: 0.999
apply_ema_every_n_steps: 1
start_step: 0
save_ema_weights_in_callback_state: True
evaluate_ema_weights_instead: True
jetclass_eval:
every_n_epochs: 50 # evaluate every n epochs
additional_eval_epochs: [1, 30, 75] # evaluate at these epochs as well
num_jet_samples: 50_000 # jet samples to generate
jetclass_eval_test:
num_jet_samples: 200_000 # jet samples to generate
#early_stopping:
# monitor: "val/loss"
# patience: 2000
# mode: "min"
task_name: "jetclass"
logger:
wandb:
tags: ${tags}
group: "flow_matching_jetclass"
name: ${task_name}
comet:
experiment_name: null
project_name: "flow-matching"